Epithelium

Epithelium (/ˌɛpɪˈθiːliəm/)[1] is one of the four basic types of animal tissue, along with connective tissue, muscle tissue and nervous tissue. Epithelial tissues line the outer surfaces of organs and blood vessels throughout the body, as well as the inner surfaces of cavities in many internal organs. An example is the epidermis, the outermost layer of the skin.

There are three principal shapes of epithelial cell: squamous, columnar, and cuboidal. These can be arranged in a single layer of cells as simple epithelium, either squamous, columnar, or cuboidal, or in layers of two or more cells deep as stratified (layered), either squamous, columnar or cuboidal. In some tissues, a layer of columnar cells may appear to be stratified due to the placement of the nuclei. This sort of tissue is called pseudostratified. All glands are made up of epithelial cells. Functions of epithelial cells include secretion, selective absorption, protection, transcellular transport, and sensing.

Epithelial layers contain no blood vessels, so they must receive nourishment via diffusion of substances from the underlying connective tissue, through the basement membrane.[2][3] Cell junctions are well employed in epithelial tissues.

Epithelium
Illu epithelium
Types of epithelium
Pronunciationepi- + thele + -ium
Identifiers
MeSHD004848
THH2.00.02.0.00002
FMA9639
Anatomical terms of microanatomy

Classification

423 Table 04 02 Summary of Epithelial Tissue CellsN
Summary showing different epithelial cells/tissues and their characteristics.

In general, epithelial tissues are classified by the number of their layers and by the shape and function of the cells.[2][4][5]

The three principal shapes associated with epithelial cells are—squamous, cuboidal and columnar.

  • Squamous epithelium has cells that are wider than their height (flat and scale-like). This is found as the lining of the mouth, oesophagus, the blood vessels and in the alveoli of the lungs.
  • Cuboidal epithelium has cells whose height and width are approximately the same (cube shaped).
  • Columnar epithelium has cells taller than they are wide (column-shaped).

By layer, epithelium is classed as either simple epithelium, only one cell thick (unilayered) or stratified epithelium having two or more cells in thickness or multi-layered – as stratified squamous epithelium, stratified cuboidal epithelium, and stratified columnar epithelium,[6][7] and both types of layering can be made up of any of the cell shapes.[4] However, when taller simple columnar epithelial cells are viewed in cross section showing several nuclei appearing at different heights, they can be confused with stratified epithelia. This kind of epithelium is therefore described as pseudostratified columnar epithelium.[8]

Transitional epithelium has cells that can change from squamous to cuboidal, depending on the amount of tension on the epithelium.[9]

Simple epithelium

Simple epithelium is a single layer of cells with every cell in direct contact with the basement membrane that separates it from the underlying connective tissue. In general, it is found where absorption and filtration occur. The thinness of the epithelial barrier facilitates these processes.[4]

In general, simple epithelial tissues are classified by the shape of their cells. The four major classes of simple epithelium are: (1) simple squamous; (2) simple cuboidal; (3) simple columnar; (4) pseudostratified.[4]

(1) simple squamous; Squamous epithelial cells appear scale like or flattened or rounded e.g. skin, walls of capillaries, linings of the pericardial, pleural, and peritoneal cavities, as well as the linings of the alveoli of the lungs.
(2) simple cuboidal: these cells may have secretory, absorptive, or excretory functions. examples include small collecting ducts of kidney, pancreas, and salivary gland.
(3) simple columnar; cells can be secretory, absorptive, or excretory; Simple columnar epithelium can be ciliated or non-ciliated; ciliated columnar is found in the female reproductive tract and uterus. Non-ciliated epithelium can also possess microvilli. Some tissues contain goblet cells and are referred to as simple glandular columnar epithelium. these secrete mucus and are found in stomach, colon and rectum.
(4) pseudostratified columnar epithelium; can be ciliated or non-ciliated. The ciliated type is also called respiratory epithelium as it is almost exclusively confined to the larger respiratory airways of the nasal cavity, trachea and bronchi.

