Evolutionary musicology

Evolutionary musicology is a subfield of biomusicology that grounds the psychological mechanisms of music perception and production in evolutionary theory. It covers vocal communication in non-human animal species, theories of the evolution of human music, and cross-cultural human universals in musical ability and processing.

History

The origins of the field can be traced back to Charles Darwin who wrote in his Descent of Man:

"When we treat of sexual selection we shall see that primeval man, or rather some early progenitor of man, probably first used his voice in producing true musical cadences, that is in singing, as do some of the gibbon-apes at the present day; and we may conclude from a widely-spread analogy, that this power would have been especially exerted during the courtship of the sexes,—would have expressed various emotions, such as love, jealousy, triumph,—and would have served as a challenge to rivals. It is, therefore, probable that the imitation of musical cries by articulate sounds may have given rise to words expressive of various complex emotions."[1]

This theory of a musical protolanguage has been revived and re-discovered repeatedly, often without attribution to Darwin.[2][3]

The origins of music

Two major topics for any subfield of evolutionary psychology are the adaptive function (if any) and phylogenetic history of the mechanism or behavior of interest including when music arose in human ancestry and from what ancestral traits it developed. Current debate addresses each of these.

One part of the adaptive function question is whether music constitutes an evolutionary adaptation or exaptation (i.e. by-product of evolution). Steven Pinker, in his book How the Mind Works, for example, argues that music is merely "auditory cheesecake"—it was evolutionarily adaptive to have a preference for fat and sugar but cheesecake did not play a role in that selection process. This view has been directly countered by numerous music researchers.[4][5][6]

Adaptation, on the other hand, is highlighted in hypotheses such as the one by Edward Hagen and Gregory Bryant which posits that human music evolved from animal territorial signals, eventually becoming a method of signaling a group's social cohesion to other groups for the purposes of making beneficial multi-group alliances.[7][8]

The bipedalism hypothesis

The evolutionary switch to bipedalism may have influenced the origins of music.[9] The background is that noise of locomotion and ventilation may mask critical auditory information. Human locomotion is likely to produce more predictable sounds than those of non-human primates. Predictable locomotion sounds may have improved our capacity of entrainment to external rhythms and to feel the beat in music. A sense of rhythm could aid the brain in distinguishing among sounds arising from discrete sources and also help individuals to synchronize their movements with one another. Synchronization of group movement may improve perception by providing periods of relative silence and by facilitating auditory processing.[10][11] The adaptive value of such skills to early human ancestors may have been keener detection of prey or stalkers and enhanced communication. Thus, bipedal walking may have influenced the development of entrainment in humans and thereby the evolution of rhythmic abilities. Primitive hominids lived and moved around in small groups. The noise generated by the locomotion of two or more individuals can result in a complicated mix of footsteps, breathing, movements against vegetation, echoes, etc. The ability to perceive differences in pitch, rhythm, and harmonies, i.e. “musicality,” could help the brain to distinguish among sounds arising from discrete sources, and also help the individual to synchronize movements with the group. Endurance and an interest in listening might, for the same reasons, have been associated with survival advantages eventually resulting in adaptive selection for rhythmic and musical abilities and reinforcement of such abilities. Listening to music seems to stimulate release of dopamine. Rhythmic group locomotion combined with attentive listening in nature may have resulted in reinforcement through dopamine release. A primarily survival-based behavior may eventually have attained similarities to dance and music, due to such reinforcement mechanisms . Since music may facilitate social cohesion, improve group effort, reduce conflict, facilitate perceptual and motor skill development, and improve trans-generational communication,[12] music-like behavior may at some stage have become incorporated into human culture.

Another proposed adaptive function is creating intra-group bonding. In this aspect it has been seen as complementary to language by creating strong positive emotions while not having a specific message people may disagree on. Music's ability to cause entrainment (synchronization of behavior of different organisms by a regular beat) has also been pointed out. A different explanation is that signaling fitness and creativity by the producer or performer in order to attract mates. Still another is that music may have developed from human mother-infant auditory interactions (motherese) since humans have a very long period of infant and child development, infants can perceive musical features, and some infant-mother auditory interaction have resemblances to music.[13]

Part of the problem in the debate is that music, like any complex cognitive function, is not a holistic entity but rather modular[14]—perception and production of rhythm, melodies, harmony and other musical parameters may thus involve multiple cognitive functions with possibly quite distinct evolutionary histories.[15]

