Exotic star

An exotic star is a hypothetical compact star composed of something other than electrons, protons, neutrons, or muons, and balanced against gravitational collapse by degeneracy pressure or other quantum properties. Exotic stars include quark stars (composed of quarks) and perhaps strange stars (composed of strange quark matter, a condensate of up, down and strange quarks), as well as speculative preon stars (composed of preons, which are hypothetical particles and "building blocks" of quarks, should quarks be decomposable into component sub-particles). Of the various types of exotic star proposed, the most well evidenced and understood is the quark star.

Exotic stars are largely theoretical – partly because it is difficult to test in detail how such forms of matter may behave, and partly because prior to the fledgling technology of gravitational-wave astronomy, there was no satisfactory means of detecting cosmic objects that do not radiate electromagnetically or through known particles. So it is not yet possible to verify novel cosmic objects of this nature by distinguishing them from known objects. Candidates for such objects are occasionally identified based on indirect evidence gained from observable properties.

Quark stars and strange stars

A quark star is a hypothesized object that results from the decomposition of neutrons into their constituent up and down quarks under gravitational pressure. It is expected to be smaller and denser than a neutron star, and may survive in this new state indefinitely if no extra mass is added. Effectively, it is a very large nucleon. Quark stars that contain strange matter are called strange stars.

Based on observations released by the Chandra X-Ray Observatory on 10 April 2002, two objects, designated RX J1856.5-3754 and 3C58, were suggested as quark star candidates. The former appeared to be much smaller and the latter much colder than expected for a neutron star, suggesting that they were composed of material denser than neutronium. However, these observations were met with skepticism by researchers who said the results were not conclusive. After further analysis, RX J1856.5-3754 was excluded from the list of quark star candidates.[1]

Electroweak stars

An electroweak star is a theoretical type of exotic star in which the gravitational collapse of the star is prevented by radiation pressure resulting from electroweak burning; that is, the energy released by the conversion of quarks into leptons through the electroweak force. This process occurs in a volume at the star's core approximately the size of an apple and containing about two Earth masses.[2]

The stage of life of a star that produces an electroweak star is theorized to occur after a supernova collapse. Electroweak stars are denser than quark stars, and may form when quark degeneracy pressure is no longer able to withstand gravitational attraction, but can still be withstood by electroweak-burning radiation pressure.[3] This phase of a star's life may last upwards of 10 million years.[2][3][4][5]

Preon stars

A preon star is a proposed type of compact star made of preons, a group of hypothetical subatomic particles. Preon stars would be expected to have huge densities, exceeding 1023 kg/m3. They may have greater densities than quark stars and neutron stars, although they would be smaller but heavier than white dwarfs and neutron stars.[6] Preon stars could originate from supernova explosions or the Big Bang. Such objects could be detected in principle through gravitational lensing of gamma rays. Preon stars are a potential candidate for dark matter. However, current observations[7] from particle accelerators speak against the existence of preons, or at least do not prioritize their investigation, since the only particle detector presently able to explore very high energies (the Large Hadron Collider) is not designed specifically for this and its research program is directed towards other areas, such as studying the Higgs boson, quark-gluon plasma and evidence related to physics beyond the Standard Model.

In general relativity, if a star collapses to a size smaller than its Schwarzschild radius, an event horizon will exist at that radius and the star will become a black hole. Thus, the size of a preon star may vary from around 1 metre with an absolute mass of 100 Earths to the size of a pea with a mass roughly equal to that of the Moon.

Boson stars

A boson star is a hypothetical astronomical object that is formed out of particles called bosons (conventional stars are formed from mostly protons, which are fermions, but also consist of Helium-4 nuclei, which are bosons). For this type of star to exist, there must be a stable type of boson with self-repulsive interaction; one possible candidate particle[8] is the still-hypothetical "axion" (which is also a candidate for the not-yet-detected "non-baryonic dark matter" particles, which appear to compose roughly 25% of the mass of the Universe). It is theorized[9] that unlike normal stars (which emit radiation due to gravitational pressure and nuclear fusion), boson stars would be transparent and invisible. The immense gravity of a compact boson star would bend light around the object, creating an empty region resembling the shadow of a black hole's event horizon. Like a black hole, a boson star would absorb ordinary matter from its surroundings, but the transparency means this matter (which likely would heat up and emit radiation) would be visible at its center. Simulations further suggest that rotating boson stars would be doughnut-shaped as centrifugal forces would give the bosonic matter that form.