Stratified epithelium

Stratified epithelium differs from simple epithelium in that it is multilayered. It is therefore found where body linings have to withstand mechanical or chemical insult such that layers can be abraded and lost without exposing subepithelial layers. Cells flatten as the layers become more apical, though in their most basal layers the cells can be squamous, cuboidal or columnar.[10]

Stratified epithelia (of columnar, cuboidal or squamous type) can have the following specializations:[10]

Specialization Description
Keratinized In this particular case, the most apical layers (exterior) of cells are dead and lose their nucleus and cytoplasm, instead contain a tough, resistant protein called keratin. This specialization makes the epithelium waterproof, so is found in the mammalian skin. The lining of the esophagus is an example of a non-keratinized or "moist" stratified epithelium.[10]
Parakeratinized In this case, the most apical layers of cells are filled with keratin, but they still retain their nuclei. These nuclei are pyknotic, meaning that they are highly condensed. Parakeratinized epithelium is sometimes found in the oral mucosa and in the upper regions of the esophagus.[11]
Transitional Transitional epithelia are found in tissues that stretch and it can appear to be stratified cuboidal when the tissue is relaxed, or stratified squamous when the organ is distended and the tissue stretches. It is sometimes called urothelium since it is almost exclusively found in the bladder, ureters and urethra.[10]

Cell types

The basic cell types are squamous, cuboidal, and columnar classed by their shape.

Type Description
Squamous Squamous cells have the appearance of thin, flat plates that can look polygonal when viewed from above.[12] Their name comes from squāma, Latin for scale – as on fish or snake skin. The cells fit closely together in tissues; providing a smooth, low-friction surface over which fluids can move easily. The shape of the nucleus usually corresponds to the cell form and helps to identify the type of epithelium. Squamous cells tend to have horizontally flattened, nearly oval shaped nuclei because of the thin flattened form of the cell. Squamous epithelium is found lining surfaces such as the skin, and alveoli in the lung, enabling simple passive diffusion as also found in the alveolar epithelium in the lungs. Specialized squamous epithelium also forms the lining of cavities such as in blood vessels, as endothelium and in the pericardium, as mesothelium and in other body cavities.
Cuboidal Cuboidal epithelial cells have a cube-like shape and appear square in cross-section. The cell nucleus is large, spherical and is in the center of the cell. Cuboidal epithelium is commonly found in secretive tissue such as the exocrine glands, or in absorptive tissue such as the pancreas, the lining of the kidney tubules as well as in the ducts of the glands. The germinal epithelium that covers the female ovary, and the germinal epithelium that lines the walls of the seminferous tubules in the testes are also of the cuboidal type. Cuboidal cells provide protection and may be active in pumping material in or out of the lumen, or passive depending on their location and specialisation. Simple cuboidal epithelium commonly differentiates to form the secretory and duct portions of glands.[13] Stratified cuboidal epithelium protects areas such as the ducts of sweat glands,[14] mammary glands, and salivary glands.
Columnar Columnar epithelial cells are elongated and column-shaped and have a height of at least four times their width. Their nuclei are elongated and are usually located near the base of the cells. Columnar epithelium forms the lining of the stomach and intestines. The cells here may possess microvilli for maximising the surface area for absorption and these microvilli may form a brush border. Other cells may be ciliated to move mucus in the function of mucociliary clearance. Other ciliated cells are found in the fallopian tubes, the uterus and central canal of the spinal cord. Some columnar cells are specialized for sensory reception such as in the nose, ears and the taste buds. Hair cells in the inner ears have stereocilia which are similar to microvilli. Goblet cells are modified columnar cells and are found between the columnar epithelial cells of the duodenum. They secrete mucus, which acts as a lubricant. Single-layered non-ciliated columnar epithelium tends to indicate an absorptive function. Stratified columnar epithelium is rare but is found in lobar ducts in the salivary glands, the eye, pharynx and sex organs. This consists of a layer of cells resting on at least one other layer of epithelial cells which can be squamous, cuboidal, or columnar.
Pseudostratified These are simple columnar epithelial cells whose nuclei appear at different heights, giving the misleading (hence "pseudo") impression that the epithelium is stratified when the cells are viewed in cross section. Ciliated pseudostratified epithelial cells have cilia. Cilia are capable of energy dependent pulsatile beating in a certain direction through interaction of cytoskeletal microtubules and connecting structural proteins and enzymes. In the respiratory tract the wafting effect produced causes mucus secreted locally by the goblet cells (to lubricate and to trap pathogens and particles) to flow in that direction (typically out of the body). Ciliated epithelium is found in the airways (nose, bronchi), but is also found in the uterus and Fallopian tubes, where the cilia propel the ovum to the uterus.

