Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is a chemical compound, a simple alcohol with the chemical formula C
. Its formula can be also written as CH
OH or C
OH (an ethyl group linked to a hydroxyl group), and is often abbreviated as EtOH. Ethanol is a volatile, flammable, colorless liquid with a slight characteristic odor. It is a psychoactive substance and is the principal type of alcohol found in alcoholic drinks.

Ethanol is naturally produced by the fermentation of sugars by yeasts or via petrochemical processes, and is most commonly consumed as a popular recreational drug. It also has medical applications as an antiseptic and disinfectant. The compound is widely used as a chemical solvent, either for scientific chemical testing or in synthesis of other organic compounds, and is a vital substance used across many different kinds of manufacturing industries. Ethanol is also used as a clean-burning fuel source.

Full structural formula of ethanol
Skeletal formula of ethanol
Ball-and-stick model of ethanol
Space-filling model of ethanol
Pronunciation /ˈɛθənɒl/
Systematic IUPAC name
Other names
Absolute alcohol
cologne spirit
drinking alcohol
ethylic alcohol
ethyl alcohol
ethyl hydrate
ethyl hydroxide
grain alcohol
3D model (JSmol)
3DMet B01253
ECHA InfoCard 100.000.526
E number E1510 (additional chemicals)
UN number UN 1170
Molar mass 46.069 g·mol−1
Appearance Colorless liquid
Density 0.7893 g/cm3 (at 20 °C)[2]
Melting point −114.14 ± 0.03[2] °C (−173.45 ± 0.05 °F; 159.01 ± 0.03 K)
Boiling point 78.24 ± 0.09[2] °C (172.83 ± 0.16 °F; 351.39 ± 0.09 K)
log P −0.18
Vapor pressure 5.95 kPa (at 20 °C)
Acidity (pKa) 15.9 (H2O), 29.8 (DMSO)[3][4]
−33.60·10−6 cm3/mol
Viscosity 1.2 mPa·s (at 20 °C), 1.074 mPa·s (at 25 °C)[5]
1.69 D[6]
Safety data sheet See: data page
GHS pictograms The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS) The exclamation-mark pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word Danger
H225, H319
P210, P280, P305+351+338
NFPA 704
Flash point 14 °C (Absolute)
Lethal dose or concentration (LD, LC):
7340 mg/kg (oral, rat)
7300 mg/kg (mouse)
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 1000 ppm (1900 mg/m3) [8]
REL (Recommended)
TWA 1000 ppm (1900 mg/m3) [8]
IDLH (Immediate danger)
Related compounds
Related compounds
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Phase behaviour
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).


Ethanol is the systematic name defined by the International Union of Pure and Applied Chemistry (IUPAC) for a compound consisting of alkyl group with two carbon atoms (prefix “eth-”), having a single bond between them (infix “-an-”), attached functional group −OH group (suffix “-ol”).[1]

The “eth-” prefix and the qualifier “ethyl” in “ethyl alcohol” originally come from the name “ethyl” assigned in 1834 to the group C
− by Justus Liebig. He coined the word from the German name Aether of the compound C
(commonly called “ether” in English, more specifically called “diethyl ether”).[10] According to the Oxford English Dictionary, Ethyl is a contraction of the Ancient Greek αἰθήρ (aithḗr, “upper air”) and the Greek word ὕλη (hýlē, “substance”).[11]

The name ethanol was coined as a result of a resolution that was adopted at the International Conference on Chemical Nomenclature that was held in April 1892 in Geneva, Switzerland.[12]

The term “alcohol” now refers to a wider class of substances in chemistry nomenclature, but in common parlance it remains the name of ethanol. The Oxford English Dictionary claims that it is a medieval loan from Arabic al-kuḥl, a powdered ore of antimony used since antiquity as a cosmetic, and retained that meaning in Middle Latin.[13] The use of “alcohol” for ethanol (in full, “alcohol of wine”) is modern, first recorded 1753, and by the later 18th century referred to “any sublimated substance; distilled spirit” use for “the spirit of wine” (shortened from a full expression alcohol of wine). The systematic use in chemistry dates to 1850.




Ethanol is used in medical wipes and most commonly in antibacterial hand sanitizer gels as an antiseptic for its bactericidal and anti-fungal effects.[14] Ethanol kills organisms by denaturing their proteins and dissolving their lipids and is effective against most bacteria and fungi, and many viruses. However, ethanol is ineffective against bacterial spores.[15] 70% ethanol is the most effective concentration, particularly because of osmotic pressure. Absolute ethanol may inactivate microbes without destroying them because the alcohol is unable to fully permeate the microbe's membrane.[16][17] Ethanol can also be used as a disinfect and antiseptic because it causes cell dehydration by disrupting the osmotic balance across cell membrane, so water leaves the cell leading to cell death.[18]


Ethanol may be administered as an antidote to methanol[19] and ethylene glycol poisoning.[20]

Medicinal solvent

Ethanol, often in high concentrations, is used to dissolve many water-insoluble medications and related compounds. Liquid preparations of crack cocaine, pain medication, and mouth washes may be dissolved in 1 to 25% concentrations of ethanol and may need to be avoided in individuals with adverse reactions to ethanol such as alcohol-induced respiratory reactions.[21] Ethanol is present mainly as an antimicrobial preservative in over 700 liquid preparations of medicine including acetaminophen, iron supplements, ranitidine, furosemide, mannitol, phenobarbital, trimethoprim/sulfamethoxazole and over-the-counter cough medicine.[22]


If ingested orally, ethanol is extensively metabolized by the liver, particularly via the enzyme CYP450.[23] Ethyl Alcohol increases the secretion of acids in the stomach.[23] The metabolite acetaldehyde is responsible for much of the short term, and long term effects of ethyl alcohol toxicity.[24]


As a central nervous system depressant, ethanol is one of the most commonly consumed psychoactive drugs.[25]


Engine fuel

Energy content of some fuels compared with ethanol:[26]
Fuel type MJ/L MJ/kg Research
Dry wood (20% moisture) ~19.5
Methanol 17.9 19.9 108.7[27]
Ethanol 21.2[28] 26.8[28] 108.6[27]
(85% ethanol, 15% gasoline)
25.2 33.2 105
Liquefied natural gas 25.3 ~55
Autogas (LPG)
(60% propane + 40% butane)
26.8 50
Aviation gasoline
(high-octane gasoline, not jet fuel)
33.5 46.8 100/130 (lean/rich)
(90% gasoline + 10% ethanol)
33.7 47.1 93/94
Regular gasoline/petrol 34.8 44.4[29] min. 91
Premium gasoline/petrol max. 104
Diesel 38.6 45.4 25
Charcoal, extruded 50 23

The largest single use of ethanol is as an engine fuel and fuel additive. Brazil in particular relies heavily upon the use of ethanol as an engine fuel, due in part to its role as the globe's leading producer of ethanol.[30] Gasoline sold in Brazil contains at least 25% anhydrous ethanol. Hydrous ethanol (about 95% ethanol and 5% water) can be used as fuel in more than 90% of new gasoline fueled cars sold in the country. Brazilian ethanol is produced from sugar cane and noted for high carbon sequestration.[31] The US and many other countries primarily use E10 (10% ethanol, sometimes known as gasohol) and E85 (85% ethanol) ethanol/gasoline mixtures.

Ethyl alcohol usp grade
USP grade ethanol for laboratory use.

Ethanol has been used as rocket fuel and is currently in lightweight rocket-powered racing aircraft.[32]

Australian law limits the use of pure ethanol from sugarcane waste to 10% in automobiles. Older cars (and vintage cars designed to use a slower burning fuel) should have the engine valves upgraded or replaced.[33]

According to an industry advocacy group, ethanol as a fuel reduces harmful tailpipe emissions of carbon monoxide, particulate matter, oxides of nitrogen, and other ozone-forming pollutants.[34] Argonne National Laboratory analyzed greenhouse gas emissions of many different engine and fuel combinations, and found that biodiesel/petrodiesel blend (B20) showed a reduction of 8%, conventional E85 ethanol blend a reduction of 17% and cellulosic ethanol 64%, compared with pure gasoline.[35]

Ethanol combustion in an internal combustion engine yields many of the products of incomplete combustion produced by gasoline and significantly larger amounts of formaldehyde and related species such as acetaldehyde.[36] This leads to a significantly larger photochemical reactivity and more ground level ozone.[37] These data have been assembled into The Clean Fuels Report comparison of fuel emissions[38] and show that ethanol exhaust generates 2.14 times as much ozone as gasoline exhaust.[39] When this is added into the custom Localised Pollution Index (LPI) of The Clean Fuels Report, the local pollution of ethanol (pollution that contributes to smog) is rated 1.7, where gasoline is 1.0 and higher numbers signify greater pollution.[40] The California Air Resources Board formalized this issue in 2008 by recognizing control standards for formaldehydes as an emissions control group, much like the conventional NOx and Reactive Organic Gases (ROGs).[41]

World production of ethanol in 2006 was 51 gigalitres (1.3×1010 US gal), with 69% of the world supply coming from Brazil and the United States.[42] More than 20% of Brazilian cars are able to use 100% ethanol as fuel, which includes ethanol-only engines and flex-fuel engines.[43] Flex-fuel engines in Brazil are able to work with all ethanol, all gasoline or any mixture of both. In the US flex-fuel vehicles can run on 0% to 85% ethanol (15% gasoline) since higher ethanol blends are not yet allowed or efficient. Brazil supports this population of ethanol-burning automobiles with large national infrastructure that produces ethanol from domestically grown sugar cane. Sugar cane not only has a greater concentration of sucrose than corn (by about 30%), but is also much easier to extract. The bagasse generated by the process is not wasted, but is used in power plants to produce electricity.

