Electrical resistivities of the elements (data page)

Electrical resistivity

T 80 K (−193 °C) 273 K (0 °C) 293 K (20 °C) 298 K (25 °C) 300 K (27 °C) 500 K (227 °C)
3 Li lithium
use 10.0 nΩm 85.3 nΩm 92.8 nΩm 94.7 nΩm 95.5 nΩm
CRC (10−8 Ωm) 1.00 8.53 9.28 9.47 9.55
LNG (10−8 Ωm) 9.28
WEL (10−8 Ωm) (293 K–298 K) 9.4
4 Be beryllium
use 0.75 nΩm 30.2 nΩm 35.6 nΩm 37.0 nΩm 37.6 nΩm 99 nΩm
CRC (10−8 Ωm) 0.075 3.02 3.56 3.70 3.76 9.9
LNG (10−8 Ωm) 3.56
WEL (10−8 Ωm) (293 K–298 K) 4
5 B boron
use 1.5×104 Ωm
LNG (10−8 Ωm) 1.5×1012
WEL (10−8 Ωm) (293 K–298 K) > 1012
6 C carbon (diamond)
use
LNG (10−8 Ωm) 0.8 [sic]
6 C carbon (graphite)
use
LNG (10−8 Ωm) 1375
WEL (10−8 Ωm) (293 K–298 K) about 1000 – direction dependent
11 Na sodium
use 8.0 nΩm 43.3 nΩm 47.7 nΩm 48.8 nΩm 49.3 nΩm
CRC (10−8 Ωm) 0.80 4.33 4.77 4.88 4.93
LNG (10−8 Ωm) 4.77
WEL (10−8 Ωm) (293 K–298 K) 4.7
12 Mg magnesium
use 5.57 nΩm 40.5 nΩm 43.9 nΩm 44.8 nΩm 45.1 nΩm 78.6 nΩm
CRC (10−8 Ωm) 0.557 4.05 4.39 4.48 4.51 7.86
LNG (10−8 Ωm) 4.39
WEL (10−8 Ωm) (293 K–298 K) 4.4
13 Al aluminium
use 2.45 nΩm 24.17 nΩm 26.50 nΩm 27.09 nΩm 27.33 nΩm 49.9 nΩm
CRC (10−8 Ωm) 0.245 2.417 2.650 2.709 2.733 4.99
LNG (10−8 Ωm) 2.6548
WEL (10−8 Ωm) (293 K–298 K) 2.65
14 Si silicon
use
LNG (10−8 Ωm) 105
WEL (10−8 Ωm) (293 K–298 K) about 100000
15 P phosphorus
use
LNG (10−8 Ωm) (white) 10 [sic]
WEL (10−8 Ωm) (293 K–298 K) 10
16 S sulfur
use (amorphous) 2×1015 Ωm
LNG (10−8 Ωm) (amorphous) 2×1023
WEL (10−8 Ωm) (293 K–298 K) > 1023
17 Cl chlorine
use > 10 Ωm
LNG (10−8 Ωm) >109
WEL (10−8 Ωm) (293 K–298 K) > 1010
19 K potassium
use 13.4 nΩm 64.9 nΩm 72.0 nΩm 73.9 nΩm 74.7 nΩm
CRC (10−8 Ωm) 1.34 6.49 7.20 7.39 7.47
LNG (10−8 Ωm) 7.2
WEL (10−8 Ωm) (293 K–298 K) 7
20 Ca calcium
use 6.5 nΩm 31.1 nΩm 33.6 nΩm 34.2 nΩm 34.5 nΩm 60. nΩm
CRC (10−8 Ωm) 0.65 3.11 3.36 3.42 3.45 6.0
LNG (10−8 Ωm) 3.36
WEL (10−8 Ωm) (293 K–298 K) 3.4
21 Sc scandium
use (room temperature) (alpha, polycrystalline) calculated 562 nΩm
CRC (10−8 Ωm) (290 K–300 K) 56.2
CR2 (10−8 Ωm) (room temperature) (alpha, amorphous) 70.9
CR2 (10−8 Ωm) (room temperature) (alpha, crystalline) 26.9
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) calculated from single crystal values 56.2