Structure

Cells of epithelial tissue are scutoid shaped, tightly packed and form a continuous sheet. They have almost no intercellular spaces. All epithelia is usually separated from underlying tissues by an extracellular fibrous basement membrane. The lining of the mouth, lung alveoli and kidney tubules are all made of epithelial tissue. The lining of the blood and lymphatic vessels are of a specialised form of epithelium called endothelium.

Location

Epithelium lines both the outside (skin) and the inside cavities and lumina of bodies. The outermost layer of human skin is composed of dead stratified squamous, keratinized epithelial cells.[15]

Tissues that line the inside of the mouth, the esophagus, the vagina, and part of the rectum are composed of nonkeratinized stratified squamous epithelium. Other surfaces that separate body cavities from the outside environment are lined by simple squamous, columnar, or pseudostratified epithelial cells. Other epithelial cells line the insides of the lungs, the gastrointestinal tract, the reproductive and urinary tracts, and make up the exocrine and endocrine glands. The outer surface of the cornea is covered with fast-growing, easily regenerated epithelial cells. A specialised form of epithelium – endothelium forms the inner lining of blood vessels and the heart, and is known as vascular endothelium, and lining lymphatic vessels as lymphatic endothelium. Another type, mesothelium, forms the walls of the pericardium, pleurae, and peritoneum.

In arthropods, the integument, or external "skin", consists of a single layer of epithelial ectoderm from which arises the cuticle,[16] an outer covering of chitin the rigidity of which varies as per its chemical composition.

Basement membrane

Epithelial tissue rests on a basement membrane, which acts as a scaffolding on which epithelium can grow and regenerate after injuries.[17] Epithelial tissue has a nerve supply, but no blood supply and must be nourished by substances diffusing from the blood vessels in the underlying tissue. The basement membrane acts as a selectively permeable membrane that determines which substances will be able to enter the epithelium.[3]

Cell junctions

Cell junctions are especially abundant in epithelial tissues. They consist of protein complexes and provide contact between neighbouring cells, between a cell and the extracellular matrix, or they build up the paracellular barrier of epithelia and control the paracellular transport.[18]

Cell junctions are the contact points between plasma membrane and tissue cells. There are mainly 5 different types of cell junctions: tight junctions, adherens junctions, desmosomes, hemidesmosomes, and gap junctions. Tight junctions are a pair of trans-membrane protein fused on outer plasma membrane. Adherens junctions are a plaque (protein layer on the inside plasma membrane) which attaches both cells' microfilaments. Desmosomes attach to the microfilaments of cytoskeleton made up of keratin protein. Hemidesmosomes resemble desmosomes on a section. They are made up of the integrin (a transmembrane protein) instead of cadherin. They attach the epithelial cell to the basement membrane. Gap junctions connect the cytoplasm of two cells and are made up of proteins called connexins (six of which come together to make a connexion).

Development

Epithelial tissues are derived from all of the embryological germ layers:

However, it is important to note that pathologists do not consider endothelium and mesothelium (both derived from mesoderm) to be true epithelium. This is because such tissues present very different pathology. For that reason, pathologists label cancers in endothelium and mesothelium sarcomas, whereas true epithelial cancers are called carcinomas. Additionally, the filaments that support these mesoderm-derived tissues are very distinct. Outside of the field of pathology, it is generally accepted that the epithelium arises from all three germ layers.

Functions

405 Modes of Secretion by Glands updated
Forms of secretion in glandular tissue
406 Types of Glands
Different characteristics of glands of the body

Epithelial tissues have as their primary functions:

  1. to protect the tissues that lie beneath from radiation, desiccation, toxins, invasion by pathogens, and physical trauma
  2. the regulation and exchange of chemicals between the underlying tissues and a body cavity
  3. the secretion of hormones into the circulatory system, as well as the secretion of sweat, mucus, enzymes, and other products that are delivered by ducts[19]
  4. to provide sensation[20]

Glandular tissue

Glandular tissue is the type of epithelium that forms the glands from the infolding of epithelium and subsequent growth in the underlying connective tissue. There are two major classifications of glands: endocrine glands and exocrine glands:

  • Endocrine glands secrete their product into the extracellular space where it is rapidly taken up by the circulatory system.
  • Exocrine glands secrete their products into a duct that then delivers the product to the lumen of an organ or onto the free surface of the epithelium.