As of 2018, there is no significant evidence that such stars exist. However, it may become possible to detect them by the gravitational radiation emitted by a pair of co-orbiting boson stars.[10][11]

Boson stars may have formed through gravitational collapse during the primordial stages of the Big Bang.[12] At least in theory, a supermassive boson star could exist at the core of a galaxy, which might explain many of the observed properties of active galactic cores.[13]

Boson stars have also been proposed as candidate dark matter objects,[14] and it has been hypothesized that the dark matter haloes surrounding most galaxies might be viewed as enormous "boson stars."[15]

The compact boson stars and boson shells are often studied involving fields like the massive (or massless) complex scalar fields, the U(1) gauge field and gravity with conical potential. The presence of a positive or negative cosmological constant in the theory facilitates a study of these objects in de Sitter and anti-de Sitter spaces.[16][17][18][19][20]

Braaten, Mohapatra, and Zhang have theorized that a new type of dense axion star may exist in which gravity is balanced by the mean-field pressure of the axion Bose-Einstein condensate.[21]

Planck stars

In loop quantum gravity, A Planck star is a theoretically possible astronomical object that is created when the energy density of a collapsing star reaches the Planck energy density. Under these conditions, assuming gravity and spacetime are quantized, there arises a repulsive "force" derived from Heisenberg's uncertainty principle. In other words, if gravity and spacetime are quantized, the accumulation of mass-energy inside the Planck star cannot collapse beyond this limit because it would violate the uncertainty principle for spacetime itself.[22]

