Engineering

Engineering is the application of knowledge in the form of science, mathematics, and empirical evidence, to the innovation, design, construction, operation and maintenance of structures, machines, materials, software, devices, systems, processes, and organizations. The discipline of engineering encompasses a broad range of more specialized fields of engineering, each with a more specific emphasis on particular areas of applied mathematics, applied science, and types of application. See glossary of engineering.

The term engineering is derived from the Latin ingenium, meaning "cleverness" and ingeniare, meaning "to contrive, devise".[1]

PIA19664-MarsInSightLander-Assembly-20150430
The InSight lander with solar panels deployed in a cleanroom
Maquina vapor Watt ETSIIM
The steam engine, a major driver in the Industrial Revolution, underscores the importance of engineering in modern history. This beam engine is on display in the Technical University of Madrid.

Definition

The American Engineers' Council for Professional Development (ECPD, the predecessor of ABET)[2] has defined "engineering" as:

The creative application of scientific principles to design or develop structures, machines, apparatus, or manufacturing processes, or works utilizing them singly or in combination; or to construct or operate the same with full cognizance of their design; or to forecast their behavior under specific operating conditions; all as respects an intended function, economics of operation and safety to life and property.[3][4]

History

Grondplan citadel Lille
Relief map of the Citadel of Lille, designed in 1668 by Vauban, the foremost military engineer of his age.

Engineering has existed since ancient times, when humans devised inventions such as the wedge, lever, wheel and pulley.

The term engineering is derived from the word engineer, which itself dates back to 1390 when an engine'er (literally, one who builds or operates a siege engine) referred to "a constructor of military engines."[5] In this context, now obsolete, an "engine" referred to a military machine, i.e., a mechanical contraption used in war (for example, a catapult). Notable examples of the obsolete usage which have survived to the present day are military engineering corps, e.g., the U.S. Army Corps of Engineers.

The word "engine" itself is of even older origin, ultimately deriving from the Latin ingenium (c. 1250), meaning "innate quality, especially mental power, hence a clever invention."[6]

Later, as the design of civilian structures, such as bridges and buildings, matured as a technical discipline, the term civil engineering[4] entered the lexicon as a way to distinguish between those specializing in the construction of such non-military projects and those involved in the discipline of military engineering.

Ancient era

Pont du Gard BLS
The Ancient Romans built aqueducts to bring a steady supply of clean and fresh water to cities and towns in the empire.

The pyramids in Egypt, the Acropolis and the Parthenon in Greece, the Roman aqueducts, Via Appia and the Colosseum, Teotihuacán, the Brihadeeswarar Temple of Thanjavur, among many others, stand as a testament to the ingenuity and skill of ancient civil and military engineers. Other monuments, no longer standing, such as the Hanging Gardens of Babylon, and the Pharos of Alexandria were important engineering achievements of their time and were considered among the Seven Wonders of the Ancient World.

The earliest civil engineer known by name is Imhotep.[4] As one of the officials of the Pharaoh, Djosèr, he probably designed and supervised the construction of the Pyramid of Djoser (the Step Pyramid) at Saqqara in Egypt around 2630–2611 BC.[7] Ancient Greece developed machines in both civilian and military domains. The Antikythera mechanism, the first known mechanical computer,[8][9] and the mechanical inventions of Archimedes are examples of early mechanical engineering. Some of Archimedes' inventions as well as the Antikythera mechanism required sophisticated knowledge of differential gearing or epicyclic gearing, two key principles in machine theory that helped design the gear trains of the Industrial Revolution, and are still widely used today in diverse fields such as robotics and automotive engineering.[10]

Ancient Chinese, Greek, Roman and Hungarian armies employed military machines and inventions such as artillery which was developed by the Greeks around the 4th century BC,[11] the trireme, the ballista and the catapult. In the Middle Ages, the trebuchet was developed.

Renaissance era

Agricola1
A water-powered mine hoist used for raising ore, ca. 1556

Before the development of modern engineering, mathematics was used by artisans and craftsmen, such as millwrights, clockmakers, instrument makers and surveyors. Aside from these professions, universities were not believed to have had much practical significance to technology.[12]:32

A standard reference for the state of mechanical arts during the Renaissance is given in the mining engineering treatise De re metallica (1556), which also contains sections on geology, mining and chemistry. De re metallica was the standard chemistry reference for the next 180 years.[12]

Modern era

The world's first iron bridge
The application of the steam engine allowed coke to be substituted for charcoal in iron making, lowering the cost of iron, which provided engineers with a new material for building bridges. This bridge was made of cast iron, which was soon displaced by less brittle wrought iron as a structural material

The science of classical mechanics, sometimes called Newtonian mechanics, formed the scientific basis of much of modern engineering.[12] With the rise of engineering as a profession in the 18th century, the term became more narrowly applied to fields in which mathematics and science were applied to these ends. Similarly, in addition to military and civil engineering, the fields then known as the mechanic arts became incorporated into engineering.

Canal building was an important engineering work during the early phases of the Industrial Revolution.[13]

John Smeaton was the first self-proclaimed civil engineer and is often regarded as the "father" of civil engineering. He was an English civil engineer responsible for the design of bridges, canals, harbours, and lighthouses. He was also a capable mechanical engineer and an eminent physicist. Using a model water wheel, Smeaton conducted experiments for seven years, determining ways to increase efficiency.[14]:127 Smeaton introduced iron axles and gears to water wheels.[12]:69 Smeaton also made mechanical improvements to the Newcomen steam engine. Smeaton designed the third Eddystone Lighthouse (1755–59) where he pioneered the use of 'hydraulic lime' (a form of mortar which will set under water) and developed a technique involving dovetailed blocks of granite in the building of the lighthouse. He is important in the history, rediscovery of, and development of modern cement, because he identified the compositional requirements needed to obtain "hydraulicity" in lime; work which led ultimately to the invention of Portland cement.

Applied science lead to the development of the steam engine. The sequence of events began with the invention the barometer and the measurement of atmospheric pressure by Evangelista Torricelli in 1643, demonstration of the force of atmospheric pressure by Otto von Guericke using the Magdeburg hemispheres in 1656, laboratory experiments by Denis Papin, who built experimental model steam engines and demonstrated the use of a piston, which he published in 1707. Edward Somerset, 2nd Marquess of Worcester published a book of 100 inventions containing a method for raising waters similar to a coffee percolator. Samuel Morland, a mathematician and inventor who worked on pumps, left notes at the Vauxhall Ordinance Office on a steam pump design that Thomas Savery read. In 1698 Savery built a steam pump called “The Miner’s Friend.” It employed both vacuum and pressure.[15] Iron merchant Thomas Newcomen, who built the first commercial piston steam engine in 1712, was not known to have any scientific training.[14]:32

The application of steam powered cast iron blowing cylinders for providing pressurized air for blast furnaces lead to a large increase in iron production in the late 18th century. The higher furnace temperatures made possible with steam powered blast allowed for the use of more lime in blast furnaces, which enabled the transition from charcoal to coke.[16] These innovations lowered the cost of iron, making horse railways and iron bridges practical. The puddling process, patented by Henry Cort in 1784 produced large scale quantities of wrought iron. Hot blast, patented by James Beaumont Neilson in 1828, greatly lowered the amount of fuel needed to smelt iron. With the development of the high pressure steam engine, the power to weight ratio of steam engines made practical steamboats and locomotives possible.[17] New steel making processes, such as the Bessemer process and the open hearth furnace, ushered in an area of heavy engineering in the late 19th century.

One of the most famous engineers of the mid 19th century was Isambard Kingdom Brunel, who built railroads, dockyards and steamships.