Sensing the extracellular environment

"Some epithelial cells are ciliated, especially in respiratory epithelium, and they commonly exist as a sheet of polarised cells forming a tube or tubule with cilia projecting into the lumen." Primary cilia on epithelial cells provide chemosensation, thermoception, and mechanosensation of the extracellular environment by playing "a sensory role mediating specific signalling cues, including soluble factors in the external cell environment, a secretory role in which a soluble protein is released to have an effect downstream of the fluid flow, and mediation of fluid flow if the cilia are motile."[21]

Clinical significance

Chlamydia pneumoniae
Epithelial cell infected with Chlamydia pneumoniae

The slide shows at (1) an epithelial cell infected by Chlamydia pneumonia; their inclusion bodies shown at (3); an uninfected cell shown at (2) and (4) showing the difference between an infected cell nucleus and an uninfected cell nucleus.

Epithelium grown in culture can be identified by examining its morphological characteristics. Epithelial cells tend to cluster together, and have a "characteristic tight pavement-like appearance". But this is not always the case, such as when the cells are derived from a tumor. In these cases, it is often necessary to use certain biochemical markers to make a positive identification. The intermediate filament proteins in the cytokeratin group are almost exclusively found in epithelial cells, and so are often used for this purpose.[22]

Carcinomas develop in epithelial tissues. Sarcomas develop in connective tissue.[23]

When epithelial cells or tissues are damaged from cystic fibrosis, sweat glands are also damaged, causing a frosty coating of the skin.

Etymology and pronunciation

The word epithelium uses the Greek roots ἐπί (epi), "on" or "upon", and θηλή (thēlē), "nipple". Epithelium is so called because the name was originally used to describe the translucent covering of small "nipples" of tissue on the lip.[24] The word has both mass and count senses; the plural form is epithelia.