The Musilanguage hypothesis

"Musilanguage" is a term coined by Steven Brown to describe his hypothesis of the ancestral human traits that evolved into language and musical abilities. It is both a model of musical and linguistic evolution and a term coined to describe a certain stage in that evolution. Brown argues that both music and human language have origins in a "musilanguage" stage of evolution and that the structural features shared by music and language are not the results of mere chance parallelism, nor are they a function of one system emerging from the other. This model argues that "music emphasizes sound as emotive meaning and language emphasizes sound as referential meaning."[16] The musilanguage model is a structural model of music evolution, meaning that it views music's acoustic properties as effects of homologous precursor functions. This can be contrasted with functional models of music evolution, which view music's innate physical properties to be determined by its adaptive roles.

The musilanguage evolutionary stage is argued to exhibit three properties found in both music and language: lexical tone, combinatorial phrase formation, and expressive phrasing mechanisms. Many of these ideas have their roots in existing phonological theory in linguistics, but Brown argues that phonological theory has largely neglected the strong mechanistic parallels between melody, phrasing, and rhythm in speech and music.

Lexical tone refers to the pitch of speech as a vehicle for semantic meaning. The importance of pitch to conveying musical ideas is well-known, but the linguistic importance of pitch is less obvious. Tonal languages such as Thai and Cantonese, wherein the lexical meaning of a sound depends heavily on its pitch relative to other sounds, are seen as evolutionary artifacts of musilanguage. Non-tonal, or "intonation" languages, which do not depend heavily on pitch for lexical meaning, are seen as evolutionary late-comers which have discarded their dependence on tone. Intermediate states, known as pitch accent languages, which exhibit some lexical dependence on tone, but also depend heavily on intonation, are exemplified by Japanese, Swedish, Serbian and Croatian language.
Combinatorial formation refers to the ability to form small phrases from different tonal elements. These phrases must be able to exhibit melodic, rhythmic, and semantic variation, and must be able to combine with other phrases to create global melodic formulas capable of conveying emotive meaning. Examples in modern speech would be the rules for arranging letters to form words and then words to form sentences. In music, the notes of different scales are combined according to their own unique rules to form larger musical ideas.
Expressive phrasing is the device by which expressive emphasis can be added to the phrases, both at a local (in the sense of individual units) and global (in the sense of phrases) level. There are numerous ways this can occur in both speech and music that exhibit interesting parallels. For instance, the increase in the amplitude of a sound being played by an instrument accents that sound much the same way that an increase in amplitude can emphasize a particular point in speech. Similarly, speaking very rapidly often creates a frenzied effect that mirrors that of a fast and agitated musical passage.

AVID model of music evolution

Joseph Jordania has suggested that music (as well as several other universal elements of contemporary human culture, including dance and body painting) was part of a predator control system used by early hominids. He suggested that rhythmic loud singing and drumming, together with the threatening rhythmic body movements and body painting, was the core element of the ancient "Audio-Visual Intimidating Display" (AVID).[17] AVID was also a key factor in putting the hominid group into a specific altered state of consciousness which he calls "battle trance" where they would not feel fear and pain, and would be religiously dedicated to group interests. Jordania suggested that listening and dancing to the sounds of loud rhythmic rock music, used in many contemporary combat units before the combat missions is directly related to this.[18] Apart from the defense from predators, Jordania suggested that this system was the core strategy to obtain food via confrontational, or aggressive scavenging.

Apart from loud rhythmic singing-stomping-dancing, Jordania also suggested that soft humming could have played an important role in the early human (hominid) evolution as contact calls. Many social animals produce seemingly haphazard and indistinctive sounds (like chicken cluck) when they are going about their everyday business (foraging, feeding). These sounds have two functions: (1) to let group members know that they are among kin and there is no danger, and (2) in case of the appearance of any signs of danger (suspicious sounds, movements in a forest), the animal that notices danger first, stops moving, stops producing sounds, remains silent and looks in the direction of the danger sign. Other animals quickly follow suit and very soon all the group is silent and is scanning the environment for the possible danger. Charles Darwin was the first to notice this phenomenon on the example of the wild horses and the cattle.[19] Jordania suggested that for humans, as for many social animals, silence can be a sign of danger, and that's why gentle humming and musical sounds relax humans (see the use of gentle music in music therapy, lullabies)