See also

References

  1. ^ Truemper, J. E.; Burwitz, V.; Haberl, F.; Zavlin, V. E. (June 2004). "The puzzles of RX J1856.5-3754: neutron star or quark star?". Nuclear Physics B: Proceedings Supplements. 132: 560–565. arXiv:astro-ph/0312600. Bibcode:2004NuPhS.132..560T. doi:10.1016/j.nuclphysbps.2004.04.094.
  2. ^ a b Shiga, D. (4 January 2010). "Exotic stars may mimic Big Bang". New Scientist. Retrieved 18 February 2010.
  3. ^ a b "Theorists Propose a New Way to Shine – And a New Kind of Star: 'Electroweak'". ScienceDaily. 15 December 2009. Retrieved 16 December 2009.
  4. ^ Vieru, Tudor (15 December 2009). "New Type of Cosmic Objects: Electroweak Stars". Softpedia. Retrieved 16 December 2009.
  5. ^ "Astronomers Predict New Class of 'Electroweak' Star". Technology Review. 10 December 2009. Retrieved 16 December 2009.
  6. ^ Hannson, J.; Sandin, F. (9 June 2005). "Preon stars: a new class of cosmic compact objects". Physics Letters B. 616 (1–2): 1–7. arXiv:astro-ph/0410417. Bibcode:2005PhLB..616....1H. doi:10.1016/j.physletb.2005.04.034.
  7. ^ Wilkins, Alasdair (9 December 2010). "Stars so weird that they make black holes look boring". io9. Retrieved 12 September 2015.
  8. ^ Kolb, Edward W.; Tkachev, Igor I. (29 March 1993). "Axion Miniclusters and Bose Stars". Physical Review Letters. 71 (19): 3051. arXiv:hep-ph/9303313. Bibcode:1993PhRvL..71.3051K. doi:10.1103/PhysRevLett.71.3051. PMID 10054845.
  9. ^ Clark, Stuart (15 July 2017). "Holy Moley! (Astronomers taking a first peek at our galaxy's black heart might be in for a big surprise)". New Scientist: 29.
  10. ^ Schutz, Bernard F. (2003). Gravity from the Ground Up (3rd ed.). Cambridge University Press. p. 143. ISBN 0-521-45506-5.
  11. ^ Palenzuela, C.; Lehner, L.; Liebling, S. L. (2008). "Orbital dynamics of binary boson star systems". Physical Review D. 77 (4): 044036. arXiv:0706.2435. Bibcode:2008PhRvD..77d4036P. doi:10.1103/PhysRevD.77.044036.
  12. ^ Madsen, Mark S.; Liddle, Andrew R. (1990). "The cosmological formation of boson stars". Physics Letters B. 251 (4): 507. Bibcode:1990PhLB..251..507M. doi:10.1016/0370-2693(90)90788-8.
  13. ^ Torres, Diego F.; Capozziello, S.; Lambiase, G. (2000). "A supermassive boson star at the galactic center?". Physical Review D. 62 (10): 104012. arXiv:astro-ph/0004064. Bibcode:2000PhRvD..62j4012T. doi:10.1103/PhysRevD.62.104012.
  14. ^ Sharma, R.; Karmakar, S.; Mukherjee, S. (2008). "Boson star and dark matter". arXiv:0812.3470 [gr-qc].
  15. ^ Lee, Jae-weon; Koh, In-guy (1996). "Galactic Halos As Boson Stars". Physical Review D. 53 (4): 2236. arXiv:hep-ph/9507385. Bibcode:1996PhRvD..53.2236L. doi:10.1103/PhysRevD.53.2236.
  16. ^ Kumar, S.; Kulshreshtha, U.; Kulshreshtha, D. S. (2016). "Charged compact boson stars and shells in the presence of a cosmological constant". Physical Review D. 94 (12): 125023. arXiv:1709.09449. Bibcode:2016PhRvD..94l5023K. doi:10.1103/PhysRevD.94.125023.
  17. ^ Kumar, S.; Kulshreshtha, U.; Kulshreshtha, D. S. (2016). "Charged compact boson stars and shells in the presence of a cosmological constant". Physical Review D. 93 (10): 101501. arXiv:1605.02925. Bibcode:2016PhRvD..93j1501K. doi:10.1103/PhysRevD.93.101501.
  18. ^ Kleihaus, B.; Kunz, J.; Lammerzahl, C.; List, M. (2010). "Boson Shells Harbouring Charged Black Holes". Physical Review D. 82 (10): 104050. arXiv:1007.1630. Bibcode:2010PhRvD..82j4050K. doi:10.1103/PhysRevD.82.104050.
  19. ^ Hartmann, B.; Kleihaus, B.; Kunz, J.; Schaffer, I. (2013). "Compact (A)dS Boson Stars and Shells". Physical Review D. 88 (12): 124033. arXiv:1310.3632. Bibcode:2013PhRvD..88l4033H. doi:10.1103/PhysRevD.88.124033.
  20. ^ Kumar, S.; Kulshreshtha, U.; Kulshreshtha, D. S.; Kahlen, S.; Kunz, J. (2017). "Some new results on charged compact boson stars". Physics Letters B. 772: 165. arXiv:1709.09445. doi:10.1016/j.physletb.2017.07.041.
  21. ^ Braaten, E.,; Mohapatra, A.; Zhang, H. Dense Axion Stars. Phys. Rev. Lett. 117, 121801 (2016)
  22. ^ Rovelli, Carlo; Vidotto, Francesca (2014). "Planck stars". International Journal of Modern Physics D. 23 (12): 1442026. arXiv:1401.6562. Bibcode:2014IJMPD..2342026R. doi:10.1142/S0218271814420267.
  23. ^ Small, dark, and heavy: But is it a black hole?. Visser, Matt; Barcelo, Carlos; Liberati, Stefano; Sonego, Sebastiano (February 2009)
  24. ^ How Quantum Effects Could Create Black Stars, Not Holes

External links

2004 in science

The year 2004 in science and technology involved some significant events.