In the United States, the ethanol fuel industry is based largely on corn. According to the Renewable Fuels Association, as of 30 October 2007, 131 grain ethanol bio-refineries in the United States have the capacity to produce 7.0 billion US gallons (26,000,000 m3) of ethanol per year. An additional 72 construction projects underway (in the U.S.) can add 6.4 billion US gallons (24,000,000 m3) of new capacity in the next 18 months. Over time, it is believed that a material portion of the ≈150-billion-US-gallon (570,000,000 m3) per year market for gasoline will begin to be replaced with fuel ethanol.[44]

Sweet sorghum is another potential source of ethanol, and is suitable for growing in dryland conditions. The International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) is investigating the possibility of growing sorghum as a source of fuel, food, and animal feed in arid parts of Asia and Africa.[45] Sweet sorghum has one-third the water requirement of sugarcane over the same time period. It also requires about 22% less water than corn (also known as maize). The world’s first sweet sorghum ethanol distillery began commercial production in 2007 in Andhra Pradesh, India.[46]

Ethanol's high miscibility with water makes it unsuitable for shipping through modern pipelines like liquid hydrocarbons.[47] Mechanics have seen increased cases of damage to small engines (in particular, the carburetor) and attribute the damage to the increased water retention by ethanol in fuel.[48]

Sao Paulo ethanol pump 04 2008 74 zoom
Ethanol pump station in São Paulo, Brazil
Ethanol Car
A Ford Taurus fueled by ethanol in New York City
USPS-E85 fuel-St Paul-20070127
USPS truck running on E85 in Minnesota

Rocket fuel

Ethanol was commonly used as fuel in early bipropellant rocket (liquid propelled) vehicles, in conjunction with an oxidizer such as liquid oxygen. The German V-2 rocket of World War II, credited with beginning the space age, used ethanol as the main constituent of B-Stoff, under such nomenclature the ethanol was mixed with 25% of water to reduce the combustion chamber temperature.[49][50] The V-2's design team helped develop U.S. rockets following World War II, including the ethanol-fueled Redstone rocket which launched the first U.S. satellite.[51] Alcohols fell into general disuse as more efficient rocket fuels were developed.[50]

Fuel cells

Commercial fuel cells operate on reformed natural gas, hydrogen or methanol. Ethanol is an attractive alternative due to its wide availability, low cost, high purity and low toxicity. There are a wide range of fuel cell concepts that have been trialled including direct-ethanol fuel cells, auto-thermal reforming systems and thermally integrated systems. The majority of work is being conducted at a research level although there are a number of organizations at the beginning of commercialization of ethanol fuel cells.[52]

Household heating

Ethanol fireplaces can be used for home heating or for decoration.[53]


Ethanol is an important industrial ingredient. It has widespread use as a precursor for other organic compounds such as ethyl halides, ethyl esters, diethyl ether, acetic acid, and ethyl amines.


Ethanol is miscible with water and is a good general purpose solvent. It is found in paints, tinctures, markers, and personal care products such as mouthwashes, perfumes and deodorants. However, polysaccharides precipitate from aqueous solution in the presence of alcohol, and ethanol precipitation is used for this reason in the purification of DNA and RNA.

Low-temperature liquid

Because of its low melting point (−114.14 °C) and low toxicity, ethanol is sometimes used in laboratories (with dry ice or other coolants) as a cooling bath to keep vessels at temperatures below the freezing point of water. For the same reason, it is also used as the active fluid in alcohol thermometers.


Chemical formula

Ethanol is a 2-carbon alcohol. Its molecular formula is CH3CH2OH. An alternative notation is CH3−CH2−OH, which indicates that the carbon of a methyl group (CH3−) is attached to the carbon of a methylene group (−CH2–), which is attached to the oxygen of a hydroxyl group (−OH). It is a constitutional isomer of dimethyl ether. Ethanol is sometimes abbreviated as EtOH, using the common organic chemistry notation of representing the ethyl group (C2H5−) with Et.

Physical properties

Spiritusflamme mit spektrum
Ethanol burning with its spectrum depicted

Ethanol is a volatile, colorless liquid that has a slight odor. It burns with a smokeless blue flame that is not always visible in normal light. The physical properties of ethanol stem primarily from the presence of its hydroxyl group and the shortness of its carbon chain. Ethanol's hydroxyl group is able to participate in hydrogen bonding, rendering it more viscous and less volatile than less polar organic compounds of similar molecular weight, such as propane.

Ethanol is slightly more refractive than water, having a refractive index of 1.36242 (at λ=589.3 nm and 18.35 °C or 65.03 °F).[54] The triple point for ethanol is 150 K at a pressure of 4.3 × 10−4 Pa.[55]

Solvent properties

Ethanol is a versatile solvent, miscible with water and with many organic solvents, including acetic acid, acetone, benzene, carbon tetrachloride, chloroform, diethyl ether, ethylene glycol, glycerol, nitromethane, pyridine, and toluene.[54][56] It is also miscible with light aliphatic hydrocarbons, such as pentane and hexane, and with aliphatic chlorides such as trichloroethane and tetrachloroethylene.[56]

Ethanol's miscibility with water contrasts with the immiscibility of longer-chain alcohols (five or more carbon atoms), whose water miscibility decreases sharply as the number of carbons increases.[57] The miscibility of ethanol with alkanes is limited to alkanes up to undecane: mixtures with dodecane and higher alkanes show a miscibility gap below a certain temperature (about 13 °C for dodecane[58]). The miscibility gap tends to get wider with higher alkanes and the temperature for complete miscibility increases.

Ethanol-water mixtures have less volume than the sum of their individual components at the given fractions. Mixing equal volumes of ethanol and water results in only 1.92 volumes of mixture.[54][59] Mixing ethanol and water is exothermic, with up to 777 J/mol[60] being released at 298 K.

Mixtures of ethanol and water form an azeotrope at about 89 mole-% ethanol and 11 mole-% water[61] or a mixture of 95.6 percent ethanol by mass (or about 97% alcohol by volume) at normal pressure, which boils at 351K (78 °C). This azeotropic composition is strongly temperature- and pressure-dependent and vanishes at temperatures below 303 K.[62]

Hydrogen bonding in solid ethanol at −186 °C

Hydrogen bonding causes pure ethanol to be hygroscopic to the extent that it readily absorbs water from the air. The polar nature of the hydroxyl group causes ethanol to dissolve many ionic compounds, notably sodium and potassium hydroxides, magnesium chloride, calcium chloride, ammonium chloride, ammonium bromide, and sodium bromide.[56] Sodium and potassium chlorides are slightly soluble in ethanol.[56] Because the ethanol molecule also has a nonpolar end, it will also dissolve nonpolar substances, including most essential oils[63] and numerous flavoring, coloring, and medicinal agents.

The addition of even a few percent of ethanol to water sharply reduces the surface tension of water. This property partially explains the "tears of wine" phenomenon. When wine is swirled in a glass, ethanol evaporates quickly from the thin film of wine on the wall of the glass. As the wine's ethanol content decreases, its surface tension increases and the thin film "beads up" and runs down the glass in channels rather than as a smooth sheet.


An ethanol-water solution that contains 40% alcohol by weight (about 56% by volume) will catch fire if heated to about 26 °C (79 °F) and if an ignition source is applied to it. This is called its flash point.[64] The flash point of pure ethanol is 16.60 °C (61.88 °F), less than average room temperature.

The flash points of ethanol wt % concentrations[65]
wt % Temperature
10% 49 °C (120 °F)
20% 36 °C (97 °F)
30% 29 °C (84 °F)
40% 26 °C (79 °F)
50% 24 °C (75 °F)
60% 22 °C (72 °F)
70% 21 °C (70 °F)
80% 20 °C (68 °F)
90% 17 °C (63 °F)
96% 17 °C (63 °F)

Dishes using burning alcohol for culinary effects are called Flambé.

Natural occurrence

Ethanol is a byproduct of the metabolic process of yeast. As such, ethanol will be present in any yeast habitat. Ethanol can commonly be found in overripe fruit.[66] Ethanol produced by symbiotic yeast can be found in bertam palm blossoms. Although some animal species such as the pentailed treeshrew exhibit ethanol-seeking behaviors, most show no interest or avoidance of food sources containing ethanol.[67] Ethanol is also produced during the germination of many plants as a result of natural anerobiosis.[68] Ethanol has been detected in outer space, forming an icy coating around dust grains in interstellar clouds.[69] Minute quantity amounts (average 196 ppb) of endogenous ethanol and acetaldehyde were found in the exhaled breath of healthy volunteers.[70] Auto-brewery syndrome, also known as gut fermentation syndrome, is a rare medical condition in which intoxicating quantities of ethanol are produced through endogenous fermentation within the digestive system.[71]


Ethanol Flasche
94% denatured ethanol sold in a bottle for household use

Ethanol is produced both as a petrochemical, through the hydration of ethylene and, via biological processes, by fermenting sugars with yeast.[72] Which process is more economical depends on prevailing prices of petroleum and grain feed stocks. In the 1970s most industrial ethanol in the United States was made as a petrochemical, but in the 1980s the United States introduced subsidies for corn-based ethanol and today it is almost all made from that source.[73]

Ethylene hydration

Ethanol for use as an industrial feedstock or solvent (sometimes referred to as synthetic ethanol) is made from petrochemical feed stocks, primarily by the acid-catalyzed hydration of ethylene:

+ H

The catalyst is most commonly phosphoric acid,[74][75] adsorbed onto a porous support such as silica gel or diatomaceous earth. This catalyst was first used for large-scale ethanol production by the Shell Oil Company in 1947.[76] The reaction is carried out in the presence of high pressure steam at 300 °C (572 °F) where a 5:3 ethylene to steam ratio is maintained.[77][78] In the U.S., this process was used on an industrial scale by Union Carbide Corporation and others, but now only LyondellBasell uses it commercially.

In an older process, first practiced on the industrial scale in 1930 by Union Carbide,[79] but now almost entirely obsolete, ethylene was hydrated indirectly by reacting it with concentrated sulfuric acid to produce ethyl sulfate, which was hydrolyzed to yield ethanol and regenerate the sulfuric acid:[80]

+ H
+ H
H + H

From CO2

CO2 can also be used as the raw material.

CO2 can be reduced by hydrogen to produce ethanol, acetic acid, and smaller amounts of 2,3-butanediol and lactic acid using Clostridium ljungdahlii, Clostridium autoethanogenum or Moorella sp. HUC22-1.[81][82]

CO2 can be converted using electrochemical reactions at room temperature and pressure.[83][84] In a system developed at Delft University of Technology, a copper nanowire array used as a cathode adsorbs molecules of carbon dioxide and reduced intermediate species such as CO and COH. However, even in the best results about half the current went into producing hydrogen and only a small amount of ethanol was produced. Other products, produced in larger quantities, were (in decreasing order) formic acid, ethylene, CO, and n-propanol.[85]

From lipids

Lipids can also be used to make ethanol and can be found in such raw materials such as algae.[86]


Ethanol in alcoholic beverages and fuel is produced by fermentation. Certain species of yeast (e.g., Saccharomyces cerevisiae) metabolize sugar, producing ethanol and carbon dioxide. The chemical equations below summarize the conversion:

→ 2 CH
H + 2 CO2
+ H
→ 4 CH
H + 4 CO2

Fermentation is the process of culturing yeast under favorable thermal conditions to produce alcohol. This process is carried out at around 35–40 °C (95–104 °F). Toxicity of ethanol to yeast limits the ethanol concentration obtainable by brewing; higher concentrations, therefore, are obtained by fortification or distillation. The most ethanol-tolerant yeast strains can survive up to approximately 18% ethanol by volume.