Additional images

Dogsquamos100x

Squamous Epithelium 100x

Cheekcells stained

Human cheek cells (Nonkeratinized stratified squamous epithelium) 500x

Female urethra histology

Histology of female urethra showing transitional epithelium

Sweat gland histology 2014

Histology of sweat gland showing stratified cuboidal epithelium

See also

References

  1. ^ "epithelium Meaning in the Cambridge English Dictionary". dictionary.cambridge.org.
  2. ^ a b Eurell, Jo Ann C.; et al., eds. (2006). Dellmann's textbook of veterinary histology. Wiley-Blackwell. p. 18. ISBN 978-0-7817-4148-4.
  3. ^ a b Freshney, 2002: p. 3
  4. ^ a b c d Marieb, Elaine M. (1995). Human Anatomy and Physiology (3rd ed.). Benjamin/Cummings. pp. 103–104. ISBN 0-8053-4281-8.
  5. ^ Platzer, Werner (2008). Color atlas of human anatomy: Locomotor system. Thieme. p. 8. ISBN 978-3-13-533306-9.
  6. ^ van Lommel, 2002: p. 97
  7. ^ van Lommel, 2002: p. 94
  8. ^ Melfi, Rudy C.; Alley, Keith E., eds. (2000). Permar's oral embryology and microscopic anatomy: a textbook for students in dental hygiene. Lippincott Williams & Wilkins. p. 9. ISBN 978-0-683-30644-6.
  9. ^ Pratt, Rebecca. "Epithelial Cells". AnatomyOne. Amirsys, Inc. Archived from the original on 2012-12-19. Retrieved 2012-09-28.
  10. ^ a b c d Jenkins, Gail W.; Tortora, Gerard J. (2013). Anatomy and Physiology from Science to Life (3rd ed.). John Wiley & Sons. pp. 110–115. ISBN 978-1-118-12920-3.
  11. ^ Ross, Michael H.; Pawlina, Wojciech (2015). Histology: A Text and Atlas: With Correlated Cell and Molecular Biology (7th ed.). Lippincott Williams & Wilkins. pp. 528, 604. ISBN 978-1451187427.
  12. ^ Kühnel, Wolfgang (2003). Color atlas of cytology, histology, and microscopic anatomy. Thieme. p. 102. ISBN 978-3-13-562404-4.
  13. ^ Pratt, Rebecca. "Simple Cuboidal Epithelium". AnatomyOne. Amirsys, Inc. Retrieved 2012-09-28.
  14. ^ Eroschenko, Victor P. (2008). "Integumentary System". DiFiore's Atlas of Histology with Functional Correlations. Lippincott Williams & Wilkins. pp. 212–234. ISBN 9780781770576.
  15. ^ Marieb, Elaine (2011). Anatomy & Physiology. Boston: Benjamin Cummings. p. 133. ISBN 0321616405.
  16. ^ Kristensen, Niels P.; Georges, Chauvin (1 December 2003). "Integument". Lepidoptera, Moths and Butterflies: Morphology, Physiology, and Development : Teilband. Walter de Gruyter. p. 484. ISBN 978-3-11-016210-3. Retrieved 10 January 2013.
  17. ^ McConnell, Thomas H. (2006). The nature of disease: pathology for the health professions. Lippincott Williams & Wilkins. p. 55. ISBN 978-0-7817-5317-3.
  18. ^ Alberts, Bruce (2002). Molecular biology of the cell (4. ed.). New York [u.a.]: Garland. p. 1067. ISBN 0-8153-4072-9.
  19. ^ van Lommel, 2002: p. 91
  20. ^ Alberts, Bruce (2002). Molecular biology of the cell (4 ed.). New York [u.a.]: Garland. p. 1267. ISBN 0-8153-4072-9.
  21. ^ Adams, M.; Smith, U.M.; Logan, C.V.; Johnson, C.A. (2008). "Recent advances in the molecular pathology, cell biology and genetics of ciliopathies". Journal of Medical Genetics. 45 (5): 257–267. doi:10.1136/jmg.2007.054999. PMID 18178628.
  22. ^ Freshney, 2002: p. 9
  23. ^ "Types of cancer". Cancer Research UK. 28 October 2014. Retrieved 13 October 2016.
  24. ^ Blerkom, edited by Jonathan Van; Gregory, Linda (2004). Essential IVF : basic research and clinical applications. Boston: Kluwer Academic Publishers. p. 3. ISBN 978-1-4020-7551-3.CS1 maint: Extra text: authors list (link)

Bibliography

Further reading

External links

Anal canal

The anal canal is the terminal part of the large intestine. It is situated between the rectum and anus, below the level of the pelvic diaphragm. In humans it is approximately 2.5 to 4 cm (0.98-1.58 in) long. It lies in the anal triangle of perineum in between the right and left ischioanal fossa.

The anal canal is the short terminal portion of the rectum through which wastes from the large intestine are excreted from the body. The ring at the terminal portion of the anal canal is called the anus.

The anal canal is between 2.5 cm and 5 cm in length and is guarded by two muscles that control the release of waste from the rectum.

The external anal sphincter muscle is the voluntary muscle that surrounds and adheres to the anus at the lower margin of the anal canal. This muscle is in a state of tonic contraction, but during defecation, it relaxes to allow the release of feces.

Movement of the feces is also controlled by the involuntarily controlled internal anal sphincter which an extension of the circular muscle surrounding the anal canal. It relaxes to expel feces from the rectum and anal canal.

Anal canal is divided into three parts. The zona columnaris is the upper half of the canal and is lined by simple columnar epithelium. The lower half of the anal canal, below the pectinate line, is divided into two zones separated by Hilton's white line. The two parts are the zona hemorrhagica and zona cutanea, lined by stratified squamous non-keratinized and stratified squamous keratinized epithelium, respectively.

In humans it is approximately 2.5 to 4 cm long, extending from the anorectal junction to the anus. It is directed downwards and backwards. It is surrounded by inner involuntary and outer voluntary sphincters which keep the lumen closed in the form of an anteroposterior slit.

Behind this lies the anal gland which secretes lymphal discharge and built up fecal matter from the colon lining. In animals,

gland expungement can be done routinely every 24 – 36 months to prevent infection and fistula formation.