Gulf Offshore Platform
Offshore platform, Gulf of Mexico

The Industrial Revolution created a demand for machinery with metal parts, which led to the development of several machine tools. Boring cast iron cylinders with precision was not possible until John Wilkinson invented his boring machine, which is considered the first machine tool.[18] Other machine tools included the screw cutting lathe, milling machine, turret lathe and the metal planer. Precision machining techniques were developed in the first half of the 19th century. These included the use of gigs to guide the machining tool over the work and fixtures to hold the work in the proper position. Machine tools and machining techniques capable of producing interchangeable parts lead to large scale factory production by the late 19th century.[19]

The United States census of 1850 listed the occupation of "engineer" for the first time with a count of 2,000.[20] There were fewer than 50 engineering graduates in the U.S. before 1865. In 1870 there were a dozen U.S. mechanical engineering graduates, with that number increasing to 43 per year in 1875. In 1890, there were 6,000 engineers in civil, mining, mechanical and electrical.[21]

There was no chair of applied mechanism and applied mechanics at Cambridge until 1875, and no chair of engineering at Oxford until 1907. Germany established technical universities earlier.[22]

The foundations of electrical engineering in the 1800s included the experiments of Alessandro Volta, Michael Faraday, Georg Ohm and others and the invention of the electric telegraph in 1816 and the electric motor in 1872. The theoretical work of James Maxwell (see: Maxwell's equations) and Heinrich Hertz in the late 19th century gave rise to the field of electronics. The later inventions of the vacuum tube and the transistor further accelerated the development of electronics to such an extent that electrical and electronics engineers currently outnumber their colleagues of any other engineering specialty.[4] Chemical engineering developed in the late nineteenth century.[4] Industrial scale manufacturing demanded new materials and new processes and by 1880 the need for large scale production of chemicals was such that a new industry was created, dedicated to the development and large scale manufacturing of chemicals in new industrial plants.[4] The role of the chemical engineer was the design of these chemical plants and processes.[4]

Four solaire 001
The solar furnace at Odeillo in the Pyrénées-Orientales in France can reach temperatures up to 3,500 °C (6,330 °F)

Aeronautical engineering deals with aircraft design process design while aerospace engineering is a more modern term that expands the reach of the discipline by including spacecraft design. Its origins can be traced back to the aviation pioneers around the start of the 20th century although the work of Sir George Cayley has recently been dated as being from the last decade of the 18th century. Early knowledge of aeronautical engineering was largely empirical with some concepts and skills imported from other branches of engineering.[23]

The first PhD in engineering (technically, applied science and engineering) awarded in the United States went to Josiah Willard Gibbs at Yale University in 1863; it was also the second PhD awarded in science in the U.S.[24]

Only a decade after the successful flights by the Wright brothers, there was extensive development of aeronautical engineering through development of military aircraft that were used in World War I. Meanwhile, research to provide fundamental background science continued by combining theoretical physics with experiments.

Main branches of engineering

Engineering is a broad discipline which is often broken down into several sub-disciplines. Although an engineer will usually be trained in a specific discipline, he or she may become multi-disciplined through experience. Engineering is often characterized as having four main branches:[25][26][27] chemical engineering, civil engineering, electrical engineering, and mechanical engineering.

Chemical engineering

Chemical engineering is the application of physics, chemistry, biology, and engineering principles in order to carry out chemical processes on a commercial scale, such as the manufacture of commodity chemicals, specialty chemicals, petroleum refining, microfabrication, fermentation, and biomolecule production.

Civil engineering

Civil engineering is the design and construction of public and private works, such as infrastructure (airports, roads, railways, water supply, and treatment etc.), bridges, tunnels, dams, and buildings.[28][29] Civil engineering is traditionally broken into a number of sub-disciplines, including structural engineering, environmental engineering, and surveying. It is traditionally considered to be separate from military engineering.[30]

Electrical engineering

Electrical engineering is the design, study, and manufacture of various electrical and electronic systems, such as Broadcast engineering, electrical circuits, generators, motors, electromagnetic/electromechanical devices, electronic devices, electronic circuits, optical fibers, optoelectronic devices, computer systems, telecommunications, instrumentation, controls, and electronics.

Mechanical engineering

Mechanical engineering is the design and manufacture of physical or mechanical systems, such as power and energy systems, aerospace/aircraft products, weapon systems, transportation products, engines, compressors, powertrains, kinematic chains, vacuum technology, vibration isolation equipment, manufacturing, and mechatronics.

Interdisciplinary engineering

Interdisciplinary engineering draws from more than one of the principle branches of the practice. Historically, naval engineering and mining engineering were major branches. Other engineering fields are manufacturing engineering, acoustical engineering, corrosion engineering, instrumentation and control, aerospace, automotive, computer, electronic, information engineering, petroleum, environmental, systems, audio, software, architectural, agricultural, biosystems, biomedical,[31] geological, textile, industrial, materials,[32] and nuclear engineering.[33] These and other branches of engineering are represented in the 36 licensed member institutions of the UK Engineering Council.

New specialties sometimes combine with the traditional fields and form new branches – for example, Earth systems engineering and management involves a wide range of subject areas including engineering studies, environmental science, engineering ethics and philosophy of engineering.

Practice

One who practices engineering is called an engineer, and those licensed to do so may have more formal designations such as Professional Engineer, Chartered Engineer, Incorporated Engineer, Ingenieur, European Engineer, or Designated Engineering Representative.

Methodology

Dampfturbine Montage01
Design of a turbine requires collaboration of engineers from many fields, as the system involves mechanical, electro-magnetic and chemical processes. The blades, rotor and stator as well as the steam cycle all need to be carefully designed and optimized.

In the engineering design process, engineers apply mathematics and sciences such as physics to find novel solutions to problems or to improve existing solutions. More than ever, engineers are now required to have a proficient knowledge of relevant sciences for their design projects. As a result, many engineers continue to learn new material throughout their career.

If multiple solutions exist, engineers weigh each design choice based on their merit and choose the solution that best matches the requirements. The crucial and unique task of the engineer is to identify, understand, and interpret the constraints on a design in order to yield a successful result. It is generally insufficient to build a technically successful product, rather, it must also meet further requirements.

Constraints may include available resources, physical, imaginative or technical limitations, flexibility for future modifications and additions, and other factors, such as requirements for cost, safety, marketability, productivity, and serviceability. By understanding the constraints, engineers derive specifications for the limits within which a viable object or system may be produced and operated.

A general methodology and epistemology of engineering can be inferred from the historical case studies and comments provided by Walter Vincenti.[34] Though Vincenti's case studies are from the domain of aeronautical engineering, his conclusions can be transferred into many other branches of engineering, too.

According to Billy Vaughn Koen, the "engineering method is the use of heuristics to cause the best change in a poorly understood situation within the available resources." Koen argues that the definition of what makes one an engineer should not be based on what she produces, but rather how she goes about it.[35]

Problem solving

Booster-Layout
A drawing for a booster engine for steam locomotives. Engineering is applied to design, with emphasis on function and the utilization of mathematics and science.

Engineers use their knowledge of science, mathematics, logic, economics, and appropriate experience or tacit knowledge to find suitable solutions to a problem. Creating an appropriate mathematical model of a problem often allows them to analyze it (sometimes definitively), and to test potential solutions.

Usually, multiple reasonable solutions exist, so engineers must evaluate the different design choices on their merits and choose the solution that best meets their requirements. Genrich Altshuller, after gathering statistics on a large number of patents, suggested that compromises are at the heart of "low-level" engineering designs, while at a higher level the best design is one which eliminates the core contradiction causing the problem.