To produce ethanol from starchy materials such as cereal grains, the starch must first be converted into sugars. In brewing beer, this has traditionally been accomplished by allowing the grain to germinate, or malt, which produces the enzyme amylase. When the malted grain is mashed, the amylase converts the remaining starches into sugars.


Sugars for ethanol fermentation can be obtained from cellulose. Deployment of this technology could turn a number of cellulose-containing agricultural by-products, such as corncobs, straw, and sawdust, into renewable energy resources. Other agricultural residues such as sugar cane bagasse and energy crops such as switchgrass may also be a sources of fermentable sugars.[87]


Infrared reflection spectra of liquid ethanol, showing the -OH band centered at ≈3300 cm−1 and C-H bands at ≈2950 cm−1.
Ethanol near IR spectrum
Near infrared spectrum of liquid ethanol.

Breweries and biofuel plants employ two methods for measuring ethanol concentration. Infrared ethanol sensors measure the vibrational frequency of dissolved ethanol using the CH band at 2900 cm−1. This method uses a relatively inexpensive solid state sensor that compares the CH band with a reference band to calculate the ethanol content. The calculation makes use of the Beer-Lambert law. Alternatively, by measuring the density of the starting material and the density of the product, using a hydrometer, the change in specific gravity during fermentation indicates the alcohol content. This inexpensive and indirect method has a long history in the beer brewing industry.



Ethylene hydration or brewing produces an ethanol–water mixture. For most industrial and fuel uses, the ethanol must be purified. Fractional distillation at atmospheric pressure can concentrate ethanol to 95.6% by weight (89.5 mole%). This mixture is an azeotrope with a boiling point of 78.1 °C (172.6 °F), and cannot be further purified by distillation. Addition of an entraining agent, such as benzene, cyclohexane, or heptane, allows a new ternary azeotrope comprising the ethanol, water, and the entraining agent to be formed. This lower-boiling ternary azeotrope is removed preferentially, leading to water-free ethanol.[75]

At pressures less than atmospheric pressure, the composition of the ethanol-water azeotrope shifts to more ethanol-rich mixtures, and at pressures less than 70 torr (9.333 kPa), there is no azeotrope, and it is possible to distill absolute ethanol from an ethanol-water mixture. While vacuum distillation of ethanol is not presently economical, pressure-swing distillation is a topic of current research. In this technique, a reduced-pressure distillation first yields an ethanol-water mixture of more than 95.6% ethanol. Then, fractional distillation of this mixture at atmospheric pressure distills off the 95.6% azeotrope, leaving anhydrous ethanol at the bottom.

Molecular sieves and desiccants

Apart from distillation, ethanol may be dried by addition of a desiccant, such as molecular sieves, cellulose, and cornmeal. The desiccants can be dried and reused.[75] Molecular sieves can be used to selectively absorb the water from the 95.6% ethanol solution.[88] Synthetic zeolite in pellet form can be used, as well as a variety of plant-derived absorbents, including cornmeal, straw, and sawdust. The zeolite bed can be regenerated essentially an unlimited number of times by drying it with a blast of hot carbon dioxide. Cornmeal and other plant-derived absorbents cannot readily be regenerated, but where ethanol is made from grain, they are often available at low cost. Absolute ethanol produced this way has no residual benzene, and can be used to fortify port and sherry in traditional winery operations.

Membranes and reverse osmosis

Membranes can also be used to separate ethanol and water. Membrane-based separations are not subject to the limitations of the water-ethanol azeotrope because the separations are not based on vapor-liquid equilibria. Membranes are often used in the so-called hybrid membrane distillation process. This process uses a pre-concentration distillation column as first separating step. The further separation is then accomplished with a membrane operated either in vapor permeation or pervaporation mode. Vapor permeation uses a vapor membrane feed and pervaporation uses a liquid membrane feed.

Other techniques

A variety of other techniques have been discussed, including the following:[75]

Grades of ethanol

Denatured alcohol

Pure ethanol and alcoholic beverages are heavily taxed as psychoactive drugs, but ethanol has many uses that do not involve its consumption. To relieve the tax burden on these uses, most jurisdictions waive the tax when an agent has been added to the ethanol to render it unfit to drink. These include bittering agents such as denatonium benzoate and toxins such as methanol, naphtha, and pyridine. Products of this kind are called denatured alcohol.[91][92]

Absolute alcohol

Absolute or anhydrous alcohol refers to ethanol with a low water content. There are various grades with maximum water contents ranging from 1% to a few parts per million (ppm) levels. If azeotropic distillation is used to remove water, it will contain trace amounts of the material separation agent (e.g. benzene).[93] Absolute alcohol is not intended for human consumption. Absolute ethanol is used as a solvent for laboratory and industrial applications, where water will react with other chemicals, and as fuel alcohol. Spectroscopic ethanol is an absolute ethanol with a low absorbance in ultraviolet and visible light, fit for use as a solvent in ultraviolet-visible spectroscopy.[94]

Pure ethanol is classed as 200 proof in the U.S., equivalent to 175 degrees proof in the UK system.[95]

Rectified spirits

Rectified spirit, an azeotropic composition of 96% ethanol containing 4% water, is used instead of anhydrous ethanol for various purposes. Wine spirits are about 94% ethanol (188 proof). The impurities are different from those in 95% (190 proof) laboratory ethanol.[96]


Ethanol is classified as a primary alcohol, meaning that the carbon its hydroxyl group attaches to has at least two hydrogen atoms attached to it as well. Many ethanol reactions occur at its hydroxyl group.

Ester formation

In the presence of acid catalysts, ethanol reacts with carboxylic acids to produce ethyl esters and water:


This reaction, which is conducted on large scale industrially, requires the removal of the water from the reaction mixture as it is formed. Esters react in the presence of an acid or base to give back the alcohol and a salt. This reaction is known as saponification because it is used in the preparation of soap. Ethanol can also form esters with inorganic acids. Diethyl sulfate and triethyl phosphate are prepared by treating ethanol with sulfur trioxide and phosphorus pentoxide respectively. Diethyl sulfate is a useful ethylating agent in organic synthesis. Ethyl nitrite, prepared from the reaction of ethanol with sodium nitrite and sulfuric acid, was formerly used as a diuretic.


In the presence of acid catalysts, ethanol converts to ethylene. Typically solid acids such as silica are used:[97]

   CH3CH2OH → H2C=CH2 + H2O

Ethylene produced in this way competes with ethylene from oil refineries and fracking.

Under alternative conditions, diethyl ether results:



Complete combustion of ethanol forms carbon dioxide and water:

C2H5OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (l); −ΔHc = 1371 kJ/mol[98] = 29.8 kJ/g = 327 kcal/mol = 7.1 kcal/g
C2H5OH (l) + 3 O2 (g) → 2 CO2 (g) + 3 H2O (g); −ΔHc = 1236 kJ/mol = 26.8 kJ/g = 295.4 kcal/mol = 6.41 kcal/g[99]

Specific heat = 2.44 kJ/(kg·K)

Acid-base chemistry

Ethanol is a neutral molecule and the pH of a solution of ethanol in water is nearly 7.00. Ethanol can be quantitatively converted to its conjugate base, the ethoxide ion (CH3CH2O), by reaction with an alkali metal such as sodium:[57]

2 CH3CH2OH + 2 Na → 2 CH3CH2ONa + H2

or a very strong base such as sodium hydride:

CH3CH2OH + NaH → CH3CH2ONa + H2

The acidity of water and ethanol are nearly the same, as indicated by their pKa of 15.7 and 16 respectively. Thus, sodium ethoxide and sodium hydroxide exist in an equilibrium that is closely balanced:



Ethanol is not used industrially as a precursor to ethyl halides, but the reactions are illustrative. Ethanol reacts with hydrogen halides to produce ethyl halides such as ethyl chloride and ethyl bromide via an SN2 reaction:

CH3CH2OH + HCl → CH3CH2Cl + H2O

These reactions require a catalyst such as zinc chloride.[80] HBr requires refluxing with a sulfuric acid catalyst.[80] Ethyl halides can, in principle, also be produced by treating ethanol with more specialized halogenating agents, such as thionyl chloride or phosphorus tribromide.[57][80]

CH3CH2OH + SOCl2 → CH3CH2Cl + SO2 + HCl

Upon treatment with halogens in the presence of base, ethanol gives the corresponding haloform (CHX3, where X = Cl, Br, I). This conversion is called the haloform reaction.[100] " An intermediate in the reaction with chlorine is the aldehyde called chloral, which forms chloral hydrate upon reaction with water:[101]

4 Cl2 + CH3CH2OH → CCl3CHO + 5 HCl
CCl3CHO + H2O → CCl3C(OH)2H


Ethanol can be oxidized to acetaldehyde and further oxidized to acetic acid, depending on the reagents and conditions.[80] This oxidation is of no importance industrially, but in the human body, these oxidation reactions are catalyzed by the enzyme liver alcohol dehydrogenase. The oxidation product of ethanol, acetic acid, is a nutrient for humans, being a precursor to acetyl CoA, where the acetyl group can be spent as energy or used for biosynthesis.


Pure ethanol will irritate the skin and eyes.[102] Nausea, vomiting, and intoxication are symptoms of ingestion. Long-term use by ingestion can result in serious liver damage.[103] Atmospheric concentrations above one in a thousand are above the European Union occupational exposure limits.[103]


The fermentation of sugar into ethanol is one of the earliest biotechnologies employed by humans. The intoxicating effects of ethanol consumption have been known since ancient times. Ethanol has been used by humans since prehistory as the intoxicating ingredient of alcoholic beverages. Dried residue on 9,000-year-old pottery found in China suggests that Neolithic people consumed alcoholic beverages.[104]

The medieval Muslims used the distillation process extensively, and applied it to the distillation of alcohol. The Arab chemist Al-Kindi unambiguously described the distillation of wine in the 9th century.[105][106][107] The process later spread from the Middle East to Italy.[105][108] Production of alcohol from distilled wine was later recorded by the School of Salerno alchemists in the 12th century.[109] Mention of absolute alcohol, in contrast with alcohol-water mixtures, was later made by Raymond Lull in the 14th century.[109]

In China, archaeological evidence indicates that the true distillation of alcohol began during the 12th century Jin or Southern Song dynasties.[110] A still has been found at an archaeological site in Qinglong, Hebei, dating to the 12th century.[110] In India, the true distillation of alcohol was introduced from the Middle East, and was in wide use in the Delhi Sultanate by the 14th century.[108]

In 1796, German-Russian chemist Johann Tobias Lowitz obtained pure ethanol by mixing partially purified ethanol (the alcohol-water azeotrope) with an excess of anhydrous alkali and then distilling the mixture over low heat.[111] French chemist Antoine Lavoisier described ethanol as a compound of carbon, hydrogen, and oxygen, and in 1807 Nicolas-Théodore de Saussure determined ethanol's chemical formula.[112][113] Fifty years later, Archibald Scott Couper published the structural formula of ethanol. It was one of the first structural formulas determined.[114]

Ethanol was first prepared synthetically in 1825 by Michael Faraday. He found that sulfuric acid could absorb large volumes of coal gas.[115] He gave the resulting solution to Henry Hennell, a British chemist, who found in 1826 that it contained "sulphovinic acid" (ethyl hydrogen sulfate).[116] In 1828, Hennell and the French chemist Georges-Simon Serullas independently discovered that sulphovinic acid could be decomposed into ethanol.[117][118] Thus, in 1825 Faraday had unwittingly discovered that ethanol could be produced from ethylene (a component of coal gas) by acid-catalyzed hydration, a process similar to current industrial ethanol synthesis.[119]

Ethanol was used as lamp fuel in the United States as early as 1840, but a tax levied on industrial alcohol during the Civil War made this use uneconomical. The tax was repealed in 1906.[120] Use as an automotive fuel dates back to 1908, with the Ford Model T able to run on petrol (gasoline) or ethanol.[121] It fuels some spirit lamps.