Black hole

A black hole is a region of spacetime exhibiting gravitational acceleration so strong that nothing—no particles or even electromagnetic radiation such as light—can escape from it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although the event horizon has an enormous effect on the fate and circumstances of an object crossing it, no locally detectable features appear to be observed. In many ways, a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

Objects whose gravitational fields are too strong for light to escape were first considered in the 18th century by John Michell and Pierre-Simon Laplace. The first modern solution of general relativity that would characterize a black hole was found by Karl Schwarzschild in 1916, although its interpretation as a region of space from which nothing can escape was first published by David Finkelstein in 1958. Black holes were long considered a mathematical curiosity; it was during the 1960s that theoretical work showed they were a generic prediction of general relativity. The discovery of neutron stars by Jocelyn Bell Burnell in 1967 sparked interest in gravitationally collapsed compact objects as a possible astrophysical reality.

Black holes of stellar mass are expected to form when very massive stars collapse at the end of their life cycle. After a black hole has formed, it can continue to grow by absorbing mass from its surroundings. By absorbing other stars and merging with other black holes, supermassive black holes of millions of solar masses (M☉) may form. There is general consensus that supermassive black holes exist in the centers of most galaxies.

The presence of a black hole can be inferred through its interaction with other matter and with electromagnetic radiation such as visible light. Matter that falls onto a black hole can form an external accretion disk heated by friction, forming some of the brightest objects in the universe. If there are other stars orbiting a black hole, their orbits can be used to determine the black hole's mass and location. Such observations can be used to exclude possible alternatives such as neutron stars. In this way, astronomers have identified numerous stellar black hole candidates in binary systems, and established that the radio source known as Sagittarius A*, at the core of the Milky Way galaxy, contains a supermassive black hole of about 4.3 million solar masses.

On 11 February 2016, the LIGO collaboration announced the first direct detection of gravitational waves, which also represented the first observation of a black hole merger. As of December 2018, eleven gravitational wave events have been observed that originated from ten merging black holes (along with one binary neutron star merger). On 10 April 2019, the first ever direct image of a black hole and its vicinity was published, following observations made by the Event Horizon Telescope in 2017 of the supermassive black hole in Messier 87's galactic centre.

Compact star

In astronomy, the term compact star (or compact object) refers collectively to white dwarfs, neutron stars, and black holes. It would grow to include exotic stars if such hypothetical, dense bodies are confirmed to exist. All compact objects have a high mass relative to their radius, giving them a very high density, compared to ordinary atomic matter.

Compact stars are often the endpoints of stellar evolution, and are in this respect also called stellar remnants. The state and type of a stellar remnant depends primarily on the mass of the star that it formed from. The ambiguous term compact star is often used when the exact nature of the star is not known, but evidence suggests that it has a very small radius compared to ordinary stars. A compact star that is not a black hole may be called a degenerate star.

Electroweak star

An electroweak star is a theoretical type of exotic star, whereby the gravitational collapse of the star is prevented by radiation pressure resulting from electroweak burning, that is, the energy released by conversion of quarks to leptons through the electroweak force. This process occurs in a volume at the star's core approximately the size of an apple, containing about two Earth masses.The stage of life of a star that produces an electroweak star is theorized to occur after a supernova collapse. Electroweak stars are denser than quark stars, and may form when quark degeneracy pressure is no longer able to withstand gravitational attraction, but may still be withstood by electroweak burning radiation pressure. This phase of a star's life may last upwards of 10 million years.

Gray hole

Gray hole may refer to:

a form of exotic star

Q-star, SUSY Q-ball stars and B-ball stars

exotic versions of neutron stars

a form of packet drop attack

Index of physics articles (E)

The index of physics articles is split into multiple pages due to its size.

To navigate by individual letter use the table of contents below.

Jutta Kunz

Jutta Kunz (born July, 1955) is a German physicist, specializing in quantum field theory and general relativity. Her work focuses on the gravity in four and higher dimensions: models of gravity, black holes, wormholes, solitons, neutron stars, exotic star, black rings and black branes.

Jügderdemidiin Gürragchaa

Jügderdemidiin Gürragchaa (Mongolian: Жүгдэрдэмидийн Гүррагчаа; Russian: Жугдэрдэмидийн Гуррагча, [ˈʐuɡdʲɪrdʲɪmʲɪdʲɪjn ˈɡurəktɕə], born 5 December 1947) was the first Mongolian in space. He also was Mongolia's Defense Minister from 2000-04.

Lists of black holes

This is a list of lists of black holes.

List of black holes.