Engineers typically attempt to predict how well their designs will perform to their specifications prior to full-scale production. They use, among other things: prototypes, scale models, simulations, destructive tests, nondestructive tests, and stress tests. Testing ensures that products will perform as expected.

Engineers take on the responsibility of producing designs that will perform as well as expected and will not cause unintended harm to the public at large. Engineers typically include a factor of safety in their designs to reduce the risk of unexpected failure. However, the greater the safety factor, the less efficient the design may be.

The study of failed products is known as forensic engineering and can help the product designer in evaluating his or her design in the light of real conditions. The discipline is of greatest value after disasters, such as bridge collapses, when careful analysis is needed to establish the cause or causes of the failure.

Computer use

CFD Shuttle
A computer simulation of high velocity air flow around a Space Shuttle orbiter during re-entry. Solutions to the flow require modelling of the combined effects of fluid flow and the heat equations.

As with all modern scientific and technological endeavors, computers and software play an increasingly important role. As well as the typical business application software there are a number of computer aided applications (computer-aided technologies) specifically for engineering. Computers can be used to generate models of fundamental physical processes, which can be solved using numerical methods.

WorldWideWebAroundWikipedia
Graphic representation of a minute fraction of the WWW, demonstrating hyperlinks

One of the most widely used design tools in the profession is computer-aided design (CAD) software. It enables engineers to create 3D models, 2D drawings, and schematics of their designs. CAD together with digital mockup (DMU) and CAE software such as finite element method analysis or analytic element method allows engineers to create models of designs that can be analyzed without having to make expensive and time-consuming physical prototypes.

These allow products and components to be checked for flaws; assess fit and assembly; study ergonomics; and to analyze static and dynamic characteristics of systems such as stresses, temperatures, electromagnetic emissions, electrical currents and voltages, digital logic levels, fluid flows, and kinematics. Access and distribution of all this information is generally organized with the use of product data management software.[36]

There are also many tools to support specific engineering tasks such as computer-aided manufacturing (CAM) software to generate CNC machining instructions; manufacturing process management software for production engineering; EDA for printed circuit board (PCB) and circuit schematics for electronic engineers; MRO applications for maintenance management; and Architecture, engineering and construction (AEC) software for civil engineering.

In recent years the use of computer software to aid the development of goods has collectively come to be known as product lifecycle management (PLM).[37]

Social context

Kismet robot 20051016
Robotic Kismet can produce a range of facial expressions.

The engineering profession engages in a wide range of activities, from large collaboration at the societal level, and also smaller individual projects. Almost all engineering projects are obligated to some sort of financing agency: a company, a set of investors, or a government. The few types of engineering that are minimally constrained by such issues are pro bono engineering and open-design engineering.

By its very nature engineering has interconnections with society, culture and human behavior. Every product or construction used by modern society is influenced by engineering. The results of engineering activity influence changes to the environment, society and economies, and its application brings with it a responsibility and public safety.

Engineering projects can be subject to controversy. Examples from different engineering disciplines include the development of nuclear weapons, the Three Gorges Dam, the design and use of sport utility vehicles and the extraction of oil. In response, some western engineering companies have enacted serious corporate and social responsibility policies.

Engineering is a key driver of innovation and human development. Sub-Saharan Africa, in particular, has a very small engineering capacity which results in many African nations being unable to develop crucial infrastructure without outside aid. The attainment of many of the Millennium Development Goals requires the achievement of sufficient engineering capacity to develop infrastructure and sustainable technological development.[38]

ElementBlack2
Radar, GPS, lidar, ... are all combined to provide proper navigation and obstacle avoidance (vehicle developed for 2007 DARPA Urban Challenge)

All overseas development and relief NGOs make considerable use of engineers to apply solutions in disaster and development scenarios. A number of charitable organizations aim to use engineering directly for the good of mankind:

Engineering companies in many established economies are facing significant challenges with regard to the number of professional engineers being trained, compared with the number retiring. This problem is very prominent in the UK where engineering has a poor image and low status.[40] There are many negative economic and political issues that this can cause, as well as ethical issues.[41] It is widely agreed that the engineering profession faces an "image crisis",[42] rather than it being fundamentally an unattractive career. Much work is needed to avoid huge problems in the UK and other western economies.

Code of ethics

Many engineering societies have established codes of practice and codes of ethics to guide members and inform the public at large. The National Society of Professional Engineers code of ethics states:

Engineering is an important and learned profession. As members of this profession, engineers are expected to exhibit the highest standards of honesty and integrity. Engineering has a direct and vital impact on the quality of life for all people. Accordingly, the services provided by engineers require honesty, impartiality, fairness, and equity, and must be dedicated to the protection of the public health, safety, and welfare. Engineers must perform under a standard of professional behavior that requires adherence to the highest principles of ethical conduct.[43]

In Canada, many engineers wear the Iron Ring as a symbol and reminder of the obligations and ethics associated with their profession.[44]

Relationships with other disciplines

Science

Scientists study the world as it is; engineers create the world that has never been.

Technician inside NIF target chamber
Engineers, scientists and technicians at work on target positioner inside National Ignition Facility (NIF) target chamber

There exists an overlap between the sciences and engineering practice; in engineering, one applies science. Both areas of endeavor rely on accurate observation of materials and phenomena. Both use mathematics and classification criteria to analyze and communicate observations.

Scientists may also have to complete engineering tasks, such as designing experimental apparatus or building prototypes. Conversely, in the process of developing technology engineers sometimes find themselves exploring new phenomena, thus becoming, for the moment, scientists or more precisely "engineering scientists".

International Space Station after undocking of STS-132
The International Space Station is used to conduct science experiments of outer space

In the book What Engineers Know and How They Know It,[48] Walter Vincenti asserts that engineering research has a character different from that of scientific research. First, it often deals with areas in which the basic physics or chemistry are well understood, but the problems themselves are too complex to solve in an exact manner.

There is a "real and important" difference between engineering and physics as similar to any science field has to do with technology.[49][50] Physics is an exploratory science that seeks knowledge of principles while engineering uses knowledge for practical applications of principles. The former equates an understanding into a mathematical principle while the latter measures variables involved and creates technology.[51][52][53] For technology, physics is an auxiliary and in a way technology is considered as applied physics.[54] Though physics and engineering are interrelated, it does not mean that a physicist is trained to do an engineer's job. A physicist would typically require additional and relevant training.[55] Physicists and engineers engage in different lines of work.[56] But PhD physicists who specialize in sectors of engineering physics and applied physics are titled as Technology officer, R&D Engineers and System Engineers.[57]

An example of this is the use of numerical approximations to the Navier–Stokes equations to describe aerodynamic flow over an aircraft, or the use of Miner's rule to calculate fatigue damage. Second, engineering research employs many semi-empirical methods that are foreign to pure scientific research, one example being the method of parameter variation.

As stated by Fung et al. in the revision to the classic engineering text Foundations of Solid Mechanics:

Engineering is quite different from science. Scientists try to understand nature. Engineers try to make things that do not exist in nature. Engineers stress innovation and invention. To embody an invention the engineer must put his idea in concrete terms, and design something that people can use. That something can be a complex system, device, a gadget, a material, a method, a computing program, an innovative experiment, a new solution to a problem, or an improvement on what already exists. Since a design has to be realistic and functional, it must have its geometry, dimensions, and characteristics data defined. In the past engineers working on new designs found that they did not have all the required information to make design decisions. Most often, they were limited by insufficient scientific knowledge. Thus they studied mathematics, physics, chemistry, biology and mechanics. Often they had to add to the sciences relevant to their profession. Thus engineering sciences were born.[58]

Although engineering solutions make use of scientific principles, engineers must also take into account safety, efficiency, economy, reliability, and constructability or ease of fabrication as well as the environment, ethical and legal considerations such as patent infringement or liability in the case of failure of the solution.