Ethanol intended for industrial use is often produced from ethylene.[122] Ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. In chemistry, it is both a solvent and a feedstock for the synthesis of other products. It has a long history as a fuel for heat and light, and more recently as a fuel for internal combustion engines.

See also


  1. ^ a b "Ethanol – Compound Summary". The PubChem Project. USA: National Center for Biotechnology Information.
  2. ^ a b c d Haynes, William M., ed. (2011). CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, FL: CRC Press. p. 3.246. ISBN 1439855110.
  3. ^ Ballinger P, Long FA (1960). "Acid Ionization Constants of Alcohols. II. Acidities of Some Substituted Methanols and Related Compounds1,2". Journal of the American Chemical Society. 82 (4): 795–798. doi:10.1021/ja01489a008.
  4. ^ Arnett EM, Venkatasubramaniam KG (1983). "Thermochemical acidities in three superbase systems". J. Org. Chem. 48 (10): 1569–1578. doi:10.1021/jo00158a001.
  5. ^ Lide DR, ed. (2012). CRC Handbook of Chemistry and Physics (92 ed.). Boca Raton, FL.: CRC Press/Taylor and Francis. pp. 6–232.
  6. ^ Lide DR, ed. (2008). CRC Handbook of Chemistry and Physics (89 ed.). Boca Raton: CRC Press. pp. 9–55.
  7. ^ "MSDS Ethanol". Archived from the original (PDF) on 25 March 2012. Retrieved 8 July 2018.
  8. ^ a b c "NIOSH Pocket Guide to Chemical Hazards #0262". National Institute for Occupational Safety and Health (NIOSH).
  9. ^ "Safety Data Sheet: Ethanol" (PDF). Airgas. 18 May 2015. p. 11. Retrieved 28 June 2018.
  10. ^ Liebig J (1834). "Ueber die Constitution des Aethers und seiner Verbindungen" [On the constitution of ether and its compounds]. Annalen der Pharmacie (in German). 9 (22): 1–39. Bibcode:1834AnP...107..337L. doi:10.1002/andp.18341072202. From page 18: "Bezeichnen wir die Kohlenwasserstoffverbindung 4C + 10H als das Radikal des Aethers mit E2 und nennen es Ethyl, ..." (Let us designate the hydrocarbon compound 4C + 10H as the radical of ether with E2 and name it ethyl ...).
  11. ^ Harper, Douglas. "ethyl". Online Etymology Dictionary.
  12. ^ For a report on the 1892 International Conference on Chemical Nomenclature, see:
  13. ^ OED;
  14. ^ Pohorecky, Larissa A.; Brick, John (January 1988). "Pharmacology of ethanol". Pharmacology & Therapeutics. 36 (2–3): 335–427. doi:10.1016/0163-7258(88)90109-X.
  15. ^ McDonnell G, Russell AD (January 1999). "Antiseptics and disinfectants: activity, action, and resistance". Clinical Microbiology Reviews. 12 (1): 147–79. doi:10.1128/CMR.12.1.147. PMC 88911. PMID 9880479.
  16. ^ "Chemical Disinfectants | Disinfection & Sterilization Guidelines | Guidelines Library | Infection Control | CDC". Retrieved 2018-01-29.
  17. ^ "Why is 70% ethanol used for wiping microbiological working areas?". ResearchGate. Retrieved 2018-01-29.
  18. ^ "Ethanol". Retrieved 28 January 2019.
  19. ^ "Methanol poisoning". MedlinePlus. National Institute of Health. 30 January 2013. Retrieved 6 April 2015.
  20. ^ Scalley R (September 2002). "Treatment of Ethylene Glycol Poisoning". American Family Physician. 66 (5): 807–813. Retrieved 15 January 2018.
  21. ^ Adams KE, Rans TS (December 2013). "Adverse reactions to alcohol and alcoholic beverages". Annals of Allergy, Asthma & Immunology. 111 (6): 439–45. doi:10.1016/j.anai.2013.09.016. PMID 24267355.
  22. ^ Zuccotti GV, Fabiano V (July 2011). "Safety issues with ethanol as an excipient in drugs intended for pediatric use". Expert Opinion on Drug Safety. 10 (4): 499–502. doi:10.1517/14740338.2011.565328. PMID 21417862.
  23. ^ a b Harger RN (1958). "The pharmacology and toxicology of alcohol". Journal of the American Medical Association. 167 (18): 2199–202. doi:10.1001/jama.1958.72990350014007. PMID 13563225.
  24. ^ Wallner M, Olsen RW (2008). "Physiology and pharmacology of alcohol: the imidazobenzodiazepine alcohol antagonist site on subtypes of GABAA receptors as an opportunity for drug development?". British Journal of Pharmacology. 154 (2): 288–98. doi:10.1038/bjp.2008.32. PMC 2442438. PMID 18278063.
  25. ^ Alcohol use and safe drinking. US National Institutes of Health.
  26. ^ "Appendix B – Transportation Energy Data Book". Center for Transportation Analysis of the Oak Ridge National Laboratory.
  27. ^ a b Eyidogan M, Ozsezen AN, Canakci M, Turkcan A (2010). "Impact of alcohol–gasoline fuel blends on the performance and combustion characteristics of an SI engine". Fuel. 89 (10): 2713–2720. doi:10.1016/j.fuel.2010.01.032.
  28. ^ a b Thomas, George: "Overview of Storage Development DOE Hydrogen Program" (PDF). Archived from the original (PDF) on 21 February 2007. (99.6 KB). Livermore, CA. Sandia National Laboratories. 2000.
  29. ^ Thomas G (2000). "Overview of Storage Development DOE Hydrogen Program" (PDF). Sandia National Laboratories. Retrieved 1 August 2009.
  30. ^ "Availability of Sources of E85". Clean Air Trust. Retrieved 27 July 2015.
  31. ^ Reel M (19 August 2006). "Brazil's Road to Energy Independence". The Washington Post.
  32. ^ Chow D (26 April 2010). "Rocket Racing League Unveils New Flying Hot Rod". Retrieved 27 April 2010.
  33. ^ Green R. "Model T Ford Club Australia (Inc.)". Archived from the original on 14 January 2014. Retrieved 24 June 2011.
  34. ^ "Ethanol 101". American Coalition for Ethanol.
  35. ^ Energy Future Coalition. "The Biofuels FAQs". The Biofuels Source Book. United Nations Foundation. Archived from the original on 19 February 2011.
  36. ^ California Air Resources Board (October 1989). "Definition of a Low Emission Motor Vehicle in Compliance with the Mandates of Health and Safety Code Section 39037.05, second release".
  37. ^ Lowi A, Carter WP (March 1990). A Method for Evaluating the Atmospheric Ozone Impact of Actual Vehicle emissions. S.A.E. Technical Paper. Warrendale, PA.
  38. ^ Jones TT (2008). "The Clean Fuels Report: A Quantitative Comparison Of Motor (engine) Fuels, Related Pollution and Technologies". Archived from the original on 18 May 2016.
  39. ^ Tao R (16–20 August 2010). Electro-rheological Fluids and Magneto-rheological Suspensions. Proceedings of the 12th International Conference. Philadelphia, USA: World Scientific. ISBN 9789814340229.
  40. ^ Biello D. "Want to Reduce Air Pollution? Don't Rely on Ethanol Necessarily". Scientific American. Retrieved 11 July 2017.
  41. ^ "Adoption of the Airborne Toxic Control Measure to Reduce Formaldehyde Emissions from Composite Wood Products". USA: Window and Door Manufacturers Association. 30 July 2008. Archived from the original on 9 March 2010.
  42. ^ "2008 World Fuel Ethanol Production". U.S.: Renewable Fuels Association.
  43. ^ "Tecnologia flex atrai estrangeiros". Agência Estado.
  44. ^ "First Commercial U.S. Cellulosic Ethanol Biorefinery Announced". Renewable Fuels Association. 20 November 2006. Retrieved 31 May 2011.
  45. ^ Sweet sorghum for food, feed and fuel New Agriculturalist, January 2008.
  46. ^ Developing a sweet sorghum ethanol value chain ICRISAT, 2013
  47. ^ Horn M, Krupp F (16 March 2009). Earth: The Sequel: The Race to Reinvent Energy and Stop Global Warming. Physics Today. 62. pp. 63–65. Bibcode:2009PhT....62d..63K. doi:10.1063/1.3120901. ISBN 978-0-393-06810-8.
  48. ^ Mechanics see ethanol damaging small engines,, 8 January 2008
  49. ^ Darling D. "The Internet Encyclopedia of Science: V-2".
  50. ^ a b Braeunig, Robert A. "Rocket Propellants." (Website). Rocket & Space Technology, 2006. Retrieved 23 August 2007.
  51. ^ "A Brief History of Rocketry." NASA Historical Archive, via
  52. ^ Badwal SP, Giddey S, Kulkarni A, Goel J, Basu S (May 2015). "Direct ethanol fuel cells for transport and stationary applications – A comprehensive review". Applied Energy. 145: 80–103. doi:10.1016/j.apenergy.2015.02.002.
  53. ^ "Can Ethanol Fireplaces Be Cozy?". Wall Street Journal. Retrieved 2 March 2016.
  54. ^ a b c Lide DR, ed. (2000). CRC Handbook of Chemistry and Physics 81st edition. CRC press. ISBN 978-0-8493-0481-1.
  55. ^ "What is the triple point of alcohol?". 31 December 2010. Archived from the original on 14 May 2013.
  56. ^ a b c d Windholz M (1976). The Merck index: an encyclopedia of chemicals and drugs (9th ed.). Rahway, N.J., U.S.A: Merck. ISBN 978-0-911910-26-1.
  57. ^ a b c Morrison RT, Boyd RN (1972). Organic Chemistry (2nd ed.). Allyn and Bacon, inc. ISBN 978-0-205-08452-4.
  58. ^ Dahlmann U, Schneider GM (1989). "(Liquid + liquid) phase equilibria and critical curves of (ethanol + dodecane or tetradecane or hexadecane or 2,2,4,4,6,8,8-heptamethylnonane) from 0.1 MPa to 120.0 MPa". J Chem Thermodyn. 21 (9): 997–1004. doi:10.1016/0021-9614(89)90160-2.
  59. ^ "Ethanol". Encyclopedia of chemical technology. 9. 1991. p. 813.
  60. ^ Costigan MJ, Hodges LJ, Marsh KN, Stokes RH, Tuxford CW (1980). "The Isothermal Displacement Calorimeter: Design Modifications for Measuring Exothermic Enthalpies of Mixing". Aust. J. Chem. 33 (10): 2103. Bibcode:1982AuJCh..35.1971I. doi:10.1071/CH9802103.
  61. ^ Lei Z, Wang H, Zhou R, Duan Z (2002). "Influence of salt added to solvent on extractive distillation". Chem. Eng. J. 87 (2): 149–156. doi:10.1016/S1385-8947(01)00211-X.
  62. ^ Pemberton RC, Mash CJ (1978). "Thermodynamic properties of aqueous non-electrolyte mixtures II. Vapour pressures and excess Gibbs energies for water + ethanol at 303.15 to 363.15 K determined by an accurate static method". J Chem Thermodyn. 10 (9): 867–888. doi:10.1016/0021-9614(78)90160-X.
  63. ^ Merck Index of Chemicals and Drugs, 9th ed.; monographs 6575 through 6669
  64. ^ "Flash Point and Fire Point". Archived from the original on 14 December 2010.
  65. ^ "Flash points of ethanol-based water solutions". Retrieved 23 June 2011.
  66. ^ Dudley R (August 2004). "Ethanol, fruit ripening, and the historical origins of human alcoholism in primate frugivory". Integrative and Comparative Biology. 44 (4): 315–23. doi:10.1093/icb/44.4.315. PMID 21676715.
  67. ^ Graber C (2008). "Fact or Fiction?: Animals Like to Get Drunk". Scientific American. Retrieved 23 July 2010.
  68. ^ Leblová S, Sinecká E, Vaníčková V (1974). "Pyruvate metabolism in germinating seeds during natural anaerobiosis". Biologia Plantarum. 16 (6): 406–411. doi:10.1007/BF02922229.
  69. ^ Schriver A, Schriver-Mazzuoli L, Ehrenfreund P, d'Hendecourt L (2007). "One possible origin of ethanol in interstellar medium: Photochemistry of mixed CO2–C2H6 films at 11 K. A FTIR study". Chemical Physics. 334 (1–3): 128–137. Bibcode:2007CP....334..128S. doi:10.1016/j.chemphys.2007.02.018.
  70. ^ Turner C, Spanel P, Smith D (2006). "A longitudinal study of ethanol and acetaldehyde in the exhaled breath of healthy volunteers using selected-ion flow-tube mass spectrometry". Rapid Communications in Mass Spectrometry. 20 (1): 61–8. Bibcode:2006RCMS...20...61T. doi:10.1002/rcm.2275. PMID 16312013.