LNG (10−8 Ωm) 56.2
WEL (10−8 Ωm) (293 K–298 K) 55
22 Ti titanium
use 0.39 µΩm 0.420 µΩm
CRC (10−8 Ωm) 39
LNG (10−8 Ωm) 42.0
WEL (10−8 Ωm) (293 K–298 K) 40
23 V vanadium
use 24.1 nΩm 181 nΩm 197 nΩm 201 nΩm 202 nΩm 348 nΩm
CRC (10−8 Ωm) 2.41 18.1 19.7 20.1 20.2 34.8
LNG (10−8 Ωm) 19.7
WEL (10−8 Ωm) (293 K–298 K) 20
24 Cr chromium
use 118 nΩm 125 nΩm 126 nΩm 127 nΩm 201 nΩm
CRC (10−8 Ωm) 11.8 12.5 12.6 12.7 20.1
LNG (10−8 Ωm) 12.5
WEL (10−8 Ωm) (293 K–298 K) 12.7
25 Mn manganese
use 1.32 µΩm 1.43 µΩm 1.44 µΩm 1.44 µΩm 1.44 µΩm 1.49 µΩm
CRC (10−8 Ωm) 132 143 144 144 144 149
LNG (10−8 Ωm) 144
WEL (10−8 Ωm) (293 K–298 K) 160
26 Fe iron
use 6.93 nΩm 85.7 nΩm 96.1 nΩm 98.7 nΩm 99.8 nΩm 237 nΩm
CRC (10−8 Ωm) 0.693 8.57 9.61 9.87 9.98 23.7
LNG (10−8 Ωm) 9.61
WEL (10−8 Ωm) (293 K–298 K) 9.7
27 Co cobalt
use 56 nΩm 62.4 nΩm
CRC (10−8 Ωm) 5.6
LNG (10−8 Ωm) 6.24
WEL (10−8 Ωm) (293 K–298 K) 6
28 Ni nickel
use 5.45 nΩm 61.6 nΩm 69.3 nΩm 71.2 nΩm 72.0 nΩm 177 nΩm
CRC (10−8 Ωm) 0.545 6.16 6.93 7.12 7.20 17.7
LNG (10−8 Ωm) 6.93
WEL (10−8 Ωm) (293 K–298 K) 7
29 Cu copper
use 2.15 nΩm 15.43 nΩm 16.78 nΩm 17.12 nΩm 17.25 nΩm 30.90 nΩm
CRC (10−8 Ωm) 0.215 1.543 1.678 1.712 1.725 3.090
LNG (10−8 Ωm) 1.678
WEL (10−8 Ωm) (293 K–298 K) 1.7
30 Zn zinc
use 11.5 nΩm 54.6 nΩm 59.0 nΩm 60.1 nΩm 60.6 nΩm 108.2 nΩm
CRC (10−8 Ωm) 1.15 5.46 5.90 6.01 6.06 10.82
LNG (10−8 Ωm) 5.9
WEL (10−8 Ωm) (293 K–298 K) 5.9
31 Ga gallium
use
CRC (10−8 Ωm) 13.6
LNG (10−8 Ωm) (30 °C) 25.795
WEL (10−8 Ωm) (293 K–298 K) 14
32 Ge germanium
use
LNG (10−8 Ωm) 53000
WEL (10−8 Ωm) (293 K–298 K) about 50000
33 As arsenic
use 333 nΩm
LNG (10−8 Ωm) 33.3
WEL (10−8 Ωm) (293 K–298 K) 30
34 Se selenium
use
LNG (10−8 Ωm) (amorphous) 1.2 [sic]
WEL (10−8 Ωm) (293 K–298 K) high
35 Br bromine
use 7.8×1010 Ωm
LNG (10−8 Ωm) 7.8×1018
WEL (10−8 Ωm) (293 K–298 K) > 1018
37 Rb rubidium
use 26.5 nΩm 115 nΩm 128 nΩm 131 nΩm 133 nΩm
CRC (10−8 Ωm) 2.65 11.5 12.8 13.1 13.3
LNG (10−8 Ωm) 12.8
WEL (10−8 Ωm) (293 K–298 K) 12
38 Sr strontium
use 36.4 nΩm 123 nΩm 132 nΩm 134 nΩm 135 nΩm 222 nΩm
CRC (10−8 Ωm) 3.64 12.3 13.2 13.4 13.5 22.2
LNG (10−8 Ωm) 13.2
WEL (10−8 Ωm) (293 K–298 K) 13
39 Y yttrium
use (room temperature) (alpha, polycrystalline) 596 nΩm