Medicine and biology

Modern 3T MRI
A 3 tesla clinical MRI scanner.

The study of the human body, albeit from different directions and for different purposes, is an important common link between medicine and some engineering disciplines. Medicine aims to sustain, repair, enhance and even replace functions of the human body, if necessary, through the use of technology.

GFP Mice 01
Genetically engineered mice expressing green fluorescent protein, which glows green under blue light. The central mouse is wild-type.

Modern medicine can replace several of the body's functions through the use of artificial organs and can significantly alter the function of the human body through artificial devices such as, for example, brain implants and pacemakers.[59][60] The fields of bionics and medical bionics are dedicated to the study of synthetic implants pertaining to natural systems.

Conversely, some engineering disciplines view the human body as a biological machine worth studying and are dedicated to emulating many of its functions by replacing biology with technology. This has led to fields such as artificial intelligence, neural networks, fuzzy logic, and robotics. There are also substantial interdisciplinary interactions between engineering and medicine.[61][62]

Both fields provide solutions to real world problems. This often requires moving forward before phenomena are completely understood in a more rigorous scientific sense and therefore experimentation and empirical knowledge is an integral part of both.

Medicine, in part, studies the function of the human body. The human body, as a biological machine, has many functions that can be modeled using engineering methods.[63]

The heart for example functions much like a pump,[64] the skeleton is like a linked structure with levers,[65] the brain produces electrical signals etc.[66] These similarities as well as the increasing importance and application of engineering principles in medicine, led to the development of the field of biomedical engineering that uses concepts developed in both disciplines.

Newly emerging branches of science, such as systems biology, are adapting analytical tools traditionally used for engineering, such as systems modeling and computational analysis, to the description of biological systems.[63]

Art

Leonardo da Vinci - presumed self-portrait - WGA12798
Leonardo da Vinci, seen here in a self-portrait, has been described as the epitome of the artist/engineer.[67] He is also known for his studies on human anatomy and physiology.

There are connections between engineering and art, for example, architecture, landscape architecture and industrial design (even to the extent that these disciplines may sometimes be included in a university's Faculty of Engineering).[68][69][70]

The Art Institute of Chicago, for instance, held an exhibition about the art of NASA's aerospace design.[71] Robert Maillart's bridge design is perceived by some to have been deliberately artistic.[72] At the University of South Florida, an engineering professor, through a grant with the National Science Foundation, has developed a course that connects art and engineering.[68][73]

Among famous historical figures, Leonardo da Vinci is a well-known Renaissance artist and engineer, and a prime example of the nexus between art and engineering.[67][74]

Business

Business Engineering deals with the relationship between professional engineering, IT systems, business administration and change management. Engineering management or "Management engineering" is a specialized field of management concerned with engineering practice or the engineering industry sector. The demand for management-focused engineers (or from the opposite perspective, managers with an understanding of engineering), has resulted in the development of specialized engineering management degrees that develop the knowledge and skills needed for these roles. During an engineering management course, students will develop industrial engineering skills, knowledge, and expertise, alongside knowledge of business administration, management techniques, and strategic thinking. Engineers specializing in change management must have in-depth knowledge of the application of industrial and organizational psychology principles and methods. Professional engineers often train as certified management consultants in the very specialized field of management consulting applied to engineering practice or the engineering sector. This work often deals with large scale complex business transformation or Business process management initiatives in aerospace and defence, automotive, oil and gas, machinery, pharmaceutical, food and beverage, electrical & electronics, power distribution & generation, utilities and transportation systems. This combination of technical engineering practice, management consulting practice, industry sector knowledge, and change management expertise enables professional engineers who are also qualified as management consultants to lead major business transformation initiatives. These initiatives are typically sponsored by C-level executives.

Other fields

In political science, the term engineering has been borrowed for the study of the subjects of social engineering and political engineering, which deal with forming political and social structures using engineering methodology coupled with political science principles. Financial engineering has similarly borrowed the term.

