Einsteinium

Einsteinium is a synthetic element with symbol Es and atomic number 99. A member of the actinide series, it is the seventh transuranic element.

Einsteinium was discovered as a component of the debris of the first hydrogen bomb explosion in 1952, and named after Albert Einstein. Its most common isotope einsteinium-253 (half-life 20.47 days) is produced artificially from decay of californium-253 in a few dedicated high-power nuclear reactors with a total yield on the order of one milligram per year. The reactor synthesis is followed by a complex process of separating einsteinium-253 from other actinides and products of their decay. Other isotopes are synthesized in various laboratories, but at much smaller amounts, by bombarding heavy actinide elements with light ions. Owing to the small amounts of produced einsteinium and the short half-life of its most easily produced isotope, there are currently almost no practical applications for it outside basic scientific research. In particular, einsteinium was used to synthesize, for the first time, 17 atoms of the new element mendelevium in 1955.

Einsteinium is a soft, silvery, paramagnetic metal. Its chemistry is typical of the late actinides, with a preponderance of the +3 oxidation state; the +2 oxidation state is also accessible, especially in solids. The high radioactivity of einsteinium-253 produces a visible glow and rapidly damages its crystalline metal lattice, with released heat of about 1000 watts per gram. Difficulty in studying its properties is due to einsteinium-253's decay to berkelium-249 and then californium-249 at a rate of about 3% per day. The isotope of einsteinium with the longest half-life, einsteinium-252 (half-life 471.7 days) would be more suitable for investigation of physical properties, but it has proven far more difficult to produce and is available only in minute quantities, and not in bulk.[1] Einsteinium is the element with the highest atomic number which has been observed in macroscopic quantities in its pure form, and this was the common short-lived isotope einsteinium-253.[2]

Like all synthetic transuranic elements, isotopes of einsteinium are very radioactive and are considered highly dangerous to health on ingestion.[3]

Einsteinium,  99Es
Quartz vial (9 mm diameter) containing ~300 micrograms of solid 253Es. The illumination produced is a result of the intense radiation from 253Es.
Einsteinium
Pronunciation/aɪnˈstaɪniəm/ (eyen-STY-nee-əm)
Appearancesilvery; glows blue in the dark
Mass number252 (most stable isotope)
Einsteinium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Ho

Es

(Upt)
californiumeinsteiniumfermium
Atomic number (Z)99
Groupgroup n/a
Periodperiod 7
Blockf-block
Element category  actinide
Electron configuration[Rn] 5f11 7s2
Electrons per shell
2, 8, 18, 32, 29, 8, 2
Physical properties
Phase at STPsolid
Melting point1133 K ​(860 °C, ​1580 °F)
Boiling point1269 K ​(996 °C, ​1825 °F) (estimated)
Density (near r.t.)8.84 g/cm3
Atomic properties
Oxidation states+2, +3, +4
ElectronegativityPauling scale: 1.3
Ionization energies
  • 1st: 619 kJ/mol
Color lines in a spectral range
Spectral lines of einsteinium
Other properties
Natural occurrencesynthetic
Crystal structureface-centered cubic (fcc)
Face-centered cubic crystal structure for einsteinium
Magnetic orderingparamagnetic
CAS Number7429-92-7
History
Namingafter Albert Einstein
DiscoveryLawrence Berkeley National Laboratory (1952)
Main isotopes of einsteinium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
252Es syn 471.7 d α 248Bk
ε 252Cf
β 252Fm
253Es syn 20.47 d SF
α 249Bk
254Es syn 275.7 d ε 254Cf
β 254Fm
α 250Bk
255Es syn 39.8 d β 255Fm
α 251Bk
SF

History

Ivy Mike - mushroom cloud
Einsteinium was first observed in the fallout from the Ivy Mike nuclear test.

Einsteinium was first identified in December 1952 by Albert Ghiorso and co-workers at the University of California, Berkeley in collaboration with the Argonne and Los Alamos National Laboratories, in the fallout from the Ivy Mike nuclear test. The test was carried out on November 1, 1952 at Enewetak Atoll in the Pacific Ocean and was the first successful test of a hydrogen bomb.[4] Initial examination of the debris from the explosion had shown the production of a new isotope of plutonium, 244
94
Pu
, which could only have formed by the absorption of six neutrons by a uranium-238 nucleus followed by two beta decays.

At the time, the multiple neutron absorption was thought to be an extremely rare process, but the identification of 244
94
Pu
indicated that still more neutrons could have been captured by the uranium nuclei, thereby producing new elements heavier than californium.[4]

Albert Ghiorso ca 1970
The element was discovered by a team headed by Albert Ghiorso.