CRC (10−8 Ωm) (290 K–300 K) 59.6
CR2 (10−8 Ωm) (room temperature) (alpha, amorphous) 72.5
CR2 (10−8 Ωm) (room temperature) (alpha, crystalline) 35.5
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 59.6
LNG (10−8 Ωm) 59.6
WEL (10−8 Ωm) (293 K–298 K) 56
40 Zr zirconium
use 66.4 nΩm 388 nΩm 421 nΩm 429 nΩm 433 nΩm 765 nΩm
CRC (10−8 Ωm) 6.64 38.8 42.1 42.9 43.3 76.5
LNG (10−8 Ωm) 42.1
WEL (10−8 Ωm) (293 K–298 K) 42
41 Nb niobium
use 152 nΩm
CRC (10−8 Ωm) 15.2
LNG (10−8 Ωm) 15.2
WEL (10−8 Ωm) (293 K–298 K) 15
42 Mo molybdenum
use 4.82 nΩm 48.5 nΩm 53.4 nΩm 54.7 nΩm 55.2 nΩm 106 nΩm
CRC (10−8 Ωm) 0.482 4.85 5.34 5.47 5.52 10.6
LNG (10−8 Ωm) 5.34
WEL (10−8 Ωm) (293 K–298 K) 5
43 Tc technetium
use
LNG (10−8 Ωm) (100 °C) 22.6
WEL (10−8 Ωm) (293 K–298 K) 20
44 Ru ruthenium
use 71 nΩm
CRC (10−8 Ωm) 7.1
LNG (10−8 Ωm) 7.1
WEL (10−8 Ωm) (293 K–298 K) 7.1
45 Rh rhodium
use 43.3 nΩm
CRC (10−8 Ωm) 4.3
LNG (10−8 Ωm) 4.33
WEL (10−8 Ωm) (293 K–298 K) 4.3
46 Pd palladium
use 17.5 nΩm 97.8 nΩm 105.4 nΩm 107.3 nΩm 108.0 nΩm 179.4 nΩm
CRC (10−8 Ωm) 1.75 9.78 10.54 10.73 10.80 17.94
LNG (10−8 Ωm) 10.54
WEL (10−8 Ωm) (293 K–298 K) 10
47 Ag silver
use 2.89 nΩm 14.67 nΩm 15.87 nΩm 16.17 nΩm 16.29 nΩm 28.7 nΩm
CRC (10−8 Ωm) 0.289 1.467 1.587 1.617 1.629 2.87
LNG (10−8 Ωm) 1.587
WEL (10−8 Ωm) (293 K–298 K) 1.6
48 Cd cadmium
use 68 nΩm
use (22 °C) 72.7 nΩm
CRC (10−8 Ωm) 6.8
LNG (10−8 Ωm) (22 °C) 7.27
WEL (10−8 Ωm) (293 K–298 K) 7
49 In indium
use 0.080 µΩm 83.7 nΩm
CRC (10−8 Ωm) 8.0
LNG (10−8 Ωm) 8.37
WEL (10−8 Ωm) (293 K–298 K) 8
50 Sn tin
use 115 nΩm
CRC (10−8 Ωm) 11.5
LNG (10−8 Ωm) 11.5
WEL (10−8 Ωm) (293 K–298 K) 11
51 Sb antimony
use 0.39 µΩm 417 nΩm
CRC (10−8 Ωm) 39
LNG (10−8 Ωm) 41.7
WEL (10−8 Ωm) (293 K–298 K) 40
52 Te tellurium
use
LNG (10−8 Ωm) (5.8–33)×10³
WEL (10−8 Ωm) (293 K–298 K) about 10000
53 I iodine
use 1.3×107 Ωm
LNG (10−8 Ωm) 1.3×1015
WEL (10−8 Ωm) (293 K–298 K) > 1015
55 Cs caesium
use 41.6 nΩm 187 nΩm 205 nΩm 208 nΩm 210 nΩm
CRC (10−8 Ωm) 4.16 18.7 20.5 20.8 21.0
LNG (10−8 Ωm) 20.5
WEL (10−8 Ωm) (293 K–298 K) 20
56 Ba barium
use 68.3 nΩm 302 nΩm 332 nΩm 0.340 µΩm 343 nΩm 724 nΩm
CRC (10−8 Ωm) 6.83 30.2 33.2 34.0 34.3 72.4
LNG (10−8 Ωm) 33.2
WEL (10−8 Ωm) (293 K–298 K) 35