See also

Lists
Glossaries
Related subjects

References

  1. ^ "About IAENG". iaeng.org. International Association of Engineers. Retrieved 17 December 2016.
  2. ^ [1]
  3. ^ Engineers' Council for Professional Development. (1947). Canons of ethics for engineers
  4. ^ a b c d e f g [2] (Includes Britannica article on Engineering)
  5. ^ "engineer". Oxford English Dictionary (3rd ed.). Oxford University Press. September 2005. (Subscription or UK public library membership required.)
  6. ^ Origin: 1250–1300; ME engin < AF, OF < L ingenium nature, innate quality, esp. mental power, hence a clever invention, equiv. to in- + -genium, equiv. to gen- begetting; Source: Random House Unabridged Dictionary, Random House, Inc. 2006.
  7. ^ Kemp, Barry J. (May 7, 2007). Ancient Egypt: Anatomy of a Civilisation. Routledge. p. 159. ISBN 9781134563883.
  8. ^ "The Antikythera Mechanism Research Project", The Antikythera Mechanism Research Project. Retrieved 2007-07-01 Quote: "The Antikythera Mechanism is now understood to be dedicated to astronomical phenomena and operates as a complex mechanical "computer" which tracks the cycles of the Solar System."
  9. ^ Wilford, John (July 31, 2008). "Discovering How Greeks Computed in 100 B.C." The New York Times.
  10. ^ Wright, M T. (2005). "Epicyclic Gearing and the Antikythera Mechanism, part 2". Antiquarian Horology. 29 (1 (September 2005)): 54–60.
  11. ^ Britannica on Greek civilization in the 5th century Military technology Quote: "The 7th century, by contrast, had witnessed rapid innovations, such as the introduction of the hoplite and the trireme, which still were the basic instruments of war in the 5th." and "But it was the development of artillery that opened an epoch, and this invention did not predate the 4th century. It was first heard of in the context of Sicilian warfare against Carthage in the time of Dionysius I of Syracuse."
  12. ^ a b c d Musson; Robinso (1969). Science and Technology in the Industrial Revolution. University of Toronto Press.
  13. ^ Taylor, George Rogers (1969). The Transportation Revolution, 1815-1860. ISBN 978-0873321013.
  14. ^ a b Rosen, William (2012). The Most Powerful Idea in the World: A Story of Steam, Industry and Invention. University Of Chicago Press. ISBN 978-0226726342.
  15. ^ Jenkins, Rhys (1936). Links in the History of Engineering and Technology from Tudor Times. Ayer Publishing. p. 66. ISBN 978-0-8369-2167-0.
  16. ^ Tylecote, R.F. (1992). A History of Metallurgy, Second Edition. London: Maney Publishing, for the Institute of Materials. ISBN 978-0901462886.
  17. ^ Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charolttesville: University Press of Virginia.
  18. ^ Roe, Joseph Wickham (1916), English and American Tool Builders, New Haven, Connecticut: Yale University Press, LCCN 16011753
  19. ^ Hounshell, David A. (1984), From the American System to Mass Production, 1800-1932: The Development of Manufacturing Technology in the United States, Baltimore, Maryland: Johns Hopkins University Press, ISBN 978-0-8018-2975-8, LCCN 83016269
  20. ^ Cowan, Ruth Schwartz (1997), A Social History of American Technology, New York: Oxford University Press, p. 138, ISBN 978-0-19-504605-2
  21. ^ Hunter, Louis C. (1985). A History of Industrial Power in the United States, 1730–1930, Vol. 2: Steam Power. Charlottesville: University Press of Virginia.
  22. ^ Williams, Trevor I. (1982). A Short History of Twentieth Century Technology. US: Oxford University Press. p. 3. ISBN 978-0198581598.
  23. ^ Van Every, Kermit E. (1986). "Aeronautical engineering". Encyclopedia Americana. 1. Grolier Incorporated. p. 226.
  24. ^ Wheeler, Lynde, Phelps (1951). Josiah Willard Gibbs — the History of a Great Mind. Ox Bow Press. ISBN 978-1-881987-11-6.
  25. ^ Journal of the British Nuclear Energy Society: Volume 1 British Nuclear Energy Society – 1962 – Snippet view Quote: In most universities it should be possible to cover the main branches of engineering, i.e. civil, mechanical, electrical and chemical engineering in this way. More specialised fields of engineering application, of which nuclear power is ...
  26. ^ The Engineering Profession by Sir James Hamilton, UK Engineering Council Quote: "The Civilingenior degree encompasses the main branches of engineering civil, mechanical, electrical, chemical." (From the Internet Archive)
  27. ^ Indu Ramchandani (2000). Student's Britannica India,7vol.Set. Popular Prakashan. p. 146. ISBN 978-0-85229-761-2. Retrieved 23 March 2013. BRANCHES There are traditionally four primary engineering disciplines: civil, mechanical, electrical and chemical.
  28. ^ "History and Heritage of Civil Engineering". ASCE. Archived from the original on 16 February 2007. Retrieved 8 August 2007.
  29. ^ "What is Civil Engineering". Institution of Civil Engineers. Retrieved 15 May 2017.
  30. ^ Watson, J. Garth. "Civil Engineering". Encyclopaedia Britannica.
  31. ^ Bronzino JD, ed., The Biomedical Engineering Handbook, CRC Press, 2006, ISBN 0-8493-2121-2
  32. ^ Bensaude-Vincent, Bernadette (March 2001). "The construction of a discipline: Materials science in the United States". Historical Studies in the Physical and Biological Sciences. 31 (2): 223–48. doi:10.1525/hsps.2001.31.2.223.
  33. ^ "Archived copy" (PDF). Archived from the original (PDF) on 2011-09-29. Retrieved 2011-08-02.CS1 maint: Archived copy as title (link)
  34. ^ Vincenti, Walter G. (1993-02-01). What Engineers Know and How They Know It: Analytical Studies from Aeronautical History. The Johns Hopkins University Press. ISBN 0-8018-4588-2.
  35. ^ Koen, Billy Vaughn (2013). Discussion of The Method (1 ed.). New York Oxford: Oxford University Press. p. 8. ISBN 978-0-19-515599-0. Retrieved 23 July 2015.
  36. ^ Arbe, Katrina (2001-05-07). "PDM: Not Just for the Big Boys Anymore". ThomasNet. Retrieved 2006-12-30.
  37. ^ Arbe, Katrina (2003-05-22). "The Latest Chapter in CAD Software Evaluation". ThomasNet. Retrieved 2006-12-30.
  38. ^ Jowitt, Paul W. (2006). "Engineering Civilisation from the Shadows" (PDF). Archived from the original (PDF) on 2006-10-06.
  39. ^ Home page for EMI Archived 2012-04-14 at the Wayback Machine
  40. ^ "engineeringuk.com/About_us". Archived from the original on 2014-05-30.
  41. ^ "Archived copy". Archived from the original on 2014-06-19. Retrieved 2014-06-19.CS1 maint: Archived copy as title (link)
  42. ^ "Archived copy". Archived from the original on 2014-10-06. Retrieved 2014-06-19.CS1 maint: Archived copy as title (link)
  43. ^ Code of Ethics, National Society of Professional Engineers
  44. ^ Origin of the Iron Ring concept
  45. ^ Rosakis, Ares Chair, Division of Engineering and Applied Science. "Chair's Message, Caltech". Archived from the original on 4 November 2011. Retrieved 15 October 2011.
  46. ^ Ryschkewitsch, M.G. NASA Chief Engineer. "Improving the capability to Engineer Complex Systems – Broadening the Conversation on the Art and Science of Systems Engineering" (PDF). p. 8 of 21. Retrieved 15 October 2011.
  47. ^ American Society for Engineering Education (1970). Engineering education. 60. American Society for Engineering Education. p. 467. The great engineer Theodore von Karman once said, "Scientists study the world as it is, engineers create the world that never has been." Today, more than ever, the engineer must create a world that never has been ...
  48. ^ Vincenti, Walter G. (1993). What Engineers Know and How They Know It: Analytical Studies from Aeronautical History. Johns Hopkins University Press. ISBN 978-0-8018-3974-0.
  49. ^ Walter G Whitman; August Paul Peck. Whitman-Peck Physics. American Book Company, 1946, p. 06. OCLC 3247002
  50. ^ Ateneo de Manila University Press. Philippine Studies, vol. 11, no. 4, 1963. p. 600
  51. ^ "Relationship between physics and electrical engineering". Journal of the A.I.E.E. 46 (2): 107–108. 1927. doi:10.1109/JAIEE.1927.6534988.
  52. ^ Puttaswamaiah. Future Of Economic Science. Oxford and IBH Publishing, 2008, p. 208.
  53. ^ Yoseph Bar-Cohen, Cynthia L. Breazeal. Biologically Inspired Intelligent Robots. SPIE Press, 2003. ISBN 9780819448729. p. 190
  54. ^ C. Morón, E. Tremps, A. García, J.A. Somolinos (2011) The Physics and its Relation with the Engineering, INTED2011 Proceedings pp. 5929–34. ISBN 978-84-614-7423-3
  55. ^ R Gazzinelli, R L Moreira, W N Rodrigues. Physics and Industrial Development: Bridging the Gap. World Scientific, 1997, p. 110.
  56. ^ Steve Fuller. Knowledge Management Foundations. Routledge, 2012. ISBN 9781136389825. p. 92
  57. ^ "Industrial Physicists: Primarily specialising in Engineering" (PDF). American Institute for Physics. October 2016.
  58. ^ Classical and Computational Solid Mechanics, YC Fung and P. Tong. World Scientific. 2001.
  59. ^ Ethical Assessment of Implantable Brain Chips. Ellen M. McGee and G.Q. Maguire, Jr. from Boston University
  60. ^ IEEE technical paper: Foreign parts (electronic body implants).by Evans-Pughe, C. quote from summary: Feeling threatened by cyborgs?
  61. ^ Institute of Medicine and Engineering: Mission statement The mission of the Institute for Medicine and Engineering (IME) is to stimulate fundamental research at the interface between biomedicine and engineering/physical/computational sciences leading to innovative applications in biomedical research and clinical practice. Archived 2007-03-17 at the Wayback Machine
  62. ^ IEEE Engineering in Medicine and Biology: Both general and technical articles on current technologies and methods used in biomedical and clinical engineering ...
  63. ^ a b Royal Academy of Engineering and Academy of Medical Sciences: Systems Biology: a vision for engineering and medicine in pdf: quote1: Systems Biology is an emerging methodology that has yet to be defined quote2: It applies the concepts of systems engineering to the study of complex biological systems through iteration between computational or mathematical modelling and experimentation. Archived 2007-04-10 at the Wayback Machine
  64. ^ Science Museum of Minnesota: Online Lesson 5a; The heart as a pump
  65. ^ Minnesota State University emuseum: Bones act as levers Archived 2008-12-20 at the Wayback Machine
  66. ^ UC Berkeley News: UC researchers create model of brain's electrical storm during a seizure
  67. ^ a b Bjerklie, David. "The Art of Renaissance Engineering." MIT's Technology Review Jan./Feb.1998: 54–59. Article explores the concept of the "artist-engineer", an individual who used his artistic talent in engineering. Quote from article: Da Vinci reached the pinnacle of "artist-engineer"-dom, Quote2: "It was Leonardo da Vinci who initiated the most ambitious expansion in the role of artist-engineer, progressing from astute observer to inventor to theoretician." (Bjerklie 58)
  68. ^ a b National Science Foundation:The Art of Engineering: Professor uses the fine arts to broaden students' engineering perspectives
  69. ^ MIT World:The Art of Engineering: Inventor James Dyson on the Art of Engineering: quote: A member of the British Design Council, James Dyson has been designing products since graduating from the Royal College of Art in 1970. Archived 2006-07-05 at the Wayback Machine
  70. ^ University of Texas at Dallas: The Institute for Interactive Arts and Engineering
  71. ^ Aerospace Design: The Art of Engineering from NASA's Aeronautical Research
  72. ^ Princeton U: Robert Maillart's Bridges: The Art of Engineering: quote: no doubt that Maillart was fully conscious of the aesthetic implications ...
  73. ^ quote:..the tools of artists and the perspective of engineers.. Archived 2007-09-27 at the Wayback Machine
  74. ^ Drew U: user website: cites Bjerklie paper Archived 2007-04-19 at the Wayback Machine