  71. ^ Doucleff M (17 September 2013). "Auto-Brewery Syndrome: Apparently, You Can Make Beer In Your Gut". NPR.
  72. ^ Mills GA, Ecklund EE (1987). "Alcohols as Components of Transportation Fuels". Annual Review of Energy. 12: 47–80. doi:10.1146/
  73. ^ Wittcoff HA, Reuben BG, Plotkin JS (2004). Industrial Organic Chemicals. John Wiley & Sons. pp. 136–. ISBN 978-0-471-44385-8.
  74. ^ Roberts JD, Caserio MC (1977). Basic Principles of Organic Chemistry. W. A. Benjamin, Inc. ISBN 978-0-8053-8329-4.
  75. ^ a b c d Kosaric N, Duvnjak Z, Farkas A, Sahm H, Bringer-Meyer S, Goebel O, Mayer D (2011). "Ethanol". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. pp. 1–72. doi:10.1002/14356007.a09_587.pub2. ISBN 9783527306732.(subscription required)
  76. ^ "Ethanol". Encyclopedia of chemical technology. 9. 1991. p. 82.
  77. ^ Ethanol.
  78. ^ Harrison, Tim (May 2014) Catalysis Web Pages for Pre-University Students V1_0. Bristol ChemLabS, School of Chemistry, University of Bristol
  79. ^ Lodgsdon JE (1991). "Ethanol". In Howe-Grant, Mary, Kirk, Raymond E., Othmer, Donald F., Kroschwitz, Jacqueline I. Encyclopedia of chemical technology. 9 (4th ed.). New York: Wiley. p. 817. ISBN 978-0-471-52669-8.
  80. ^ a b c d e Streitwieser A, Heathcock CH (1976). I ntroduction to Organic Chemistry. MacMillan. ISBN 978-0-02-418010-0.
  81. ^ Shu Xia and Theodore Wiesner (Jun 2008). Biological production of ethanol from CO2 produced by a fossil-fueled power plant. 2008 3rd IEEE Conference on Industrial Electronics and Applications. pp. 1814–1819. doi:10.1109/ICIEA.2008.4582832. ISBN 978-1-4244-1717-9.
  82. ^ Liew F, Henstra AM, Köpke M, Winzer K, Simpson SD, Minton NP (March 2017). "Metabolic engineering of Clostridium autoethanogenum for selective alcohol production". Metabolic Engineering. 40: 104–114. doi:10.1016/j.ymben.2017.01.007. PMC 5367853. PMID 28111249.
  83. ^ "Solar-to-Fuel System Recycles CO2 for Ethanol and Ethylene". News Center. 18 September 2017. Retrieved 19 September 2017.
  84. ^ "TU Delft researcher makes alcohol out of thin air". TU Delft. Retrieved 19 September 2017.
  85. ^ Ma, Ming; et al. (Apr 2016). "Controllable Hydrocarbon Formation from the Electrochemical Reduction of CO2 over Cu Nanowire Arrays". Angewandte Chemie. 55 (23): 6680–4. doi:10.1002/anie.201601282. PMID 27098996.
  86. ^ Menetrez MY (July 2012). "An overview of algae biofuel production and potential environmental impact" (PDF). Environmental Science & Technology. 46 (13): 7073–85. Bibcode:2012EnST...46.7073M. CiteSeerX doi:10.1021/es300917r. PMID 22681590.
  87. ^ Clines T (July 2006). "Brew Better Ethanol". Popular Science Online. Archived from the original on 3 November 2007.
  88. ^ Chemists, American Association of Cereal (1986). Advances in Cereal Science and Technology. American Association of Cereal Chemists, Incorporated. ISBN 9780913250457.
  89. ^ Song Y, Peng R, Hensley DK, Bonnesen PV, Liang L, Wu Z, Meyer HM, Chi M, Ma C, Sumpter BG, Rondinone AJ (2016). "High-Selectivity Electrochemical Conversion of CO2 to Ethanol using a Copper Nanoparticle/N-Doped Graphene Electrode". ChemistrySelect. 1 (Preprint): 6055–6061. doi:10.1002/slct.201601169.
  90. ^ Jeong J, Jeon H, Ko K, Chung B, Choi G (2012). "Production of anhydrous ethanol using various PSA (Pressure Swing Adsorption) processes in pilot plant". Renewable Energy. 42: 41–45. doi:10.1016/j.renene.2011.09.027.
  91. ^ "U-M Program to Reduce the Consumption of Tax-free Alcohol; Denatured Alcohol a Safer, Less Expensive Alternative" (PDF). University of Michigan. Archived from the original (PDF) on 27 November 2007. Retrieved 29 September 2007.
  92. ^ Great Britain (2005). The Denatured Alcohol Regulations 2005. Statutory Instrument 2005 No. 1524.
  93. ^ Bansal RK, Bernthsen A (2003). A Textbook of Organic Chemistry. New Age International Limited. pp. 402–. ISBN 978-81-224-1459-2.
  94. ^ Christian GD (2004). "Solvents for Spectrometry". Analytical chemistry. 1 (6th ed.). Hoboken, N.J.: John Wiley & Sons. p. 473. ISBN 978-0471214724.
  95. ^ Andrews S (1 August 2007). Textbook Of Food & Bevrge Mgmt. Tata McGraw-Hill Education. pp. 268–. ISBN 978-0-07-065573-7.
  96. ^ Kunkee RE, Amerine MA (July 1968). "Sugar and alcohol stabilization of yeast in sweet wine". Applied Microbiology. 16 (7): 1067–75. PMC 547590. PMID 5664123.
  97. ^ Zimmermann, Heinz; Walz, Roland (2008). "Ethylene". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a10_045.pub3. ISBN 978-3527306732.
  98. ^ Rossini FD (1937). "Heats of Formation of Simple Organic Molecules". Ind. Eng. Chem. 29 (12): 1424–1430. doi:10.1021/ie50336a024.
  99. ^ Calculated from heats of formation from CRC Handbook of Chemistry and Physics, 49th Edition, 1968–1969.
  100. ^ Chakrabartty SK (1978). Trahanovsky WS, ed. Oxidation in Organic Chemistry. New York: Academic Press. pp. 343–370.
  101. ^ Reinhard J, Kopp E, McKusick BC, Röderer G, Bosch A, Fleischmann G (2007). "Chloroacetaldehydes". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a06_527.pub2. ISBN 978-3527306732.
  102. ^ Minutes of Meeting. Technical Committee on Classification and Properties of Hazardous Chemical Data ( 12–13 January 2010).
  103. ^ a b "Safety data for ethyl alcohol". University of Oxford. 9 May 2008. Retrieved 3 January 2011.
  104. ^ Roach J (18 July 2005). "9,000-Year-Old Beer Re-Created From Chinese Recipe". National Geographic News. Retrieved 3 September 2007.
  105. ^ a b al-Hassan AY (2001). Science and Technology in Islam: Technology and applied sciences. UNESCO. pp. 65–69.
  106. ^ Hassan AY. "Alcohol and the Distillation of Wine in Arabic Sources". History of Science and Technology in Islam. Retrieved 19 April 2014.
  107. ^ "Liquid fire – The Arabs discovered how to distil alcohol. They still do it best, say some". The Economist. 18 December 2003.
  108. ^ a b Habib, Irfan (2011). Economic History of Medieval India, 1200-1500. Pearson Education India. pp. 55–. ISBN 978-81-317-2791-1.
  109. ^ a b Forbes RJ (1948). A short history of the art of distillation. Brill. p. 89. ISBN 978-9004006171.
  110. ^ a b Haw SG (2006). "Wine, women and poison". Marco Polo in China. Routledge. pp. 147–148. ISBN 978-1-134-27542-7. Retrieved 10 July 2016. The earliest possible period seems to be the Eastern Han dynasty... the most likely period for the beginning of true distillation of spirits for drinking in China is during the Jin and Southern Song dynasties
  111. ^ Lowitz T (1796). "Anzeige eines, zur volkommen Entwasserung des Weingeistes nothwendig zu beobachtenden, Handgriffs" [Report of a task that must be done for the complete dehydration of wine spirits [i.e., alcohol-water azeotrope])]. Chemische Annalen für die Freunde der Naturlehre, Aerznengelartheit, Haushaltungskunde und Manufakturen (in German). 1: 195–204. See pp. 197–198: Lowitz dehydrated the azeotrope by mixing it with a 2:1 excess of anhydrous alkali and then distilling the mixture over low heat.
  112. ^ Wikisource Chisholm, Hugh, ed. (1911). "Alcohol" . Encyclopædia Britannica. 1 (11th ed.). Cambridge University Press. pp. 525–527.
  113. ^ de Saussure T (1807). "Mémoire sur la composition de l'alcohol et de l'éther sulfurique". Journal de Physique, de Chimie, d'Histoire Naturelle et des Arts. 64: 316–354. In his 1807 paper, Saussure determined ethanol's composition only roughly; a more accurate analysis of ethanol appears on page 300 of his 1814 paper: de Saussure, Théodore (1814). "Nouvelles observations sur la composition de l'alcool et de l'éther sulfurique". Annales de Chimie et de Physique. 89: 273–305.
  114. ^ Couper AS (1858). "On a new chemical theory" (online reprint). Philosophical Magazine. 16 (104–16). Retrieved 3 September 2007.
  115. ^ Faraday M (1825). "On new compounds of carbon and hydrogen, and on certain other products obtained during the decomposition of oil by heat". Philosophical Transactions of the Royal Society of London. 115: 440–466. doi:10.1098/rstl.1825.0022. In a footnote on page 448, Faraday notes the action of sulfuric acid on coal gas and coal-gas distillate; specifically, "The [sulfuric] acid combines directly with carbon and hydrogen; and I find when [the resulting compound is] united with bases [it] forms a peculiar class of salts, somewhat resembling the sulphovinates [i.e., ethyl sulfates], but still different from them."
  116. ^ Hennell H (1826). "On the mutual action of sulphuric acid and alcohol, with observations on the composition and properties of the resulting compound". Philosophical Transactions of the Royal Society of London. 116: 240–249. doi:10.1098/rstl.1826.0021. On page 248, Hennell mentions that Faraday gave him some sulfuric acid in which coal gas had dissolved and that he (Hennell) found that it contained "sulphovinic acid" (ethyl hydrogen sulfate).
  117. ^ Hennell H (1828). "On the mutual action of sulfuric acid and alcohol, and on the nature of the process by which ether is formed". Philosophical Transactions of the Royal Society of London. 118: 365–371. doi:10.1098/rstl.1828.0021. On page 368, Hennell produces ethanol from "sulfovinic acid" (ethyl hydrogen sulfate).
  118. ^ Sérullas G (1828). Guyton de Morveau L, Gay-Lussac JL, Arago F, Michel Eugène Chevreul, Marcellin Berthelot, Éleuthère Élie Nicolas Mascart, Albin Haller, eds. "De l'action de l'acide sulfurique sur l'alcool, et des produits qui en résultent". Annales de Chimie et de Physique. 39: 152–186. On page 158, Sérullas mentions the production of alcohol from "sulfate acid d'hydrogène carboné" (hydrocarbon acid sulfate).
  119. ^ In 1855, the French chemist Marcellin Berthelot confirmed Faraday's discovery by preparing ethanol from pure ethylene. Berthelot M (1855). Arago F, Gay-Lussac JL, eds. "Sur la formation de l'alcool au moyen du bicarbure d'hydrogène (On the formation of alcohol by means of ethylene)". Annales de Chimie et de Physique. 43: 385–405. (Note: The chemical formulas in Berthelot's paper are wrong because chemists at that time used the wrong atomic masses for the elements; e.g., carbon (6 instead of 12), oxygen (8 instead of 16), etc.)
  120. ^ Siegel R (15 February 2007). "Ethanol, Once Bypassed, Now Surging Ahead". NPR. Retrieved 22 September 2007.
  121. ^ DiPardo J. "Outlook for Biomass Ethanol Production and Demand" (PDF). United States Department of Energy. Archived from the original (PDF) on 24 September 2015. Retrieved 22 September 2007.
  122. ^ Myers RL, Myers RL (2007). The 100 most important chemical compounds: a reference guide. Westport, Conn.: Greenwood Press. p. 122. ISBN 978-0-313-33758-1.