57 La lanthanum
use (room temperature) (alpha, polycrystalline) 615 nΩm
CRC (10−8 Ωm) (290 K–300 K) 61.5
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 61.5
LNG (10−8 Ωm) 61.5
WEL (10−8 Ωm) (293 K–298 K) 61
58 Ce cerium (beta, hex)
use (room temperature) (beta, polycrystalline) 828 nΩm
CRC (10−8 Ωm) (beta, hex) (290 K–300 K) 82.8
CR2 (10−8 Ωm) (room temperature) (beta, polycrystalline) 82.8
LNG (10−8 Ωm) (beta, hex) 82.8
58 Ce cerium (gamma, cubic)
use (room temperature) (gamma, polycrystalline) 744 nΩm
CRC (10−8 Ωm) 74.4
CR2 (10−8 Ωm) (room temperature) (gamma, polycrystalline) 74.4
WEL (10−8 Ωm) (293 K–298 K) 74
59 Pr praseodymium
use (room temperature) (alpha, polycrystalline) 0.700 µΩm
CRC (10−8 Ωm) (290 K–300 K) 70.0
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 70.0
LNG (10−8 Ωm) 70.0
WEL (10−8 Ωm) (293 K–298 K) 70
60 Nd neodymium
use (room temperature) (alpha, polycrystalline) 643 nΩm
CRC (10−8 Ωm) (290 K–300 K) 64.3
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 64.3
LNG (10−8 Ωm) 64.3
WEL (10−8 Ωm) (293 K–298 K) 64
61 Pm promethium
use (room temperature) estimated 0.75 µΩm
CRC (10−8 Ωm) (290 K–300 K) 75 est.
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 75 estimated
LNG (10−8 Ωm) 64.0
WEL (10−8 Ωm) (293 K–298 K) 75
62 Sm samarium
use (room temperature) (alpha, polycrystalline) 0.940 µΩm
CRC (10−8 Ωm) (290 K–300 K) 94.0
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 94.0
LNG (10−8 Ωm) 94.0
WEL (10−8 Ωm) (293 K–298 K) 94
63 Eu europium
use (room temperature) (polycrystalline) 0.900 µΩm
CRC (10−8 Ωm) (290 K–300 K) 90.0
CR2 (10−8 Ωm) (room temperature) (polycrystalline) 90.0
LNG (10−8 Ωm) 90.0
WEL (10−8 Ωm) (293 K–298 K) 90
64 Gd gadolinium
use (room temperature) (alpha, polycrystalline) 1.310 µΩm
CRC (10−8 Ωm) (290 K–300 K) 131
CR2 (10−8 Ωm) (room temperature) (alpha, amorphous) 135.1
CR2 (10−8 Ωm) (room temperature) (alpha, crystalline) 121.7
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 131.0
LNG (10−8 Ωm) 131
WEL (10−8 Ωm) (293 K–298 K) 130
65 Tb terbium
use (room temperature) (alpha, polycrystalline) 1.150 µΩm
CRC (10−8 Ωm) (290 K–300 K) 115
CR2 (10−8 Ωm) (room temperature) (alpha, amorphous) 123.5