See also

References

  1. ^ "The Descent of Man, and Selection in Relation to Sex". 1871.
  2. ^ Nils L. Wallin, Björn Merker, and Steven Brown (Editors) (2000). The Origins of Music. Cambridge, Massachusetts: MIT Press. ISBN 0-262-23206-5.CS1 maint: Multiple names: authors list (link) CS1 maint: Extra text: authors list (link)
  3. ^ Steven Mithen, The Singing Neanderthals: the Origins of Music, Language, Mind and Body, Harvard University Press, 2006.
  4. ^ Perlovsky L. Music. Cognitive Function, Origin, And Evolution Of Musical Emotions. WebmedCentral PSYCHOLOGY 2011;2(2):WMC001494
  5. ^ Alison Abbott. 2002. Neurobiology: Music, maestro, please! Nature 416, 12–14 (7 March 2002) | doi:10.1038/416012a
  6. ^ Carroll, Joseph (1998). "Steven Pinker's Cheesecake For The Mind". Cogweb.ucla.edu. Retrieved 29 December 2012.
  7. ^ Hagen, Edward H; Bryant, Gregory A (2003). "Music and dance as a coalition signaling system" (PDF). Human Nature. 14 (1): 21–51. doi:10.1007/s12110-003-1015-z. Archived from the original (PDF) on 12 June 2007. Retrieved 3 December 2007.
  8. ^ Hagen, Edward H; Hammerstein P (2009). "Did Neanderthals and other early humans sing? Seeking the biological roots of music in the loud calls of primates, lions, hyenas, and wolves" (PDF). Musicae Scientiae.
  9. ^ Larsson, Matz (August 2013). "Self-generated sounds of locomotion and ventilation and the evolution of human rhythmic abilities". Animal Cognition. 17: 1–14. doi:10.1007/s10071-013-0678-z. PMC 3889703.
  10. ^ Larsson, Matz (2009). "Possible functions of the octavolateralis system in fish schooling". Fish and Fisheries. 10: 344–355. doi:10.1111/j.1467-2979.2009.00330.x.
  11. ^ Larsson, Matz (2012). "Incidental sounds of locomotion in animal cognition". Animal Cognition. 15 (1): 1–13. doi:10.1007/s10071-011-0433-2. PMC 3249174.
  12. ^ Huron, David (2001). "Is music an evolutionary adaptation?". Ann N Y Acad Sci. 930: 43–61. doi:10.1111/j.1749-6632.2001.tb05724.x.
  13. ^ The Oxford Handbook of Evolutionary Psychology, Edited by Robin Dunbar and Louise Barret, Oxford University Press, 2007, Chapter 45 Music and cognitive evolution.
  14. ^ Fodor, Jerry A. (1983). Modularity of Mind: An Essay on Faculty Psychology. Cambridge, Massachusetts: MIT Press. ISBN 0-262-56025-9
  15. ^ Honing, H. (ed.) (2018). The Origins of Musicality. Cambridge, Massachusetts: MIT Press.
  16. ^ Brown S (1999-12-03). "The "Musilanguage" Model of Music Evolution". In Wallin NL, Merker B, Brown S. The Origins of Music. The MIT Press. pp. 271–301. ISBN 0-262-23206-5.
  17. ^ Jordania J. Who Asked the First Question? The Origins of Human Choral Singing, Intelligence, Language and Speech (2006) Logos
  18. ^ Jordania, J. (2009) Times to fight and times to relax: Singing and humming at the beginning of Human evolutionary history 1: 272-277
  19. ^ Darwin, C. Descent of Men, 2004:123

Further reading

Bare Island projectile point

The Bare Island projectile point is a stone projectile point of prehistoric indigenous peoples of North America. It was named by Fred Kinsey in 1959 for examples recovered at the Kent-Halley site on Bare Island in Pennsylvania.