Further reading

External links


Acetaldehyde (systematic name ethanal) is an organic chemical compound with the formula CH3CHO, sometimes abbreviated by chemists as MeCHO (Me = methyl). It is one of the most important aldehydes, occurring widely in nature and being produced on a large scale in industry. Acetaldehyde occurs naturally in coffee, bread, and ripe fruit, and is produced by plants. It is also produced by the partial oxidation of ethanol by the liver enzyme alcohol dehydrogenase and is a contributing cause of hangover after alcohol consumption. Pathways of exposure include air, water, land, or groundwater, as well as drink and smoke. Consumption of disulfiram inhibits acetaldehyde dehydrogenase, the enzyme responsible for the metabolism of acetaldehyde, thereby causing it to build up in the body.

The International Agency for Research on Cancer (IARC) has listed acetaldehyde as a Group 1 carcinogen. Acetaldehyde is "one of the most frequently found air toxins with cancer risk greater than one in a million".


In chemistry, an alcohol is any organic compound in which the hydroxyl functional group (–OH) is bound to a carbon. The term alcohol originally referred to the primary alcohol ethanol (ethyl alcohol), which is used as a drug and is the main alcohol present in alcoholic beverages. An important class of alcohols, of which methanol and ethanol are the simplest members, includes all compounds for which the general formula is CnH2n+1OH. It is these simple monoalcohols that are the subject of this article.

The suffix -ol appears in the IUPAC chemical name of all substances where the hydroxyl group is the functional group with the highest priority. When a higher priority group is present in the compound, the prefix hydroxy- is used in its IUPAC name. The suffix -ol in non-IUPAC names (such as paracetamol or cholesterol) also typically indicates that the substance is an alcohol. However, many substances that contain hydroxyl functional groups (particularly sugars, such as glucose and sucrose) have names which include neither the suffix -ol, nor the prefix hydroxy-.

Alcohol (drug)

Alcohol, also known by its chemical name ethanol, is a psychoactive substance that is the active ingredient in drinks such as beer, wine, and distilled spirits (hard liquor). It is one of the oldest and most common recreational substances, causing the characteristic effects of alcohol intoxication ("drunkenness"). Among other effects, alcohol produces a mood lift and euphoria, decreased anxiety, increased sociability, sedation, impairment of cognitive, memory, motor, and sensory function, and generalized depression of central nervous system function. Ethanol is a type of chemical compound known as an alcohol, and is the only type of alcohol that is found in alcoholic beverages or is commonly used for recreational purposes; other alcohols such as methanol and isopropyl alcohol are toxic.Alcohol has a variety of short-term and long-term adverse effects. Short-term adverse effects include generalized impairment of neurocognitive function, dizziness, nausea, vomiting, and hangover-like symptoms. Alcohol can be addictive to humans, as in alcoholism, and can result in dependence and withdrawal. It can have a variety of long-term adverse effects on health, for instance liver damage, brain damage, and increased risk of cancer. The adverse effects of alcohol on health are most important when it is used in excessive quantities or with heavy frequency. However, some of them, such as increased risk of certain cancers, may occur even with light or moderate alcohol consumption. In high amounts, alcohol may cause loss of consciousness or, in severe cases, death.

Alcohol works in the brain primarily by increasing the effects of a neurotransmitter called γ-aminobutyric acid, or GABA. This is the major inhibitory neurotransmitter in the brain, and by facilitating its actions, alcohol suppresses the activity of the central nervous system. The substance also directly affects a number of other neurotransmitter systems including those of glutamate, glycine, acetylcholine, and serotonin. The pleasurable effects of alcohol ingestion are the result of increased levels of dopamine and endogenous opioids in the reward pathways of the brain. Alcohol also has toxic and unpleasant actions in the body, many of which are mediated by its byproduct acetaldehyde.Alcohol has been produced and consumed by humans for its psychoactive effects for almost 10,000 years. Drinking alcohol is generally socially acceptable and is legal in most countries, unlike with many other recreational substances. However, there are often restrictions on alcohol sale and use, for instance a minimum age for drinking and laws against public drinking and drinking and driving. Alcohol has considerable societal and cultural significance and has important social roles in much of the world. Drinking establishments, such as bars and nightclubs, revolve primarily around the sale and consumption of alcoholic beverages, and parties, festivals, and social gatherings commonly feature alcohol consumption as well. Alcohol use is also related to various societal problems, including driving accidents and fatalities, accidental injuries, sexual assaults, domestic abuse, and violent crime. Currently, alcohol is illegal for sale and consumption in Iran, Libya, Sudan, Saudi Arabia, Kuwait, Afghanistan, Somalia, Yemen, and Bangladesh. (Due to being Islamic countries since the religion forbids the consumption of alcohol)

Alcohol by volume

Alcohol by volume (abbreviated as ABV, abv, or alc/vol) is a standard measure of how much alcohol (ethanol) is contained in a given volume of an alcoholic beverage (expressed as a volume percent). It is defined as the number of millilitres (mL) of pure ethanol present in 100 mL (3.4 fl. oz) of solution at 20 °C (68 °F). The number of millilitres of pure ethanol is the mass of the ethanol divided by its density at 20 °C, which is 0.78924 g/mL (105.3 fl oz/gallon). The ABV standard is used worldwide. The International Organization of Legal Metrology has tables of density of water–ethanol mixtures at different concentrations and temperatures.