CR2 (10−8 Ωm) (room temperature) (alpha, crystalline) 101.5
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 115.0
LNG (10−8 Ωm) 115
WEL (10−8 Ωm) (293 K–298 K) 120
66 Dy dysprosium
use (room temperature) (alpha, polycrystalline) 926 nΩm
CRC (10−8 Ωm) (290 K–300 K) 92.6
CR2 (10−8 Ωm) (room temperature) (alpha, amorphous) 111.0
CR2 (10−8 Ωm) (room temperature) (alpha, crystalline) 76.6
CR2 (10−8 Ωm) (room temperature) (alpha, polycrystalline) 92.6
LNG (10−8 Ωm) 92.6
WEL (10−8 Ωm) (293 K–298 K) 91
67 Ho holmium
use (room temperature) (polycrystalline) 814 nΩm
CRC (10−8 Ωm) (290 K–300 K) 81.4
CR2 (10−8 Ωm) (room temperature) (amorphous) 101.5
CR2 (10−8 Ωm) (room temperature) (crystalline) 60.5
CR2 (10−8 Ωm) (room temperature) (polycrystalline) 81.4
LNG (10−8 Ωm) 81.4
WEL (10−8 Ωm) (293 K–298 K) 94
68 Er erbium
use (room temperature) (polycrystalline) 0.860 µΩm
CRC (10−8 Ωm) (290 K–300 K) 86.0
CR2 (10−8 Ωm) (room temperature) (amorphous) 94.5
CR2 (10−8 Ωm) (room temperature) (crystalline) 60.3
CR2 (10−8 Ωm) (room temperature) (polycrystalline) 86.0
LNG (10−8 Ωm) 86.0
WEL (10−8 Ωm) (293 K–298 K) 86
69 Tm thulium
use (room temperature) (polycrystalline) 676 nΩm
CRC (10−8 Ωm) (290 K–300 K) 67.6
CR2 (10−8 Ωm) (room temperature) (amorphous) 88.0
CR2 (10−8 Ωm) (room temperature) (crystalline) 47.2
CR2 (10−8 Ωm) (room temperature) (polycrystalline) 67.6
LNG (10−8 Ωm) 67.6
WEL (10−8 Ωm) (293 K–298 K) 70
70 Yb ytterbium
use (room temperature) (beta, polycrystalline) 0.250 µΩm
CRC (10−8 Ωm) (290 K–300 K) 25.0
CR2 (10−8 Ωm) (room temperature) (beta, polycrystalline) 25.0
LNG (10−8 Ωm) 25
WEL (10−8 Ωm) (293 K–298 K) 28
71 Lu lutetium
use (room temperature) (polycrystalline) 582 nΩm
CRC (10−8 Ωm) (290 K–300 K) 58.2
CR2 (10−8 Ωm) (room temperature) (amorphous) 76.6
CR2 (10−8 Ωm) (room temperature) (crystalline) 34.7
CR2 (10−8 Ωm) (room temperature) (polycrystalline) 58.2
LNG (10−8 Ωm) 58.2
WEL (10−8 Ωm) (293 K–298 K) 56
72 Hf hafnium
use 67.5 nΩm 304 nΩm 331 nΩm 337 nΩm 0.340 µΩm 631 nΩm
CRC (10−8 Ωm) 6.75 30.4 33.1 33.7 34.0 63.1
LNG (10−8 Ωm) 33.1
WEL (10−8 Ωm) (293 K–298 K) 30
73 Ta tantalum
use 26.2 nΩm 122 nΩm 131 nΩm 134 nΩm 135 nΩm 229 nΩm
CRC (10−8 Ωm) 2.62 12.2 13.1 13.4 13.5 22.9
LNG (10−8 Ωm) 13.5