Biomusicology

Biomusicology is the study of music from a biological point of view. The term was coined by Nils L. Wallin in 1991 to encompass several branches of music psychology and musicology, including evolutionary musicology, neuromusicology, and comparative musicology.Evolutionary musicology studies the "origins of music, the question of animal song, selection pressures underlying music evolution", and "music evolution and human evolution". Neuromusicology studies the "brain areas involved in music processing, neural and cognitive processes of musical processing", and "ontogeny of musical capacity and musical skill". Comparative musicology studies the "functions and uses of music, advantages and costs of music making", and "universal features of musical systems and musical behavior".Applied biomusicology "attempts to provide biological insight into such things as the therapeutic uses of music in medical and psychological treatment; widespread use of music in the audiovisual media such as film and television; the ubiquitous presence of music in public places and its role in influencing mass behavior; and the potential use of music to function as a general enhancer of learning."Whereas biomusicology refers to music among humans, zoomusicology extends the field to other species.

Celt (tool)

In archaeology, a celt is a long, thin, prehistoric, stone or bronze tool similar to an adze, a hoe or axe-like tool.

Cist

A cist ( or ; also kist ;

from Greek: κίστη or Germanic Kiste) is a small stone-built coffin-like box or ossuary used to hold the bodies of the dead. Examples can be found across Europe and in the Middle East.

A cist may have been associated with other monuments, perhaps under a cairn or long barrow. Several cists are sometimes found close together within the same cairn or barrow. Often ornaments have been found within an excavated cist, indicating the wealth or prominence of the interred individual.

Cumberland point

A Cumberland point is a lithic projectile point, attached to a spear and used as a hunting tool. These sturdy points were intended for use as thrusting weapons and employed by various mid-Paleo-Indians (c. 11,000 BP) in the Southeastern US in the killing of large game mammals.

Eden point

Eden Points are a form of chipped stone projectile points associated with a sub-group of the larger Plano culture. Sometimes also called Yuma points, the first Eden points were discovered in washouts in Yuma County, Colorado. They were first discovered in situ at an ancient buffalo kill site near Eden, Wyoming by Harold J. Cook in 1941. The site, named after discoverer O. M. Finley, eventually yielded 24 projectile points, including eight Eden points, eight Scottsbluff points and one complete Cody point, both other sub-groups within the Plano group. Eden points are believed to have been used between 10,000 and 6,000 years ago by paleo-indian hunters in the western plains.

Eden points are the most common paleo-indian projectile points found today. They have been discovered across the western plain states, including Wyoming, Colorado, Nebraska, and Montana.

Evolutionary aesthetics

Evolutionary aesthetics refers to evolutionary psychology theories in which the basic aesthetic preferences of Homo sapiens are argued to have evolved in order to enhance survival and reproductive success.Based on this theory, things like color preference, preferred mate body ratios, shapes, emotional ties with objects, and many other aspects of the aesthetic experience can be explained with reference to human evolution.

Folsom point

Folsom points are a distinct form of knapped stone projectile points associated with the Folsom tradition of North America. The style of tool-making was named after the Folsom Site located in Folsom, New Mexico, where the first sample was found by George McJunkin within the bone structure of a bison in 1908. The Folsom point was identified as a unique style of projectile point in 1926.

Grattoir de côté

A Grattoir de côté (translates from French as Side Scraper) is an archaeological term for a ridged variety of steep-scrapers distinguished by a working edge on one side. They were found at various archaeological sites in Lebanon including Ain Cheikh and Jdeideh II and are suggested to date to Upper Paleolithic stages three or four (Antelian).

Grinding slab

In archaeology, a grinding slab is a ground stone artifact generally used to grind plant materials into usable size, though some slabs were used to shape other ground stone artifacts. Some grinding stones are portable; others are not and, in fact, may be part of a stone outcropping.

Grinding slabs used for plant processing typically acted as a coarse surface against which plant materials were ground using a portable hand stone, or mano ("hand" in Spanish). Variant grinding slabs are referred to as metates or querns, and have a ground-out bowl. Like all ground stone artifacts, grinding slabs are made of large-grained materials such as granite, basalt, or similar tool stones.

Lamoka projectile point

Lamoka projectile points are stone projectile points manufactured by Native Americans what is now the northeastern United States, generally in the time interval of 3500-2500 B.C. They predate the invention of the bow and arrow, and are therefore not true "arrowheads", but rather atlatl dart points. They derive their name from the specimens found at the Lamoka site in Schuyler County, New York.