Further reading

  • Blockley, David (2012). Engineering: a very short introduction. New York: Oxford University Press. ISBN 978-0-19-957869-6.
  • Dorf, Richard, ed. (2005). The Engineering Handbook (2 ed.). Boca Raton: CRC. ISBN 978-0-8493-1586-2.
  • Billington, David P. (1996-06-05). The Innovators: The Engineering Pioneers Who Made America Modern. Wiley; New Ed edition. ISBN 978-0-471-14026-9.
  • Madhavan, Guru (2015). Applied Minds: How Engineers Think. W.W. Norton.
  • Petroski, Henry (1992-03-31). To Engineer is Human: The Role of Failure in Successful Design. Vintage. ISBN 978-0-679-73416-1.
  • Lord, Charles R. (2000-08-15). Guide to Information Sources in Engineering. Libraries Unlimited. doi:10.1336/1563086999. ISBN 978-1-56308-699-1.
  • Vincenti, Walter G. (1993-02-01). What Engineers Know and How They Know It: Analytical Studies from Aeronautical History. The Johns Hopkins University Press. ISBN 978-0-8018-4588-8.

The dictionary definition of engineering at Wiktionary Learning materials related to Engineering at Wikiversity Quotations related to Engineering at Wikiquote

Aerospace engineering

Aerospace engineering is the primary field of engineering concerned with the development of aircraft and spacecraft. It has two major and overlapping branches: aeronautical engineering and astronautical engineering. Avionics engineering is similar, but deals with the electronics side of aerospace engineering.

Aeronautical engineering was the original term for the field. As flight technology advanced to include craft operating in outer space (astronautics), the broader term "aerospace engineering" has come into common use. Aerospace engineering, particularly the astronautics branch is often colloquially referred to as "rocket science".

Anna University

Anna University is a state technical university in Tamil Nadu, India. The main campus is in Guindy, Chennai and the satellite campus is in Chromepet, Chennai. It was established on 4 September 1978. It is ranked the tenth institution in India overall by the National Institutional Ranking Framework, ranked fourth among universities, and ranked eighth in engineering. The main campus houses the College of Engineering, Guindy; Alagappa College of Technology, School of Architecture and Planning, and three technical departments of the University of Madras. The Madras Institute of Technology is located in the Chromepet campus.

Audio engineer

An audio engineer (also known as a sound engineer or recording engineer) helps to produce a recording or a live performance, balancing and adjusting sound sources using equalization and audio effects, mixing, reproduction, and reinforcement of sound. Audio engineers work on the "...technical aspect of recording—the placing of microphones, pre-amp knobs, the setting of levels. The physical recording of any project is done by an engineer ... the nuts and bolts." It's a creative hobby and profession where musical instruments and technology are used to produce sound for film, radio, television, music, and video games. Audio engineers also set up, sound check and do live sound mixing using a mixing console and a sound reinforcement system for music concerts, theatre, sports games and corporate events.

Alternatively, audio engineer can refer to a scientist or professional engineer who holds an engineering degree and who designs, develops and builds audio or musical technology working under terms such as acoustical engineering, electronic/electrical engineering or (musical) signal processing.

Chemical engineering

Chemical engineering is a branch of engineering that uses principles of chemistry, physics, mathematics, biology, and economics to efficiently use, produce, transform, and transport chemicals, materials, and energy. A chemical engineer designs large-scale processes that convert chemicals, raw materials, living cells, microorganisms, and energy into useful forms and products.

Chemical engineers are involved in many aspects of plant design and operation, including safety and hazard assessments, process design and analysis, control engineering, chemical reaction engineering, biological engineering, construction specification, and operating instructions. Chemical engineering degree is directly linked with all the majors of various engineering disciplines.

Civil engineering

Civil engineering is a professional engineering discipline that deals with the design, construction, and maintenance of the physical and naturally built environment, including public works such as roads, bridges, canals, dams, airports, sewerage systems, pipelines, structural components of buildings, and railways. Civil engineering is traditionally broken into a number of sub-disciplines. It is considered the second-oldest engineering discipline after military engineering, and it is defined to distinguish non-military engineering from military engineering. Civil engineering takes place in the public sector from municipal through to national governments, and in the private sector from individual homeowners through to international companies.

Computer engineering

Computer engineering is a branch of engineering that integrates several fields of computer science and electronic engineering required to develop computer hardware and software. Computer engineers usually have training in electronic engineering (or electrical engineering), software design, and hardware-software integration instead of only software engineering or electronic engineering. Computer engineers are involved in many hardware and software aspects of computing, from the design of individual microcontrollers, microprocessors, personal computers, and supercomputers, to circuit design. This field of engineering not only focuses on how computer systems themselves work but also how they integrate into the larger picture.Usual tasks involving computer engineers include writing software and firmware for embedded microcontrollers, designing VLSI chips, designing analog sensors, designing mixed signal circuit boards, and designing operating systems. Computer engineers are also suited for robotics research, which relies heavily on using digital systems to control and monitor electrical systems like motors, communications, and sensors.

In many institutions of higher learning, computer engineering students are allowed to choose areas of in-depth study in their junior and senior year because the full breadth of knowledge used in the design and application of computers is beyond the scope of an undergraduate degree. Other institutions may require engineering students to complete one or two years of general engineering before declaring computer engineering as their primary focus.

Computer science

Computer science is the study of processes that interact with data and that can be represented as data in the form of programs. It enables the use of algorithms to manipulate, store, and communicate digital information. A computer scientist studies the theory of computation and the practice of designing software systems.Its fields can be divided into theoretical and practical disciplines. Computational complexity theory is highly abstract, while computer graphics emphasizes real-world applications. Programming language theory considers approaches to the description of computational processes, while computer programming itself involves the use of programming languages and complex systems. Human–computer interaction considers the challenges in making computers useful, usable, and accessible.