WEL (10−8 Ωm) (293 K–298 K) 13
74 W tungsten
use 6.06 nΩm 48.2 nΩm 52.8 nΩm 53.9 nΩm 54.4 nΩm 103 nΩm
CRC (10−8 Ωm) 0.606 4.82 5.28 5.39 5.44 10.3
LNG (10−8 Ωm) 5.28
WEL (10−8 Ωm) (293 K–298 K) 5
75 Re rhenium
use 172 nΩm 193 nΩm
CRC (10−8 Ωm) 17.2
LNG (10−8 Ωm) 19.3
WEL (10−8 Ωm) (293 K–298 K) 18
76 Os osmium
use 81.2 nΩm
CRC (10−8 Ωm) 8.1
LNG (10−8 Ωm) 8.12
WEL (10−8 Ωm) (293 K–298 K) 8.1
77 Ir iridium
use 47 nΩm 47.1 nΩm
CRC (10−8 Ωm) 4.7
LNG (10−8 Ωm) 4.71
WEL (10−8 Ωm) (293 K–298 K) 4.7
78 Pt platinum
use 19.22 nΩm 96 nΩm 105 nΩm 107 nΩm 108 nΩm 183 nΩm
CRC (10−8 Ωm) 1.922 9.6 10.5 10.7 10.8 18.3
LNG (10−8 Ωm) 10.6
WEL (10−8 Ωm) (293 K–298 K) 10.6
79 Au gold
use 4.81 nΩm 20.51 nΩm 22.14 nΩm 22.55 nΩm 22.71 nΩm 39.7 nΩm
CRC (10−8 Ωm) 0.481 2.051 2.214 2.255 2.271 3.97
LNG (10−8 Ωm) 2.214
WEL (10−8 Ωm) (293 K–298 K) 2.2
80 Hg mercury
use 961 nΩm
CRC (10−8 Ωm) 96.1
LNG (10−8 Ωm) (solid) 21
LNG (10−8 Ωm) (liquid) 95.8
WEL (10−8 Ωm) (293 K–298 K) 96
81 Tl thallium
use 0.15 µΩm 0.18 µΩm
CRC (10−8 Ωm) 15
LNG (10−8 Ωm) 18
WEL (10−8 Ωm) (293 K–298 K) 15
82 Pb lead
use 49 nΩm 192 nΩm 208 nΩm 211 nΩm 213 nΩm 383 nΩm
CRC (10−8 Ωm) 4.9 19.2 20.8 21.1 21.3 38.3
LNG (10−8 Ωm) 20.8
WEL (10−8 Ωm) (293 K–298 K) 21
83 Bi bismuth
use 1.07 µΩm 1.29 µΩm
CRC (10−8 Ωm) 107
LNG (10−8 Ωm) 129
WEL (10−8 Ωm) (293 K–298 K) 130
84 Po polonium
use (alpha) 0.40 µΩm
CRC (10−8 Ωm) 40
LNG (10−8 Ωm) (alpha) 40.0
WEL (10−8 Ωm) (293 K–298 K) 43
88 Ra radium
use 1 µΩm
LNG (10−8 Ωm) 100
WEL (10−8 Ωm) (293 K–298 K) 100
90 Th thorium
use 147 nΩm
use (22 °C) 15.4
CRC (10−8 Ωm) 14.7
LNG (10−8 Ωm) (22 °C) 15.4
WEL (10−8 Ωm) (293 K–298 K) 15
91 Pa protactinium
use 177 nΩm
use (22 °C) 19.1
CRC (10−8 Ωm) 17.7
LNG (10−8 Ωm) (22 °C) 19.1
WEL (10−8 Ωm) (293 K–298 K) 18
92 U uranium
use 0.280 µΩm
CRC (10−8 Ωm) 28
LNG (10−8 Ωm) 28.0
WEL (10−8 Ωm) (293 K–298 K) 28
93 Np neptunium
use (22 °C) 1.220 µΩm
LNG (10−8 Ωm) (22 °C) 122.0
WEL (10−8 Ωm) (293 K–298 K) 120
94 Pu plutonium
use 1.460 µΩm
LNG (10−8 Ωm) 146.0
WEL (10−8 Ωm) (293 K–298 K) 150
95 Am americium
use (room temperature) 689 nΩm [1]
96 Cm curium
use (room temperature) 1250 nΩm [2]
T 80 K (−193 °C) 273 K (0 °C) 293 K (20 °C) 298 K (25 °C) 300 K (27 °C) 500 K (227 °C)