List of most massive black holes

List of nearest black holes

Neutron star

A neutron star is the collapsed core of a giant star which before collapse had a total mass of between 10 and 29 solar masses. Neutron stars are the smallest and densest stars, not counting black holes, hypothetical white holes, quark stars and strange stars. Neutron stars have a radius on the order of 10 kilometres (6.2 mi) and a mass lower than 2.16 solar masses. They result from the supernova explosion of a massive star, combined with gravitational collapse, that compresses the core past white dwarf star density to that of atomic nuclei.

Once formed, they no longer actively generate heat, and cool over time; however, they may still evolve further through collision or accretion. Most of the basic models for these objects imply that neutron stars are composed almost entirely of neutrons (subatomic particles with no net electrical charge and with slightly larger mass than protons); the electrons and protons present in normal matter combine to produce neutrons at the conditions in a neutron star. Neutron stars are partially supported against further collapse by neutron degeneracy pressure, a phenomenon described by the Pauli exclusion principle, just as white dwarfs are supported against collapse by electron degeneracy pressure. However neutron degeneracy pressure is not sufficient to hold up an object beyond 0.7M☉ and repulsive nuclear forces play a larger role in supporting more massive neutron stars. If the remnant star has a mass exceeding the Tolman–Oppenheimer–Volkoff limit, it continues collapsing to form a black hole.

Neutron stars that can be observed are very hot and typically have a surface temperature of around 600000 K. They are so dense that a normal-sized matchbox containing neutron-star material would have a weight of approximately 3 billion metric tons, the same weight as a 0.5 cubic kilometre chunk of the Earth (a cube with edges of about 800 metres). Their magnetic fields are between 108 and 1015 (100 million to 1 quadrillion) times stronger than Earth's magnetic field. The gravitational field at the neutron star's surface is about 2×1011 (200 billion) times that of Earth's gravitational field.

As the star's core collapses, its rotation rate increases as a result of conservation of angular momentum, hence newly formed neutron stars rotate at up to several hundred times per second. Some neutron stars emit beams of electromagnetic radiation that make them detectable as pulsars. Indeed, the discovery of pulsars by Jocelyn Bell Burnell in 1967 was the first observational suggestion that neutron stars exist. The radiation from pulsars is thought to be primarily emitted from regions near their magnetic poles. If the magnetic poles do not coincide with the rotational axis of the neutron star, the emission beam will sweep the sky, and when seen from a distance, if the observer is somewhere in the path of the beam, it will appear as pulses of radiation coming from a fixed point in space (the so-called "lighthouse effect"). The fastest-spinning neutron star known is PSR J1748-2446ad, rotating at a rate of 716 times a second or 43,000 revolutions per minute, giving a linear speed at the surface on the order of 0.24 c (i.e. nearly a quarter the speed of light).

There are thought to be around 100 million neutron stars in the Milky Way, a figure obtained by estimating the number of stars that have undergone supernova explosions. However, most are old and cold, and neutron stars can only be easily detected in certain instances, such as if they are a pulsar or part of a binary system. Slow-rotating and non-accreting neutron stars are almost undetectable; however, since the Hubble Space Telescope detection of RX J185635−3754, a few nearby neutron stars that appear to emit only thermal radiation have been detected. Soft gamma repeaters are conjectured to be a type of neutron star with very strong magnetic fields, known as magnetars, or alternatively, neutron stars with fossil disks around them.Neutron stars in binary systems can undergo accretion which typically makes the system bright in X-rays while the material falling onto the neutron star can form hotspots that rotate in and out of view in identified X-ray pulsar systems. Additionally, such accretion can "recycle" old pulsars and potentially cause them to gain mass and spin-up to very fast rotation rates, forming the so-called millisecond pulsars. These binary systems will continue to evolve, and eventually the companions can become compact objects such as white dwarfs or neutron stars themselves, though other possibilities include a complete destruction of the companion through ablation or merger. The merger of binary neutron stars may be the source of short-duration gamma-ray bursts and are likely strong sources of gravitational waves. In 2017, a direct detection (GW170817) of the gravitational waves from such an event was made, and gravitational waves have also been indirectly detected in a system where two neutron stars orbit each other.