It is differentiated from the rectum by the transition of the internal surface from endodermal to skinlike ectodermal tissue.

Cervix

The cervix or cervix uteri (Latin: neck of the uterus) is the lower part of the uterus in the human female reproductive system. The cervix is usually 2 to 3 cm long (~1 inch) and roughly cylindrical in shape, which changes during pregnancy. The narrow, central cervical canal runs along its entire length, connecting the uterine cavity and the lumen of the vagina. The opening into the uterus is called the internal os, and the opening into the vagina is called the external os. The lower part of the cervix, known as the vaginal portion of the cervix (or ectocervix), bulges into the top of the vagina. The cervix has been documented anatomically since at least the time of Hippocrates, over 2,000 years ago.

The cervical canal is a passage through which sperm must travel to fertilize an egg cell after sexual intercourse. Several methods of contraception, including cervical caps and cervical diaphragms, aim to block or prevent the passage of sperm through the cervical canal. Cervical mucus is used in several methods of fertility awareness, such as the Creighton model and Billings method, due to its changes in consistency throughout the menstrual period. During vaginal childbirth, the cervix must flatten and dilate to allow the fetus to progress along the birth canal. Midwives and doctors use the extent of the dilation of the cervix to assist decision-making during childbirth.

The cervical canal is lined with a single layer of column-shaped cells, while the ectocervix is covered with multiple layers of cells topped with flat cells. The two types of epithelia meet the squamocolumnar junction. Infection with the human papillomavirus (HPV) can cause changes in the epithelium, which can lead to cancer of the cervix. Cervical cytology tests can often detect cervical cancer and its precursors, and enable early successful treatment. Ways to avoid HPV include avoiding sex, using condoms, and HPV vaccination. HPV vaccines, developed in the early 21st century, reduce the risk of cervical cancer by preventing infections from the main cancer-causing strains of HPV.

Ciliary body

The ciliary body is a part of the eye that includes the ciliary muscle, which controls the shape of the lens, and the ciliary epithelium, which produces the aqueous humor. The vitreous humor is produced in the non-pigmented portion of the ciliary body. The ciliary body is part of the uvea, the layer of tissue that delivers oxygen and nutrients to the eye tissues. The ciliary body joins the ora serrata of the choroid to the root of the iris.

Corneal epithelium

The corneal epithelium (epithelium corneæ anterior layer) is made up of epithelial tissue and covers the front of the cornea. It acts as a barrier to protect the cornea, resisting the free flow of fluids from the tears, and prevents bacteria from entering the epithelium and corneal stroma.

The corneal epithelium consists of several layers of cells. The cells of the deepest layer are columnar, known as basal cells. Then follow two or three layers of polyhedral cells, commonly known as wing cells. The majority of these are prickle cells, similar to those found in the stratum mucosum of the cuticle. Lastly, there are three or four layers of squamous cells, with flattened nuclei. The layers of the epithelium are constantly undergoing mitosis. Basal and wing cells migrate to the anterior of the cornea, while squamous cells age and slough off into the tear film.

Germinal epithelium (female)

The ovarian surface epithelium, also called the germinal epithelium of Waldeyer, is a layer of simple squamous-to-cuboidal epithelial cells covering the ovary.The term germinal epithelium is a misnomer as it does not give rise to primary follicles.

Junctional epithelium

The junctional epithelium (JE) is that epithelium which lies at, and in health also defines, the base of the gingival sulcus. The probing depth of the gingival sulcus is measured by a calibrated periodontal probe. In a healthy-case scenario, the probe is gently inserted, slides by the sulcular epithelium (SE), and is stopped by the epithelial attachment (EA). However, the probing depth of the gingival sulcus may be considerably different from the true histological gingival sulcus depth.

Lens (anatomy)

The lens is a transparent, biconvex structure in the eye that, along with the cornea, helps to refract light to be focused on the retina. The lens, by changing shape, functions to change the focal distance of the eye so that it can focus on objects at various distances, thus allowing a sharp real image of the object of interest to be formed on the retina. This adjustment of the lens is known as accommodation (see also below). Accommodation is similar to the focusing of a photographic camera via movement of its lenses. The lens is more flat on its anterior side than on its posterior side.