References

  1. ^ The electrical resistivity of 241Am metal. Journal of Physics and Chemistry of Solids Volume 38, Issue 11, 1977, Pages 1301-1305
  2. ^ The electrical resistivity of 244Cm metal. JSolid State Communications Volume 23, Issue 6, August 1977, Pages 389-392

WEL

As quoted at http://www.webelements.com/ from these sources:

  • G.W.C. Kaye and T. H. Laby in Tables of physical and chemical constants, Longman, London, UK, 15th edition, 1993.
  • A.M. James and M.P. Lord in Macmillan's Chemical and Physical Data, Macmillan, London, UK, 1992.
  • D.R. Lide, (ed.) in Chemical Rubber Company handbook of chemistry and physics, CRC Press, Boca Raton, Florida, USA, 79th edition, 1998.
  • J.A. Dean (ed) in Lange's Handbook of Chemistry, McGraw-Hill, New York, USA, 14th edition, 1992.

CRC

As quoted from various sources in an online version of:

  • David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 12, Properties of Solids; Electrical Resistivity of Pure Metals

CR2

As quoted in an online version of:

  • David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Physical Properties of the Rare Earth Metals

which further refers to:

  • Beaudry, B. J. and Gschneidner, K.A., Jr., in Handbook on the Physics and Chemistry of Rare Earths, Vol. 1, Gschneidner, K.A., Jr. and Eyring, L., Eds., North-Holland Physics, Amsterdam, 1978, 173.
  • McEwen, K.A., in Handbook on the Physics and Chemistry of Rare Earths, Vol. 1, Gschneidner, K.A., Jr. and Eyring, L., Eds., North-Holland Physics, Amsterdam, 1978, 411.

LNG

As quoted from:

  • J.A. Dean (ed), Lange's Handbook of Chemistry (15th Edition), McGraw-Hill, 1999; Section 4, Table 4.1 Electronic Configuration and Properties of the Elements
Electrical resistivity and conductivity

Electrical resistivity (also called specific electrical resistance or volume resistivity) and its converse, electrical conductivity, is a fundamental property of a material that quantifies how strongly it resists or conducts the flow of electric current. A low resistivity indicates a material that readily allows the flow of electric current. Resistivity is commonly represented by the Greek letter ρ (rho). The SI unit of electrical resistivity is the ohm-metre (Ω⋅m). For example, if a 1 m × 1 m × 1 m solid cube of material has sheet contacts on two opposite faces, and the resistance between these contacts is 1 Ω, then the resistivity of the material is 1 Ω⋅m.

Electrical conductivity or specific conductance is the reciprocal of electrical resistivity. It represents a material's ability to conduct electric current. It is commonly signified by the Greek letter σ (sigma), but κ (kappa) (especially in electrical engineering) and γ (gamma) are sometimes used. The SI unit of electrical conductivity is siemens per metre (S/m).

List of data references for chemical elements

Values for many properties of the elements, together with various references, are collected on these data pages.

List of thermal conductivities

In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat.

Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.

Mixtures may have variable thermal conductivities due to composition. Note that for gases in usual conditions, heat transfer by advection (caused by convection or turbulence for instance) is the dominant mechanism compared to conduction.

This table shows thermal conductivity in SI units of watts per metre-kelvin (W·m−1·K−1). Some measurements use the imperial unit BTUs per foot per hour per degree Fahrenheit (1 BTU h−1 ft−1 F−1 = 1.728 W·m−1·K−1).

Outline of chemistry

The following outline is provided as an overview of and topical guide to chemistry:

Chemistry – science of atomic matter (matter that is composed of chemical elements), especially its chemical reactions, but also including its properties, structure, composition, behavior, and changes as they relate the chemical reactions. Chemistry is centrally concerned with atoms and their interactions with other atoms, and particularly with the properties of chemical bonds.

Elements
Data
Periodic table forms
Sets of elements
Elements
History
See also

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.