In October 2018, astronomers reported that GRB 150101B, a gamma-ray burst event detected in 2015, may be directly related to the historic GW170817 and associated with the merger of two neutron stars. The similarities between the two events, in terms of gamma ray, optical and x-ray emissions, as well as to the nature of the associated host galaxies, are "striking", suggesting the two separate events may both be the result of the merger of neutron stars, and both may be a kilonova, which may be more common in the universe than previously understood, according to the researchers.

Outline of astronomy

The following outline is provided as an overview of and topical guide to astronomy:

Astronomy – studies the universe beyond Earth, including its formation and development, and the evolution, physics, chemistry, meteorology, and motion of celestial objects (such as galaxies, planets, etc.) and phenomena that originate outside the atmosphere of Earth (such as the cosmic background radiation).

Outline of black holes

The following outline is provided as an overview of and topical guide to black holes:

Black hole – mathematically defined region of spacetime exhibiting such a strong gravitational pull that no particle or electromagnetic radiation can escape from inside it. The theory of general relativity predicts that a sufficiently compact mass can deform spacetime to form a black hole. The boundary of the region from which no escape is possible is called the event horizon. Although crossing the event horizon has enormous effect on the fate of the object crossing it, it appears to have no locally detectable features. In many ways a black hole acts like an ideal black body, as it reflects no light. Moreover, quantum field theory in curved spacetime predicts that event horizons emit Hawking radiation, with the same spectrum as a black body of a temperature inversely proportional to its mass. This temperature is on the order of billionths of a kelvin for black holes of stellar mass, making it essentially impossible to observe.

QCD matter

Quark matter or QCD matter (quantum chromodynamic) refers to any of a number of phases of matter whose degrees of freedom include quarks and gluons. These phases occurs at extremely high temperatures and/or densities, and some of them are still only theoretical as they require conditions so extreme that they can not be produced in any laboratory, especially not as equilibrium conditions. Under these extreme conditions, the familiar structure of matter, where the basic constituents are nuclei (consisting of nucleons which are bound states of quarks) and electrons, is disrupted. In quark matter it is more appropriate to treat the quarks themselves as the basic degrees of freedom.

In the standard model of particle physics, the strong force is described by the theory of QCD. At ordinary temperatures or densities this force just confines the quarks into composite particles (hadrons) of size around 10−15 m = 1 femtometer = 1 fm (corresponding to the QCD energy scale ΛQCD ≈ 200 MeV) and its effects are not noticeable at longer distances. However, when the temperature reaches the QCD energy scale (T of order 1012 kelvins) or the density rises to the point where the average inter-quark separation is less than 1 fm (quark chemical potential μ around 400 MeV), the hadrons are melted into their constituent quarks, and the strong interaction becomes the dominant feature of the physics. Such phases are called quark matter or QCD matter.

The strength of the color force makes the properties of quark matter unlike gas or plasma, instead leading to a state of matter more reminiscent of a liquid. At high densities, quark matter is a Fermi liquid, but is predicted to exhibit color superconductivity at high densities and temperatures below 1012 K.

Q star

A Q-Star, also known as a grey hole, is a hypothetical type of a compact, heavy neutron star with an exotic state of matter. The Q stands for a conserved particle number. A Q-Star may be mistaken for a stellar black hole.

Quark star

A quark star is a hypothetical type of compact exotic star, where extremely high temperature and pressure has forced nuclear particles to form quark matter, a continuous state of matter consisting of free quarks.

It is well known, both theoretically and observationally, that some massive stars collapse to form neutron stars, at the end of their life cycle. Under the extreme temperatures and pressures inside neutron stars, the neutrons are normally kept apart by a degeneracy pressure, stabilizing the star and hindering further gravitational collapse. However, it is hypothesized that under even more extreme temperature and pressure, the degeneracy pressure of the neutrons is overcome, and the neutrons are forced to merge and dissolve into their constituent quarks, creating an ultra-dense phase of quark matter based on densely packed quarks. In this state, a new equilibrium is supposed to emerge, as a new degeneracy pressure between the quarks, as well as repulsive electromagnetic forces, will occur and hinder gravitational collapse. If these ideas are correct, quark stars might occur, and be observable, somewhere in the universe. Theoretically, such a scenario is seen as scientifically plausible, but it has been impossible to prove both observationally and experimentally, because the very extreme conditions needed for stabilizing quark matter can not be created in any laboratory nor observed directly in nature. The stability of quark matter, and hence the existence of quark stars, is for these reasons among the unsolved problems in physics.