The lens is also known as the aquula (Latin, a little stream, dim. of aqua, water) or crystalline lens. In humans, the refractive power of the lens in its natural environment is approximately 18 dioptres, roughly one-third of the eye's total power.

Odontogenic cyst

Odontogenic cyst are a group of jaw cysts that are formed from tissues involved in odontogenesis (tooth development). Odontogenic cysts are closed sacs, and have a distinct membrane derived from rests of odontogenic epithelium. It may contain air, fluids, or semi-solid material. Intra-bony cysts are most common in the jaws, because the mandible and maxilla are the only bones with epithelial components. That odontogenic epithelium is critical in normal tooth development. However, epithelial rests may be the origin for the cyst lining later.

Not all oral cysts are odontogenic cyst. For example, mucous cyst of the oral mucosa and nasolabial duct cyst are not of odontogenic origin.

In addition, there are several conditions with so-called (radiographic) 'pseudocystic appearance' in jaws; ranging from anatomic variants such as Stafne static bone cyst, to the aggressive aneurysmal bone cyst.

Ovary

The ovary is an organ found in the female reproductive system that produces an ovum. When released, this travels down the fallopian tube into the uterus, where it may become fertilised by a sperm. There is an ovary (from Latin ovarium, meaning 'egg, nut') found on the left and right sides of the body. The ovaries also secrete hormones that play a role in the menstrual cycle and fertility. The ovary progresses through many stages beginning in the prenatal period through menopause. It is also an endocrine gland because of the various hormones that it secretes.

Peritoneum

The peritoneum is the serous membrane forming the lining of the abdominal cavity or coelom in amniotes and some invertebrates, such as annelids. It covers most of the intra-abdominal (or coelomic) organs, and is composed of a layer of mesothelium supported by a thin layer of connective tissue. This peritoneal lining of the cavity supports many of the abdominal organs and serves as a conduit for their blood vessels, lymphatic vessels, and nerves.

The abdominal cavity (the space bounded by the vertebrae, abdominal muscles, diaphragm, and pelvic floor) is different from the intraperitoneal space (located within the abdominal cavity but wrapped in peritoneum). The structures within the intraperitoneal space are called "intraperitoneal" (e.g., the stomach and intestines), the structures in the abdominal cavity that are located behind the intraperitoneal space are called "retroperitoneal" (e.g., the kidneys), and those structures below the intraperitoneal space are called "subperitoneal" or "infraperitoneal" (e.g., the bladder).

Pseudostratified columnar epithelium

A pseudostratified epithelium is a type of epithelium that, though comprising only a single layer of cells, has its cell nuclei positioned in a manner suggestive of stratified epithelia. As it

rarely occurs as squamous or cuboidal epithelia, it is usually considered synonymous with the term pseudostratified columnar epithelium.

The term pseudostratified is derived from the appearance of this epithelium in section which conveys the erroneous (pseudo means almost or approaching) impression that there is more than one layer of cells, when in fact this is a true simple epithelium since all the cells rest on the basal lamina. The nucleous of these cells, however, are disposed at different levels, thus creating the illusion of cellular stratification. Not all ciliated cells extend to the luminal surface; such cells are capable of cell division providing replacements for cells lost or damaged.

Pseudostratified epithelia function in secretion or absorption. If a specimen looks stratified but has cilia, then it is a pseudostratified ciliated epithelium, since stratified epithelia do not have cilia.

Pulmonary alveolus

A pulmonary alveolus (plural: alveoli, from Latin alveolus, "little cavity") is a hollow cavity found in the lung parenchyma, and is the basic unit of ventilation. Lung alveoli are the ends of the respiratory tree, branching from either alveolar sacs or alveolar ducts, which like alveoli are both sites of gas exchange with the blood as well. Alveoli are particular to mammalian lungs. Different structures are involved in gas exchange in other vertebrates. The alveolar membrane is the gas exchange surface. Carbon dioxide rich blood is pumped from the rest of the body into the capillaries that surround the alveoli where, through diffusion, carbon dioxide is released and oxygen absorbed.