Ghiorso and co-workers analyzed filter papers which had been flown through the explosion cloud on airplanes (the same sampling technique that had been used to discover 244
94
Pu
).[5] Larger amounts of radioactive material were later isolated from coral debris of the atoll, which were delivered to the U.S.[4] The separation of suspected new elements was carried out in the presence of a citric acid/ammonium buffer solution in a weakly acidic medium (pH ≈ 3.5), using ion exchange at elevated temperatures; fewer than 200 atoms of einsteinium were recovered in the end.[6] Nevertheless, element 99 (einsteinium), namely its 253Es isotope, could be detected via its characteristic high-energy alpha decay at 6.6 MeV.[4] It was produced by the capture of 15 neutrons by uranium-238 nuclei followed by seven beta-decays, and had a half-life of 20.5 days. Such multiple neutron absorption was made possible by the high neutron flux density during the detonation, so that newly generated heavy isotopes had plenty of available neutrons to absorb before they could disintegrate into lighter elements. Neutron capture initially raised the mass number without changing the atomic number of the nuclide, and the concomitant beta-decays resulted in a gradual increase in the atomic number:[4]

Some 238U atoms, however, could absorb two additional neutrons (for a total of 17), resulting in 255Es, as well as in the 255Fm isotope of another new element, fermium.[7] The discovery of the new elements and the associated new data on multiple neutron capture were initially kept secret on the orders of the U.S. military until 1955 due to Cold War tensions and competition with Soviet Union in nuclear technologies.[4][8][9] However, the rapid capture of so many neutrons would provide needed direct experimental confirmation of the so-called r-process multiple neutron absorption needed to explain the cosmic nucleosynthesis (production) of certain heavy chemical elements (heavier than nickel) in supernova explosions, before beta decay. Such a process is needed to explain the existence of many stable elements in the universe.[10]

Meanwhile, isotopes of element 99 (as well as of new element 100, fermium) were produced in the Berkeley and Argonne laboratories, in a nuclear reaction between nitrogen-14 and uranium-238,[11] and later by intense neutron irradiation of plutonium or californium:

These results were published in several articles in 1954 with the disclaimer that these were not the first studies that had been carried out on the elements.[12][13][14][15][16] The Berkeley team also reported some results on the chemical properties of einsteinium and fermium.[17][18] The Ivy Mike results were declassified and published in 1955.[8]

Einstein1921 by F Schmutzer 2
The element was named after Albert Einstein.

In their discovery of the elements 99 and 100, the American teams had competed with a group at the Nobel Institute for Physics, Stockholm, Sweden. In late 1953 – early 1954, the Swedish group succeeded in the synthesis of light isotopes of element 100, in particular 250Fm, by bombarding uranium with oxygen nuclei. These results were also published in 1954.[19] Nevertheless, the priority of the Berkeley team was generally recognized, as its publications preceded the Swedish article, and they were based on the previously undisclosed results of the 1952 thermonuclear explosion; thus the Berkeley team was given the privilege to name the new elements. As the effort which had led to the design of Ivy Mike was codenamed Project PANDA,[20] element 99 had been jokingly nicknamed "Pandamonium"[21] but the official names suggested by the Berkeley group derived from two prominent scientists, Albert Einstein and Enrico Fermi: "We suggest for the name for the element with the atomic number 99, einsteinium (symbol E) after Albert Einstein and for the name for the element with atomic number 100, fermium (symbol Fm), after Enrico Fermi."[8] Both Einstein and Fermi died between the time the names were originally proposed and when they were announced. The discovery of these new elements was announced by Albert Ghiorso at the first Geneva Atomic Conference held on 8–20 August 1955.[4] The symbol for einsteinium was first given as "E" and later changed to "Es" by IUPAC.[22][23]

Characteristics

Physical

EinsteiniumGlow
Glow due to the intense radiation from ~300 µg of 253Es.[24]

Einsteinium is a synthetic, silvery-white, radioactive metal. In the periodic table, it is located to the right of the actinide californium, to the left of the actinide fermium and below the lanthanide holmium with which it shares many similarities in physical and chemical properties. Its density of 8.84 g/cm3 is lower than that of californium (15.1 g/cm3) and is nearly the same as that of holmium (8.79 g/cm3), despite atomic einsteinium being much heavier than holmium. The melting point of einsteinium (860 °C) is also relatively low – below californium (900 °C), fermium (1527 °C) and holmium (1461 °C).[3][25] Einsteinium is a soft metal, with the bulk modulus of only 15 GPa, which value is one of the lowest among non-alkali metals.[26]

Contrary to the lighter actinides californium, berkelium, curium and americium which crystallize in a double hexagonal structure at ambient conditions, einsteinium is believed to have a face-centered cubic (fcc) symmetry with the space group Fm3m and the lattice constant a = 575 pm. However, there is a report of room-temperature hexagonal einsteinium metal with a = 398 pm and c = 650 pm, which converted to the fcc phase upon heating to 300 °C.[27]

The self-damage induced by the radioactivity of einsteinium is so strong that it rapidly destroys the crystal lattice,[28] and the energy release during this process, 1000 watts per gram of 253Es, induces a visible glow.[2] These processes may contribute to the relatively low density and melting point of einsteinium.[29] Further, owing to the small size of the available samples, the melting point of einsteinium was often deduced by observing the sample being heated inside an electron microscope.[30] Thus the surface effects in small samples could reduce the melting point value.