Electrical engineering

Electrical engineering is a professional engineering discipline that generally deals with the study and application of electricity, electronics, and electromagnetism. This field first became an identifiable occupation in the later half of the 19th century after commercialization of the electric telegraph, the telephone, and electric power distribution and use. Subsequently, broadcasting and recording media made electronics part of daily life. The invention of the transistor, and later the integrated circuit, brought down the cost of electronics to the point they can be used in almost any household object.

Electrical engineering has now divided into a wide range of fields including electronics, digital computers, computer engineering, power engineering, telecommunications, control systems, radio-frequency engineering, signal processing, instrumentation, and microelectronics. Many of these disciplines overlap with other engineering branches, spanning a huge number of specializations such as hardware engineering, power electronics, electromagnetics and waves, microwave engineering, nanotechnology, electrochemistry, renewable energies, mechatronics, electrical materials science, and much more. See glossary of electrical and electronics engineering.

Electrical engineers typically hold a degree in electrical engineering or electronic engineering. Practising engineers may have professional certification and be members of a professional body. Such bodies include the Institute of Electrical and Electronics Engineers (IEEE) and the Institution of Engineering and Technology (IET) (formerly the IEE).

Electrical engineers work in a very wide range of industries and the skills required are likewise variable. These range from basic circuit theory to the management skills required of a project manager. The tools and equipment that an individual engineer may need are similarly variable, ranging from a simple voltmeter to a top end analyzer to sophisticated design and manufacturing software.

Engineer

Engineers, as practitioners of engineering, are professionals who invent, design, analyze, build, and test machines, systems, structures and materials to fulfill objectives and requirements while considering the limitations imposed by practicality, regulation, safety, and cost. The word engineer (Latin ingeniator) is derived from the Latin words ingeniare ("to create, generate, contrive, devise") and ingenium ("cleverness"). The foundational qualifications of an engineer typically include a four-year bachelor's degree in an engineering discipline, or in some jurisdictions, a master's degree in an engineering discipline plus four to six years of peer-reviewed professional practice (culminating in a project report or thesis) and passage of engineering board examinations.

The work of engineers forms the link between scientific discoveries and their subsequent applications to human and business needs and quality of life.

Genetic engineering

Genetic engineering, also called genetic modification or genetic manipulation, is the direct manipulation of an organism's genes using biotechnology. It is a set of technologies used to change the genetic makeup of cells, including the transfer of genes within and across species boundaries to produce improved or novel organisms. New DNA is obtained by either isolating and copying the genetic material of interest using recombinant DNA methods or by artificially synthesising the DNA. A construct is usually created and used to insert this DNA into the host organism. The first recombinant DNA molecule was made by Paul Berg in 1972 by combining DNA from the monkey virus SV40 with the lambda virus. As well as inserting genes, the process can be used to remove, or "knock out", genes. The new DNA can be inserted randomly, or targeted to a specific part of the genome.

An organism that is generated through genetic engineering is considered to be genetically modified (GM) and the resulting entity is a genetically modified organism (GMO). The first GMO was a bacterium generated by Herbert Boyer and Stanley Cohen in 1973. Rudolf Jaenisch created the first GM animal when he inserted foreign DNA into a mouse in 1974. The first company to focus on genetic engineering, Genentech, was founded in 1976 and started the production of human proteins. Genetically engineered human insulin was produced in 1978 and insulin-producing bacteria were commercialised in 1982. Genetically modified food has been sold since 1994, with the release of the Flavr Savr tomato. The Flavr Savr was engineered to have a longer shelf life, but most current GM crops are modified to increase resistance to insects and herbicides. GloFish, the first GMO designed as a pet, was sold in the United States in December 2003. In 2016 salmon modified with a growth hormone were sold.

Genetic engineering has been applied in numerous fields including research, medicine, industrial biotechnology and agriculture. In research GMOs are used to study gene function and expression through loss of function, gain of function, tracking and expression experiments. By knocking out genes responsible for certain conditions it is possible to create animal model organisms of human diseases. As well as producing hormones, vaccines and other drugs genetic engineering has the potential to cure genetic diseases through gene therapy. The same techniques that are used to produce drugs can also have industrial applications such as producing enzymes for laundry detergent, cheeses and other products.

The rise of commercialised genetically modified crops has provided economic benefit to farmers in many different countries, but has also been the source of most of the controversy surrounding the technology. This has been present since its early use; the first field trials were destroyed by anti-GM activists. Although there is a scientific consensus that currently available food derived from GM crops poses no greater risk to human health than conventional food, GM food safety is a leading concern with critics. Gene flow, impact on non-target organisms, control of the food supply and intellectual property rights have also been raised as potential issues. These concerns have led to the development of a regulatory framework, which started in 1975. It has led to an international treaty, the Cartagena Protocol on Biosafety, that was adopted in 2000. Individual countries have developed their own regulatory systems regarding GMOs, with the most marked differences occurring between the US and Europe.

Industrial engineering

Industrial engineering is an inter-disciplinary profession that is concerned with the optimization of complex processes, systems, or organizations by developing, improving and implementing integrated systems of people, money, knowledge, information, equipment, energy and materials.

Industrial engineers use specialized knowledge and skills in the mathematical, physical, and social sciences, together with the principles and methods of engineering analysis and design, to specify, predict, and evaluate the results obtained from systems and processes. From these results, they are able to create new systems, processes or situations for the useful coordination of man, materials and machines and also improve the quality and productivity of systems, physical or social. Depending on the sub-specialties involved, industrial engineering may also overlap with, operations research, systems engineering, manufacturing engineering, production engineering, management science, management engineering, financial engineering, ergonomics or human factors engineering, safety engineering, or others, depending on the viewpoint or motives of the user.

Even though its underlying concepts overlap considerably with certain business-oriented disciplines, such as operations management, industrial engineering is a longstanding engineering discipline subject to (and eligible for) professional engineering licensure in most jurisdictions.

Materials science

The interdisciplinary field of materials science, also commonly termed materials science and engineering is the design and discovery of new materials, particularly solids. The intellectual origins of materials science stem from the Enlightenment, when researchers began to use analytical thinking from chemistry, physics, and engineering to understand ancient, phenomenological observations in metallurgy and mineralogy. Materials science still incorporates elements of physics, chemistry, and engineering. As such, the field was long considered by academic institutions as a sub-field of these related fields. Beginning in the 1940s, materials science began to be more widely recognized as a specific and distinct field of science and engineering, and major technical universities around the world created dedicated schools of the study, within either the Science or Engineering schools, hence the naming.

Materials science is a syncretic discipline hybridizing metallurgy, ceramics, solid-state physics, and chemistry. It is the first example of a new academic discipline emerging by fusion rather than fission.Many of the most pressing scientific problems humans currently face are due to the limits of the materials that are available and how they are used. Thus, breakthroughs in materials science are likely to affect the future of technology significantly.Materials scientists emphasize understanding how the history of a material (its processing) influences its structure, and thus the material's properties and performance. The understanding of processing-structure-properties relationships is called the § materials paradigm. This paradigm is used to advance understanding in a variety of research areas, including nanotechnology, biomaterials, and metallurgy. Materials science is also an important part of forensic engineering and failure analysis – investigating materials, products, structures or components which fail or do not function as intended, causing personal injury or damage to property. Such investigations are key to understanding, for example, the causes of various aviation accidents and incidents.

Mechanical engineering

Mechanical engineering is the discipline that applies engineering, physics, engineering mathematics, and materials science principles to design, analyze, manufacture, and maintain mechanical systems. It is one of the oldest and broadest of the engineering disciplines.