Music psychology

Music psychology, or the psychology of music, may be regarded as a branch of both psychology and musicology. It aims to explain and understand musical behaviour and experience, including the processes through which music is perceived, created, responded to, and incorporated into everyday life. Modern music psychology is primarily empirical; its knowledge tends to advance on the basis of interpretations of data collected by systematic observation of and interaction with human participants. Music psychology is a field of research with practical relevance for many areas, including music performance, composition, education, criticism, and therapy, as well as investigations of human attitude, skill, performance, intelligence, creativity, and social behavior.

Music psychology can shed light on non-psychological aspects of musicology and musical practice. For example, it contributes to music theory through investigations of the perception and computational modelling of musical structures such as melody, harmony, tonality, rhythm, meter, and form. Research in music history can benefit from systematic study of the history of musical syntax, or from psychological analyses of composers and compositions in relation to perceptual, affective, and social responses to their music. Ethnomusicology can benefit from psychological approaches to the study of music cognition in different cultures.

Pesse canoe

The Pesse canoe is believed to be the world's oldest known boat, and certainly the oldest known canoe. Carbon dating indicates that the boat was constructed during the early mesolithic period between 8040 BCE and 7510 BCE. It is now in the Drents Museum in Assen, Netherlands.

Plano point

In archeology, Plano point is flaked stone projectile points and tools created by the various Plano cultures of the North American Great Plains between 9000 BC and 6000 BC for hunting, and possibly to kill other humans.

They are bifacially worked and have been divided into numerous sub-groups based on variations in size, shape and function including Alberta points, Cody points, Frederick points, Eden points and Scottsbluff points. Plano points do not include the hollowing or 'fluting' found in Clovis and Folsom points.

Racloir

In archeology, a racloir, also known as racloirs sur talon (French for scraper on the platform), is a certain type of flint tool made by prehistoric peoples.

It is a type of side scraper distinctive of Mousterian assemblages. It is created from a flint flake and looks like a large scraper. As well as being used for scraping hides and bark, it may also have been used as a knife. Racloirs are most associated with the Neanderthal Mousterian industry. These racloirs are retouched along the ridge between the striking platform and the dorsal face. They have shaped edges and are modified by abrupt flaking from the dorsal face.

Stone row

A stone row (or stone alignment), is a linear arrangement of upright, parallel megalithic standing stones set at intervals along a common axis or series of axes, usually dating from the later Neolithic or Bronze Age. Rows may be individual or grouped, and three or more stones aligned can constitute a stone row.

Tool stone

In archaeology, a tool stone is a type of stone that is used to manufacture stone tools,

or stones used as the raw material for tools.Generally speaking, tools that require a sharp edge are made using cryptocrystalline materials that fracture in an easily controlled conchoidal manner.

Cryptocrystalline tool stones include flint and chert, which are fine-grained sedimentary materials; rhyolite and felsite, which are igneous flowstones; and obsidian, a form of natural glass created by igneous processes. These materials fracture in a predictable fashion, and are easily resharpened. For more information on this subject, see lithic reduction.

Large-grained materials, such as basalt, granite, and sandstone, may also be used as tool stones, but for a very different purpose: they are ideal for ground stone artifacts. Whereas cryptocrystalline materials are most useful for killing and processing animals, large-grained materials are usually used for processing plant matter. Their rough faces often make excellent surfaces for grinding plant seeds. With much effort, some large-grained stones may be ground down into awls, adzes, and axes.

Uniface

In archeology, a uniface is a specific type of stone tool that has been flaked on one surface only. There are two general classes of uniface tools: modified flakes—and formalized tools, which display deliberate, systematic modification of the marginal edges, evidently formed for a specific purpose.

Yubetsu technique

The Yubetsu technique (湧別技法, Yūbetsu gihō) is a special technique to make microblades, proposed by Japanese scholar Yoshizaki in 1961, based on his finds in some Upper Palaeolithic sites in Hokkaido, Japan, which date from c. 13,000 bp.

The name comes from the Yūbetsu River (湧別川, Yubetsugawa), on the right bank of which the Shirataki (白滝遺跡, Shirataki Iseki) Palaeolithic sites were discovered.

To make microblades by this technique, a large biface is made into a core which looks like a tall carinated scraper. Then one lateral edge of the bifacial core is removed, producing at first a triangular spall. After, more edge removals will produce ski spalls of parallel surfaces.

This technique was also used from Mongolia to Kamchatka Peninsula during the later Pleistocene.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.