In some countries, e.g., France, alcohol by volume is often referred to as degrees Gay-Lussac (after the French chemist Joseph Louis Gay-Lussac), although there is a slight difference since the Gay-Lussac convention uses the International Standard Atmosphere value for temperature, 15 °C (59 °F).

Alcohol intoxication

Alcohol intoxication, also known as drunkenness or alcohol poisoning, is the negative behavior and physical effects due to the recent drinking of ethanol (alcohol). Symptoms at lower doses may include mild sedation and poor coordination. At higher doses, there may be slurred speech, trouble walking, and vomiting. Extreme doses may result in a decreased effort to breathe (respiratory depression), coma, or death. Complications may include seizures, aspiration pneumonia, injuries including suicide, and low blood sugar.Alcohol intoxication typically begins after two or more alcoholic drinks. Risk factors include a social situation where heavy drinking is common and a person having an impulsive personality. Diagnosis is usually based on the history of events and physical examination. Verification of events by the people a person was with may be useful. Legally, alcohol intoxication is often defined as a blood alcohol concentration (BAC) of greater than 5.4-17.4 mmol/L (25–80 mg/dL or 0.025-0.080%). This can be measured by blood or breath testing. Alcohol is then broken down at a rate of about 3.3 mmol/L (15 mg/dL) per hour.Management of alcohol intoxication involves supportive care. Typically this includes putting the person in the recovery position, keeping them warm, and making sure they are breathing sufficiently. Gastric lavage and activated charcoal have not been found to be useful. Repeated assessments may be required to rule out other potential causes of a person's symptoms.Alcohol intoxication is very common, especially in the Western world. Most people who drink alcohol have at some time been intoxicated. In the United States acute intoxication directly results in about 2,200 deaths per year, and indirectly more than 30,000 deaths per year. Acute intoxication has been documented throughout history and alcohol remains one of the world's most widespread recreational drugs. Some religions consider alcohol intoxication to be a sin.


A biofuel is a fuel that is produced through contemporary biological processes, such as agriculture and anaerobic digestion, rather than a fuel produced by geological processes such as those involved in the formation of fossil fuels, such as coal and petroleum, from prehistoric biological matter. If the source biomatter can regrow quickly, the resulting fuel is said to be a form of renewable energy.

Biofuels can be derived directly from plants (i.e. energy crops), or indirectly from agricultural, commercial, domestic, and/or industrial wastes. Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis. Other renewable biofuels are made through the use or conversion of biomass (referring to recently living organisms, most often referring to plants or plant-derived materials). This biomass can be converted to convenient energy-containing substances in three different ways: thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in solid, liquid, or gas form. This new biomass can also be used directly for biofuels.

Biofuels are in theory carbon-neutral because the carbon dioxide that is absorbed by the plants is equal to the carbon dioxide that is released when the fuel is burned. However, in practice, whether or not a biofuel is carbon-neutral also depends greatly on whether the land which is used to grow the biofuel (with 1st and 2nd generation biofuel) needed to be cleared of carbon-holding vegetation or not.

Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form (E100), but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the United States and in Brazil. Current plant design does not provide for converting the lignin portion of plant raw materials to fuel components by fermentation.

Biodiesel can be used as a fuel for vehicles in its pure form (B100), but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.

In 2010, worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009, and biofuels provided 2.7% of the world's fuels for road transport. Global ethanol fuel production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for about 90% of global production. The world's largest biodiesel producer is the European Union, accounting for 53% of all biodiesel production in 2010. As of 2011, mandates for blending biofuels exist in 31 countries at the national level and in 29 states or provinces. The International Energy Agency has a goal for biofuels to meet more than a quarter of world demand for transportation fuels by 2050 to reduce dependence on petroleum and coal. The production of biofuels also led into a flourishing automotive industry, where by 2010, 79% of all cars produced in Brazil were made with a hybrid fuel system of bioethanol and gasoline.There are various social, economic, environmental and technical issues relating to biofuels production and use, which have been debated in the popular media and scientific journals.

Blood alcohol content

Blood alcohol content (BAC), also called blood alcohol concentration, blood ethanol concentration, or blood alcohol level, is most commonly used as a metric of alcohol intoxication for legal or medical purposes.

Blood alcohol concentration is usually expressed as a percentage of ethanol in the blood in units of mass of alcohol per volume of blood or mass of alcohol per mass of blood, depending on the country. For instance, in North America a BAC of 0.10 (0.10% or one tenth of one percent) means that there are 0.10 g of alcohol for every 100 mL of blood.

Calcium channel blocker

Calcium channel blockers (CCB), calcium channel antagonists or calcium antagonists are several medications that disrupt the movement of calcium (Ca2+) through calcium channels. Calcium channel blockers are used as antihypertensive drugs, i.e., as medications to decrease blood pressure in patients with hypertension. CCBs are particularly effective against large vessel stiffness, one of the common causes of elevated systolic blood pressure in elderly patients. Calcium channel blockers are also frequently used to alter heart rate, to prevent cerebral vasospasm, and to reduce chest pain caused by angina pectoris.

N-type, L-type, and T-type voltage-dependent calcium channels are present in the zona glomerulosa of the human adrenal gland, and CCBs can directly influence the biosynthesis of aldosterone in adrenocortical cells, with consequent impact on the clinical treatment of hypertension with these agents.CCBs have been shown to be slightly more effective than beta blockers at lowering cardiovascular mortality, but they are associated with more side effects. Potential major risks however were mainly found to be associated with short-acting CCBs.

Cellulosic ethanol

Cellulosic ethanol is ethanol (ethyl alcohol) produced from cellulose (the stringy fiber of a plant) rather than from the plant's seeds or fruit. It is a biofuel produced from grasses, wood, algae, or other plants. The fibrous parts of the plants are mostly inedible to animals, including humans, except for ruminants (grazing, cud-chewing animals such as cows or sheep).

Considerable interest in cellulosic ethanol exists due to its important economical potential. Growth of cellulose by plants is a mechanism that captures and stores solar energy chemically in nontoxic ways with resultant supplies that are easy to transport and store. Additionally, transport may be unneeded anyway, because grasses or trees can grow almost anywhere temperate. This is why commercially practical cellulosic ethanol is widely viewed as a next level of development for the biofuel industry that could reduce demand for oil and gas drilling and even nuclear power in ways that grain-based ethanol fuel alone cannot. Potential exists for the many benefits of carbonaceous liquid fuels and petrochemicals (which today's standard of living depends on) but in a carbon cycle–balanced and renewable way (recycling surface and atmosphere carbon instead of pumping underground carbon up into it and thus adding to it). Commercially practical cellulosic alcohol could also avoid one of the problems with today's conventional (grain-based) biofuels, which is that they set up competition for grain with food purposes, potentially driving up the price of food. To date, what stands in the way of these goals is that production of cellulosic alcohol is not yet sufficiently practical on a commercial scale.

Common ethanol fuel mixtures

Several common ethanol fuel mixtures are in use around the world. The use of pure hydrous or anhydrous ethanol in internal combustion engines (ICEs) is only possible if the engines are designed or modified for that purpose, and used only in automobiles, light-duty trucks and motorcycles. Anhydrous ethanol can be blended with gasoline (petrol) for use in gasoline engines, but with high ethanol content only after minor engine modifications.

Ethanol fuel mixtures have "E" numbers which describe the percentage of ethanol fuel in the mixture by volume, for example, E85 is 85% anhydrous ethanol and 15% gasoline. Low-ethanol blends, from E5 to E25, although internationally the most common use of the term refers to the E10 blend.

Blends of E10 or less are used in more than 20 countries around the world, led by the United States, where ethanol represented 10% of the U.S. gasoline fuel supply in 2011. Blends from E20 to E25 have been used in Brazil since the late 1970s. E85 is commonly used in the U.S. and Europe for flexible-fuel vehicles. Hydrous ethanol or E100 is used in Brazilian neat ethanol vehicles and flex-fuel light vehicles and hydrous E15 called hE15 for modern petrol cars in the Netherlands.

Denatured alcohol

Denatured alcohol, also called methylated spirit (in Australia, New Zealand, South Africa and the United Kingdom) or denatured rectified spirit, is ethanol that has additives to make it poisonous, bad-tasting, foul-smelling, or nauseating to discourage recreational consumption. It is sometimes dyed. Pyridine, methanol, or both can be added to make denatured alcohol poisonous, and denatonium can be added to make it bitter.

Denatured alcohol is used as a solvent and as fuel for alcohol burners and camping stoves. Because of the diversity of industrial uses for denatured alcohol, hundreds of additives and denaturing methods have been used. The main additive has traditionally been 10% methanol, giving rise to the term "methylated spirits". Other typical additives include isopropyl alcohol, acetone, methyl ethyl ketone, methyl isobutyl ketone, and denatonium.In the United States, mixtures sold as denatured alcohol often have much greater percentages of methanol, and can be less than 50% ethanol.

Denaturing alcohol does not chemically alter the ethanol molecule. Rather, the ethanol is mixed with other chemicals to form a toxic or bad tasting solution. For many of these solutions, there is no practical way to separate the components.


E85 is an abbreviation typically referring to an ethanol fuel blend of 85% ethanol fuel and 15% gasoline or other hydrocarbon by volume.

In the United States, the exact ratio of fuel ethanol to hydrocarbon may vary according to ASTM 5798 that specifies the allowable ethanol content in E85 as ranging from 51% to 83%. This is due to the lower heating value of neat ethanol making it difficult to crank engines in relatively cold climates without pre-heating air intake, faster cranking, or mixing varying fractions of gasoline according to climate. Cold cranking in cold climates is the primary reason ethanol fuel is blended with any gasoline fraction.

In Brazil, ethanol fuel is neat at the pumps, hence flexible-fuel vehicles (FFV) including trucks, tractors, motorbikes and mopeds run on E100. The 85% fraction is commonly sold at pumps worldwide (outside the US), and when specifically supplied or sold as E85 is always 85% ethanol (at pumps or in barrel). Having a guaranteed ethanol fraction obviates the need for a vehicle system to calculate best engine tune according to maximise performance and economy.

In countries like Australia where E85 is always 85% ethanol (and pump fuel with varying fractions is called "flex fuel"), performance motoring enthusiasts and motor racing clubs/championships use E85 extensively (without the need for any FFV certification). Use of alcohol (ethanol and methanol) in motor racing history parallels the invention of the automobile, favoured due to inherent combustion characteristics such as high thermal efficiency, raised torque and with some advanced engines, better specific fuel consumption. In the United States, government subsidies of ethanol in general and E85 in particular have encouraged a growing infrastructure for the retail sale of E85, especially in corn growing states in the Midwest.