The mechanical engineering field requires an understanding of core areas including mechanics, dynamics, thermodynamics, materials science, structural analysis, and electricity. In addition to these core principles, mechanical engineers use tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), and product life cycle management to design and analyze manufacturing plants, industrial equipment and machinery, heating and cooling systems, transport systems, aircraft, watercraft, robotics, medical devices, weapons, and others. It is the branch of engineering that involves the design, production, and operation of machinery.Mechanical engineering emerged as a field during the Industrial Revolution in Europe in the 18th century; however, its development can be traced back several thousand years around the world. In the 19th century, developments in physics led to the development of mechanical engineering science. The field has continually evolved to incorporate advancements; today mechanical engineers are pursuing developments in such areas as composites, mechatronics, and nanotechnology. It also overlaps with aerospace engineering, metallurgical engineering, civil engineering, electrical engineering, manufacturing engineering, chemical engineering, industrial engineering, and other engineering disciplines to varying amounts. Mechanical engineers may also work in the field of biomedical engineering, specifically with biomechanics, transport phenomena, biomechatronics, bionanotechnology, and modelling of biological systems.

Metallurgy

Metallurgy is a domain of materials science and engineering that studies the physical and chemical behavior of metallic elements, their inter-metallic compounds, and their mixtures, which are called alloys.

Metallurgy is used to separate metals from their ore. Metallurgy is also the technology of metals: the way in which science is applied to the production of metals, and the engineering of metal components for usage in products for consumers and manufacturers. The production of metals involves the processing of ores to extract the metal they contain, and the mixture of metals, sometimes with other elements, to produce alloys. Metallurgy is distinguished from the craft of metalworking, although metalworking relies on metallurgy, as medicine relies on medical science, for technical advancement. The science of metallurgy is subdivided into chemical metallurgy and physical metallurgy.

Metallurgy is subdivided into ferrous metallurgy (also known as black metallurgy) and non-ferrous metallurgy (also known as colored metallurgy).

Ferrous metallurgy involves processes and alloys based on iron while non-ferrous metallurgy involves processes and alloys based on other metals. The production of ferrous metals accounts for 95 percent of world metal production.

Outline of academic disciplines

An academic discipline or field of study is a branch of knowledge, taught and researched as part of higher education. A scholar's discipline is commonly defined by the university faculties and learned societies to which they belong and the academic journals in which they publish research.

Disciplines vary between well-established ones that exist in almost all universities and have well-defined rosters of journals and conferences and nascent ones supported by only a few universities and publications. A discipline may have branches, and these are often called sub-disciplines.

There is no consensus on how some academic disciplines should be classified, for example whether anthropology and linguistics are disciplines of the social sciences or of the humanities.

The following outline is provided as an overview of and topical guide to academic disciplines.

Science, technology, engineering, and mathematics

Science, Technology, Engineering and Mathematics (STEM), previously Science, Math, Engineering and Technology (SMET), is a term used to group together these academic disciplines. This term is typically used when addressing education policy and curriculum choices in schools to improve competitiveness in science and technology development. It has implications for workforce development, national security concerns and immigration policy.The acronym came into common use shortly after an interagency meeting on science education held at the US National Science Foundation chaired by the then NSF director Rita Colwell.

A director from the Office of Science division of Workforce Development for Teachers and Scientists, Peter Faletra, suggested the change from the older acronym SMET to STEM. Colwell, expressing some dislike for the older acronym, responded by suggesting NSF institute the change. However, the acronym STEM predates NSF and likely traces its origin to Charles Vela, the founder and director of the Center for the Advancement of Hispanics in Science and Engineering Education (CAHSEE). In the early 1990's CAHSEE started a summer program for talented under-represented students in the Washington, DC area called the STEM Institute. Based on the program's recognized success and his expertise in STEM education, Charles Vela was asked to serve on numerous NSF and Congressional panels in science, mathematics and engineering education; it is through this manner that NSF was first introduced to the acronym STEM. One of the first NSF projects to use the acronym was STEMTEC, the Science, Technology, Engineering and Math Teacher Education Collaborative at the University of Massachusetts Amherst, which was founded in 1998.

Search engine optimization

Search engine optimization (SEO) is the process of increasing the visibility of a website or a web page to users of a web search engine. The term excludes the purchase of paid placement, referring only to the improvement of unpaid results (known as "natural" or "organic" results).

SEO is performed because a website will receive more visitors from a search engine the higher the website appears in the search results page. These visitors can then be converted into customers. SEO may target different kinds of search, including image search, video search, academic search, news search, and industry-specific vertical search engines. SEO differs from local search engine optimization in that the latter is focused on optimizing a business' online presence so that its web pages will be displayed by search engines when a user enters a local search for its products or services. The former instead is more focused on national or international searches.

As an Internet marketing strategy, SEO considers how search engines work, the computer programmed algorithms which dictate search engine behavior, what people search for, the actual search terms or keywords typed into search engines, and which search engines are preferred by their targeted audience. Optimizing a website may involve editing its content, adding content, modifying HTML, and associated coding to both increase its relevance to specific keywords and to remove barriers to the indexing activities of search engines. Promoting a site to increase the number of backlinks, or inbound links, is another SEO tactic. By May 2015, mobile search had surpassed desktop search.

Software engineering

Software engineering is the application of engineering to the development of software in a systematic method.Notable definitions of software engineering include:

"the systematic application of scientific and technological knowledge, methods, and experience to the design, implementation, testing, and documentation of software"—The Bureau of Labor Statistics—IEEE Systems and software engineering - Vocabulary

"The application of a systematic, disciplined, quantifiable approach to the development, operation, and maintenance of software"—IEEE Standard Glossary of Software Engineering Terminology

"an engineering discipline that is concerned with all aspects of software production"—Ian Sommerville

"the establishment and use of sound engineering principles in order to economically obtain software that is reliable and works efficiently on real machines"—Fritz BauerThe term has also been used less formally:

as the informal contemporary term for the broad range of activities that were formerly called computer programming and systems analysis;

as the broad term for all aspects of the practice of computer programming, as opposed to the theory of computer programming, which is formally studied as a sub-discipline of computer science;

as the term embodying the advocacy of a specific approach to computer programming, one that urges that it be treated as an engineering discipline rather than an art or a craft, and advocates the codification of recommended practices.

Systems engineering

Systems engineering is an interdisciplinary field of engineering and engineering management that focuses on how to design and manage complex systems over their life cycles. At its core, systems engineering utilizes systems thinking principles to organize this body of knowledge. The individual outcome of such efforts, an engineered system, can be defined as a combination of components that work in synergy to collectively perform a useful function.

Issues such as requirements engineering, reliability, logistics, coordination of different teams, testing and evaluation, maintainability and many other disciplines necessary for successful system development, design, implementation, and ultimate decommission become more difficult when dealing with large or complex projects. Systems engineering deals with work-processes, optimization methods, and risk management tools in such projects. It overlaps technical and human-centered disciplines such as industrial engineering, mechanical engineering, manufacturing engineering, control engineering, software engineering, electrical engineering, cybernetics, organizational studies, civil engineering and project management. Systems engineering ensures that all likely aspects of a project or system are considered, and integrated into a whole.

The systems engineering process is a discovery process that is quite unlike a manufacturing process. A manufacturing process is focused on repetitive activities that achieve high quality outputs with minimum cost and time. The systems engineering process must begin by discovering the real problems that need to be resolved, and identifying the most probable or highest impact failures that can occur – systems engineering involves finding solutions to these problems.

Engineering
Civil
Mechanical
Electrical
Chemical
Interdisciplinary
Glossaries
Glossaries of science and engineering
Primary industry
Secondary industry
Tertiary industry

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.