Retinal pigment epithelium

The pigmented layer of retina or retinal pigment epithelium (RPE) is the pigmented cell layer just outside the neurosensory retina that nourishes retinal visual cells, and is firmly attached to the underlying choroid and overlying retinal visual cells.

Simple columnar epithelium

A simple columnar epithelium is a columnar epithelium that is uni-layered. In humans, a simple columnar epithelium lines most organs of the digestive tract including the stomach, small intestine, and large intestine. Simple columnar epithelia line the uterus.

Stratified squamous epithelium

A stratified squamous epithelium consists of squamous (flattened) epithelial cells arranged in layers upon a basal membrane. Only one layer is in contact with the basement membrane; the other layers adhere to one another to maintain structural integrity. Although this epithelium is referred to as squamous, many cells within the layers may not be flattened; this is due to the convention of naming epithelia according to the cell type at the surface. In the deeper layers, the cells may be columnar or cuboidal. There are no intercellular spaces. This type of epithelium is well suited to areas in the body subject to constant abrasion, as the thickest layers can be sequentially sloughed off and replaced before the basement membrane is exposed. It forms the outermost layer of the skin and the inner lining of the mouth, esophagus and vagina.

Sulcular epithelium

The sulcular epithelium is that epithelium which lines the gingival sulcus. It is apically bounded by the junctional epithelium and meets the epithelium of the oral cavity at the height of the free gingival margin. The sulcular epithelium is nonkeratinized.

Tissue (biology)

In biology, tissue is a cellular organizational level between cells and a complete organ. A tissue is an ensemble of similar cells and their extracellular matrix from the same origin that together carry out a specific function. Organs are then formed by the functional grouping together of multiple tissues.

The English word is derived from the French tissu, meaning something that is woven, from the verb tisser, "to weave".

The study of human and animal tissues is known as histology or, in connection with disease, histopathology. For plants, the discipline is called plant anatomy. The classical tools for studying tissues are the paraffin block in which tissue is embedded and then sectioned, the histological stain, and the optical microscope. In the last couple of decades, developments in electron microscopy, immunofluorescence, and the use of frozen tissue sections have enhanced the detail that can be observed in tissues. With these tools, the classical appearances of tissues can be examined in health and disease, enabling considerable refinement of medical diagnosis and prognosis.

Transitional epithelium

Transitional epithelium is a type of stratified epithelium. This tissue consists of multiple layers of epithelial cells which can contract and expand in order to adapt to the degree of distension needed. Transitional epithelium lines the organs of the urinary system and is known here as urothelium. The bladder for example has a need for great distension.

Vaginal epithelium

The vaginal epithelium is the aglandular inner lining of the vagina consisting of multiple layers of (squamous) cells. The basal membrane provides the support for the first layer of the epithelium-the basal layer. The intermediate layers lie upon the basal layer and the superficial layer is the outermost layer of the epithelium. Anatomists have described the epithelium as consisting of as many as 40 distinct layers. The mucous found on the epithelium is secreted by the cervix and uterus. The rugae of the epithelium create a involuted surface and result in a large surface area that covers 360 cm3. This large surface area allows the trans-epithelial absorption of some medications via the vaginal route.

In the course of the reproductive cycle, the vaginal epithelium is subject to normal, cyclic changes, that are influenced by estrogen: with increasing circulating levels of the hormone, there is proliferation of epithelial cells along with an increase in the number of cell layers. As cells proliferate and mature, they undergo partial cornification. Although hormone induced changes occur in the other tissues and organs of the female reproductive system, the vaginal epithelium is more sensitive and its structure is an indicator of estrogen levels. Some Langerhans cells and melanocytes are also present in the epithelium. The epithelium of the ectocervix is contiguous with that of the vagina, possessing the same properties and function. The vaginal epithelium is divided into layers of cells, including the basal cells, the parabasal cells, the superficial squamous flat cells, and the intermediate cells. The superficial cells exfoliate continuously and basal cells replace the superficial cells that die and slough off from the stratum corneum. Under the stratus corneum is the stratum granulosum and stratum spinosum. The cells of the vaginal epithelium retain an usually high level of glycogen compared to other epithelial tissue in the body. The surface patterns on the cells themselves are circular and arranged in longitudinal rows. The epithelial cells of the uterus possess some of the same characteristics of the vaginal epithelium.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.