If quark stars can form, then the most likely place to find quark star matter would be inside neutron stars that exceed the internal pressure needed for quark degeneracy - the point at which neutrons break down into a form of dense quark matter. They could also form if a massive star collapses at the end of its life, provided that it is possible for a star to be large enough to collapse beyond a neutron star but not large enough to form a black hole. However, as scientists are unable so far to explore most properties of quark matter, the exact conditions and nature of quark stars, and their existence, remain hypothetical and unproven. The question whether such stars exist and their exact structure and behavior is actively studied within astrophysics and particle physics.

If they exist, quark stars would resemble and be easily mistaken for neutron stars: they would form in the death of a massive star in a Type II supernova, be extremely dense and small, and possess a very high gravitational field. They would also lack some features of neutron stars, unless they also contained a shell of neutron matter, because free quarks are not expected to have properties matching degenerate neutron matter. For example, they might be radio-silent, or not have typical sizes, electromagnetic fields, or surface temperatures, compared to neutron stars.

The hypothesis about quark stars was first proposed in 1965 by Soviet physicists D. D. Ivanenko and D. F. Kurdgelaidze. Their existence has not been confirmed. The equation of state of quark matter is uncertain, as is the transition point between neutron-degenerate matter and quark matter. Theoretical uncertainties have precluded making predictions from first principles. Experimentally, the behaviour of quark matter is being actively studied with particle colliders, but this can only produce very hot (above 1012 K) quark-gluon plasma blobs the size of atomic nuclei, which decay immediately after formation. The conditions inside compact stars with extremely high densities and temperatures well below 1012 K can not be recreated artificially, as there are no known methods to produce, store or study "cold" quark matter directly as it would be found inside quark stars. The theory predicts quark matter to possess some peculiar characteristics under these conditions.

SS 433

SS 433 is one of the most exotic star systems observed. It is an eclipsing X-ray binary system, with the primary most likely a black hole, or possibly a neutron star., pp. 23–24. The spectrum of the secondary companion star suggests that it is a late A-type star. SS 433 is the first discovered microquasar.SS 433's designation comes from the initials of two astronomers at Case Western Reserve University: Nicholas Sanduleak and C. Bruce Stephenson. It was the 433rd entry in their 1977 catalog of stars with strong emission lines.

Schecter Guitar Research

Schecter Guitar Research, commonly known simply as Schecter, is a US guitar, bass and amplifier manufacturer. The company was founded in 1976 by David Schecter and originally produced only replacement parts for existing guitars from manufacturers such as Fender and Gibson. Today, the company mass-produces its own line of electric guitars, bass guitars, and steel-string acoustic guitars, and offers hand-built custom instruments and a small line of guitar amplifiers.

Superluminous supernova

A super-luminous supernova (SLSN, plural super luminous supernovae or SLSNe), also known as a hypernova, is a type of stellar explosion with a luminosity 10 or more times higher than that of standard supernovae. Like supernovae, SLSNe seem to be produced by several mechanisms, which is readily revealed by their light-curves and spectra. There are multiple models for what conditions may produce an SLSN, including core collapse in particularly massive stars, millisecond magnetars, interaction with circumstellar material (CSM model), or pair-instability supernovae.

Hypernovae produce long gamma ray bursts (GRBs), which range from 2 seconds to over a minute in duration.

GRBs were initially detected on July 2, 1967 by US military satellites in high orbit, which were meant to detect gamma radiation. The US had suspected the USSR of conducting secret nuclear tests despite signing the Nuclear Test Ban Treaty of 1963, and the Vela satellites were capable of detecting explosions behind the moon. The satellites detected a signal, but it was unlike that of a nuclear weapon signature, nor could it be correlated to solar flares.Over the next few decades, the GRBs posed a compelling mystery. Gamma rays require highly energetic events to be produced, yet GRBs could not be correlated to supernovae, solar flares, or any other activity in the sky. Their brevity made them difficult to trace. Once their direction could be determined, it was found that they were evenly spread across the sky. Thus they were not originating in the Milky Way or nearby galaxies, but from deep space.