Ethanol fermentation

Ethanol fermentation, also called alcoholic fermentation, is a biological process which converts sugars such as glucose, fructose, and sucrose into cellular energy, producing ethanol and carbon dioxide as by-products. Because yeasts perform this conversion in the absence of oxygen, alcoholic fermentation is considered an anaerobic process. It also takes place in some species of fish (including goldfish and carp) where (along with lactic acid fermentation) it provides energy when oxygen is scarce.Ethanol fermentation has many uses, including the production of alcoholic beverages, the production of ethanol fuel, and bread cooking.

Ethanol fuel

Ethanol fuel is ethyl alcohol, the same type of alcohol found in alcoholic beverages, used as fuel. It is most often used as a motor fuel, mainly as a biofuel additive for gasoline. The first production car running entirely on ethanol was the Fiat 147, introduced in 1978 in Brazil by Fiat. Ethanol is commonly made from biomass such as corn or sugarcane. World ethanol production for transport fuel tripled between 2000 and 2007 from 17×109 liters (4.5×109 U.S. gal; 3.7×109 imp gal) to more than 52×109 liters (1.4×1010 U.S. gal; 1.1×1010 imp gal). From 2007 to 2008, the share of ethanol in global gasoline type fuel use increased from 3.7% to 5.4%. In 2011 worldwide ethanol fuel production reached 8.46×1010 liters (2.23×1010 U.S. gal; 1.86×1010 imp gal) with the United States of America and Brazil being the top producers, accounting for 62.2% and 25% of global production, respectively. US ethanol production reached 57.54×109 liters (1.520×1010 U.S. gal; 1.266×1010 imp gal) in 2017-04.Ethanol fuel has a "gasoline gallon equivalency" (GGE) value of 1.5, i.e. to replace the energy of 1 volume of gasoline, 1.5 times the volume of ethanol is needed.Ethanol-blended fuel is widely used in Brazil, the United States, and Europe (see also Ethanol fuel by country). Most cars on the road today in the U.S. can run on blends of up to 10% ethanol, and ethanol represented 10% of the U.S. gasoline fuel supply derived from domestic sources in 2011. Furthermore, many cars today are flexible-fuel vehicles able to use 100% ethanol fuel.

Since 1976 the Brazilian government has made it mandatory to blend ethanol with gasoline, and since 2007 the legal blend is around 25% ethanol and 75% gasoline (E25). By December 2011 Brazil had a fleet of 14.8 million flex-fuel automobiles and light trucks and 1.5 million flex-fuel motorcycles that regularly use neat ethanol fuel (known as E100).

Bioethanol is a form of renewable energy that can be produced from agricultural feedstocks. It can be made from very common crops such as hemp, sugarcane, potato, cassava and corn. There has been considerable debate about how useful bioethanol is in replacing gasoline. Concerns about its production and use relate to increased food prices due to the large amount of arable land required for crops, as well as the energy and pollution balance of the whole cycle of ethanol production, especially from corn. Even though this debate has the counterpart of animal agriculture being already a source of massive arable land, therefore making ethanol a lower resource consumer in constrast. Recent developments with cellulosic ethanol production and commercialization may allay some of these concerns.Cellulosic ethanol offers promise because cellulose fibers, a major and universal component in plant cells walls, can be used to produce ethanol. According to the International Energy Agency, cellulosic ethanol could allow ethanol fuels to play a much bigger role in the future.

Ethyl acetate

Ethyl acetate (systematically ethyl ethanoate, commonly abbreviated EtOAc, ETAC or EA) is the organic compound with the formula CH3–COO–CH2–CH3, simplified to C4H8O2. This colorless liquid has a characteristic sweet smell (similar to pear drops) and is used in glues, nail polish removers, decaffeinating tea and coffee. Ethyl acetate is the ester of ethanol and acetic acid; it is manufactured on a large scale for use as a solvent. The combined annual production in 1985 of Japan, North America, and Europe was about 400,000 tonnes. In 2004, an estimated 1.3 million tonnes were produced worldwide.


Gasoline, gas (American English) or petrol (British English) is a colorless petroleum-derived flammable liquid that is used primarily as a fuel in spark-ignited internal combustion engines. It consists mostly of organic compounds obtained by the fractional distillation of petroleum, enhanced with a variety of additives. On average, a 42-U.S.-gallon (160-liter) barrel of crude oil yields about 19 U.S. gallons (72 liters) of gasoline after processing in an oil refinery, though this varies based on the crude oil assay.

The characteristic of a particular gasoline blend to resist igniting too early (which causes knocking and reduces efficiency in reciprocating engines) is measured by its octane rating. Gasoline is produced in several grades of octane rating. Tetraethyllead and other lead compounds are no longer used in most areas to increase octane rating. Other chemicals are frequently added to gasoline to improve chemical stability and performance characteristics, control corrosiveness and provide fuel system cleaning. Gasoline may contain oxygen-containing chemicals such as ethanol, MTBE or ETBE to improve combustion.

Gasoline used in internal combustion engines can have significant effects on the local environment, and is also a contributor to global human carbon dioxide emissions. Gasoline can also enter the environment uncombusted, both as liquid and as vapor, from leakage and handling during production, transport and delivery (e.g., from storage tanks, from spills, etc.). As an example of efforts to control such leakage, many underground storage tanks are required to have extensive measures in place to detect and prevent such leaks. Gasoline contains benzene and other known carcinogens.

Rubbing alcohol

Rubbing alcohol refers to either isopropyl alcohol (propan-2-ol) or ethanol based liquids, or the comparable British Pharmacopoeia defined surgical spirit, with isopropyl alcohol products being the most widely available. Rubbing alcohol is undrinkable even if it is ethanol based, due to the bitterants added.

They are liquids used primarily as a topical antiseptic.

They also have many industrial and household uses. The term "rubbing alcohol" has become a general non-specific term for either isopropyl alcohol (isopropanol) or ethyl alcohol (ethanol) rubbing-alcohol products.

The United States Pharmacopeia defines 'isopropyl rubbing alcohol USP' as containing approximately 70 percent by volume of pure isopropyl alcohol and

defines 'rubbing alcohol USP' as containing approximately 70 percent by volume of denatured alcohol. In Ireland and the UK, the comparable preparation is surgical spirit B.P., which the British Pharmacopoeia defines as 95% methylated spirit, 2.5% castor oil, 2% diethyl phthalate, and 0.5% methyl salicylate.

Under its alternative name of "wintergreen oil", methyl salicylate is a common additive to North American rubbing alcohol products. Individual manufacturers are permitted to use their own formulation standards in which the ethanol content for retail bottles of rubbing alcohol is labeled as and ranges from 70-99% v/v.All rubbing alcohols are unsafe for human consumption: isopropyl rubbing alcohols do not contain the ethyl alcohol of alcoholic beverages; ethyl rubbing alcohols are based on denatured alcohol, which is a combination of ethyl alcohol and one or more bitter poisons that make the substance toxic.


Sugarcane, or sugar cane, are several species of tall perennial true grasses of the genus Saccharum, tribe Andropogoneae, native to the warm temperate to tropical regions of South, Southeast Asia, and New Guinea, and used for sugar production. It has stout, jointed, fibrous stalks that are rich in the sugar sucrose, which accumulates in the stalk internodes. The plant is two to six metres (six to twenty feet) tall. All sugar cane species can interbreed and the major commercial cultivars are complex hybrids. Sugarcane belongs to the grass family Poaceae, an economically important seed plant family that includes maize, wheat, rice, and sorghum, and many forage crops.

Sucrose, extracted and purified in specialized mill factories, is used as raw material in the food industry or is fermented to produce ethanol. Sugarcane is the world's largest crop by production quantity, with 1.9 billion tonnes produced in 2016, and Brazil accounting for 41% of the world total. In 2012, the Food and Agriculture Organization estimated it was cultivated on about 26 million hectares (64 million acres), in more than 90 countries.

The global demand for sugar is the primary driver of sugarcane agriculture. Cane accounts for 79% of sugar produced; most of the rest is made from sugar beets. Sugarcane predominantly grows in the tropical and subtropical regions (sugar beets grow in colder temperate regions). Other than sugar, products derived from sugarcane include falernum, molasses, rum, cachaça (a traditional spirit from Brazil), bagasse, and ethanol. In some regions, people use sugarcane reeds to make pens, mats, screens, and thatch. The young, unexpanded inflorescence of Saccharum edule (duruka or tebu telor) is eaten raw, steamed, or toasted, and prepared in various ways in Southeast Asia, including Fiji and certain island communities of Indonesia.Sugarcane was an ancient crop of the Austronesian and Papuan people. It was introduced to Polynesia, Island Melanesia, and Madagascar in prehistoric times via Austronesian sailors. It was also introduced to southern China and India by Austronesian traders at around 1200 to 1000 BC.

The Persians, followed by the Greeks, encountered the famous "reeds that produce honey without bees" in India between the 6th and 4th centuries BC. They adopted and then spread sugarcane agriculture. Merchants began to trade in sugar from India, which was considered a luxury and an expensive spice. In the 18th century AD, sugarcane plantations began in Caribbean, South American, Indian Ocean and Pacific island nations and the need for laborers became a major driver of large human migrations, both the voluntary in indentured servants. and the involuntary migrations, in the form of slave labor.

Sustainable energy

Sustainable energy is a principle in which human use of energy "meets the needs of the present without compromising the ability of future generations to meet their own needs." Another definition of sustainable energy is that it is consumed at insignificant rates compared to its supply and with manageable collateral effects, especially environmental effects. Sustainable energy strategies generally have two pillars: cleaner methods of producing energy, and the promotion of efficient energy use.

Sustainable energy technologies are deployed to generate electricity, to heat and cool buildings, and to power transportation systems and machines. When referring to methods of producing energy, the term "sustainable energy" is often used interchangeably with the term "renewable energy". In general, renewable energy sources such as solar energy, wind energy, geothermal energy, and tidal energy, are widely considered to be sustainable energy sources. However, implementation of particular renewable energy projects, such as the damming of rivers to generate hydroelectricity or the clearing of forests for production of biofuels , sometimes raises significant sustainability concerns. There is considerable controversy over whether nuclear energy can be considered sustainable.

Costs of sustainable energy sources have decreased immensely throughout the years, and continue to fall. Increasingly, effective government policies support investor confidence and these markets are expanding. Considerable progress is being made in the energy transition from fossil fuels to ecologically sustainable systems, to the point where many studies support 100% renewable energy.

The organizing principle for sustainability is sustainable development, which includes the four interconnected domains: ecology, economics, politics and culture. Sustainability science is the study of sustainable development and environmental science.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.