In February 1997, Dutch-Italian satellite BeppoSAX was able to trace GRB 970508 to a faint galaxy roughly 6 billion light years away. From analyzing the spectroscopic data for both the burst and the galaxy, Bloom et al. concluded that a hypernova was the likely cause. That same year, hypernovae were hypothesized in greater detail by Polish astronomer Bohdan Paczyński.The first hypernova observed was SN 1998bw, with a luminosity 100 times higher than a standard Type Ib.The first confirmed superluminous supernova connected to a gamma ray burst was not found until 2003, when GRB 030329 illuminated the Leo constellation. SN 2003dh represented the death of a star 25 times more massive than the sun, with material being blasted out at over a tenth the speed of light.In June 2018, AT2018cow was detected and found to be a very powerful astronomical explosion, 10 – 100 times brighter than a normal supernova.Today, it is believed that stars with M ≥ 40 M☉ produce superluminous supernovae.

Supernova

A supernova ( plural: supernovae or supernovas, abbreviations: SN and SNe) is a transient astronomical event that occurs during the last stellar evolutionary stages of the life of a massive star, whose dramatic and catastrophic destruction is marked by one final, titanic explosion. This causes the sudden appearance of a "new" bright star, before slowly fading from sight over several weeks or months or years.

Supernovae are more energetic than novae. In Latin, nova means "new", referring astronomically to what appears to be a temporary new bright star. Adding the prefix "super-" distinguishes supernovae from ordinary novae, which are far less luminous. The word supernova was coined by Walter Baade and Fritz Zwicky in 1931.Only three Milky Way, naked-eye supernova events have been observed during the last thousand years, though many have been observed in other galaxies. The most recent directly observed supernova in the Milky Way was Kepler's Supernova in 1604, but the remnants of recent supernovae have also been found. Observations of supernovae in other galaxies suggest they occur on average about three times every century in the Milky Way, and that any galactic supernova would almost certainly be observable with modern astronomical telescopes.

Supernovae may expel much, if not all, of the material away from a star at velocities up to 30,000 km/s or 10% of the speed of light. This drives an expanding and fast-moving shock wave into the surrounding interstellar medium, and in turn, sweeping up an expanding shell of gas and dust, which is observed as a supernova remnant. Supernova nucleosynthesis is the major source of elements heavier than nitrogen. Supernovae play a significant role in enriching the interstellar medium with the heavier atomic mass chemical elements. Furthermore, the expanding shock waves from supernovae can trigger the formation of new stars. Supernova remnants are expected to accelerate a large fraction of galactic primary cosmic rays, but direct evidence for cosmic ray production was found only in a few of them so far. They are also potentially strong galactic sources of gravitational waves.Theoretical studies indicate that most supernovae are triggered by one of two basic mechanisms: the sudden re-ignition of nuclear fusion in a degenerate star or the sudden gravitational collapse of a massive star's core. In the first instance, a degenerate white dwarf may accumulate sufficient material from a binary companion, either through accretion or via a merger, to raise its core temperature enough to trigger runaway nuclear fusion, completely disrupting the star. In the second case, the core of a massive star may undergo sudden gravitational collapse, releasing gravitational potential energy as a supernova. While some observed supernovae are more complex than these two simplified theories, the astrophysical collapse mechanics have been established and accepted by most astronomers for some time.

Owing to the wide range of astrophysical consequences of these events, astronomers now deem supernova research, across the fields of stellar and galactic evolution, as an especially important area for investigation.

Formation
Evolution
Spectral
classification
Remnants
Hypothetical
Nucleosynthesis
Structure
Properties
Star systems
Earth-centric
observations
Lists
Related articles
Types
Single pulsars
Binary pulsars
Properties
Related
Discovery
Satellite
investigation
Other
Classes
Physics of
Related
Progenitors
Remnants
Discovery
Lists
Notable
Research

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.