The metal is divalent and has a noticeably high volatility.[31] In order to reduce the self-radiation damage, most measurements of solid einsteinium and its compounds are performed right after thermal annealing.[32] Also, some compounds are studied under the atmosphere of the reductant gas, for example H2O+HCl for EsOCl so that the sample is partly regrown during its decomposition.[33]

Apart from the self-destruction of solid einsteinium and its compounds, other intrinsic difficulties in studying this element include scarcity – the most common 253Es isotope is available only once or twice a year in sub-milligram amounts – and self-contamination due to rapid conversion of einsteinium to berkelium and then to californium at a rate of about 3.3% per day:[34][35][36]

Thus, most einsteinium samples are contaminated, and their intrinsic properties are often deduced by extrapolating back experimental data accumulated over time. Other experimental techniques to circumvent the contamination problem include selective optical excitation of einsteinium ions by a tunable laser, such as in studying its luminescence properties.[37]

Magnetic properties have been studied for einsteinium metal, its oxide and fluoride. All three materials showed Curie–Weiss paramagnetic behavior from liquid helium to room temperature. The effective magnetic moments were deduced as 10.4±0.3 µB for Es2O3 and 11.4±0.3 µB for the EsF3, which are the highest values among actinides, and the corresponding Curie temperatures are 53 and 37 K.[38][39]

Chemical

Like all actinides, einsteinium is rather reactive. Its trivalent oxidation state is most stable in solids and aqueous solution where it induces a pale pink color.[40] The existence of divalent einsteinium is firmly established, especially in the solid phase; such +2 state is not observed in many other actinides, including protactinium, uranium, neptunium, plutonium, curium and berkelium. Einsteinium(II) compounds can be obtained, for example, by reducing einsteinium(III) with samarium(II) chloride.[41] The oxidation state +4 was postulated from vapor studies and is yet uncertain.[42]

Isotopes

Nineteen nuclides and three nuclear isomers are known for einsteinium with atomic weights ranging from 240 to 258. All are radioactive and the most stable nuclide, 252Es, has a half-life of 471.7 days.[43] Next most stable isotopes are 254Es (half-life 275.7 days),[44] 255Es (39.8 days) and 253Es (20.47 days). All of the remaining isotopes have half-lives shorter than 40 hours, and most of them decay within less than 30 minutes. Of the three nuclear isomers, the most stable is 254mEs with half-life of 39.3 hours.[45]

Nuclear fission

Einsteinium has a high rate of nuclear fission that results in a low critical mass for a sustained nuclear chain reaction. This mass is 9.89 kilograms for a bare sphere of 254Es isotope, and can be lowered to 2.9 by adding a 30-centimeter-thick steel neutron reflector, or even to 2.26 kilograms with a 20-cm-thick reflector made of water. However, even this small critical mass greatly exceeds the total amount of einsteinium isolated thus far, especially of the rare 254Es isotope.[46]

Natural occurrence

Because of the short half-life of all isotopes of einsteinium, any primordial einsteinium — that is, einsteinium that could possibly have been present on the Earth during its formation — has long since decayed. Synthesis of einsteinium from naturally-occurring actinides uranium and thorium in the Earth's crust requires multiple neutron capture, which is an extremely unlikely event. Therefore, all terrestrial einsteinium is produced in scientific laboratories, high-power nuclear reactors, or in nuclear weapons tests, and is present only within a few years from the time of the synthesis.[6] The transuranic elements from americium to fermium, including einsteinium, occurred naturally in the natural nuclear fission reactor at Oklo, but no longer do so.[47] Einsteinium was observed in Przybylski's Star in 2008.[48]

Synthesis and extraction

EsProduction
Early evolution of einsteinium production in the U.S.[49]

Einsteinium is produced in minute quantities by bombarding lighter actinides with neutrons in dedicated high-flux nuclear reactors. The world's major irradiation sources are the 85-megawatt High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory in Tennessee, U.S.,[50] and the SM-2 loop reactor at the Research Institute of Atomic Reactors (NIIAR) in Dimitrovgrad, Russia,[51] which are both dedicated to the production of transcurium (Z > 96) elements. These facilities have similar power and flux levels, and are expected to have comparable production capacities for transcurium elements,[52] although the quantities produced at NIIAR are not widely reported. In a "typical processing campaign" at Oak Ridge, tens of grams of curium are irradiated to produce decigram quantities of californium, milligram quantities of berkelium (249Bk) and einsteinium and picogram quantities of fermium.[53][54]

The first microscopic sample of 253Es sample weighing about 10 nanograms was prepared in 1961 at HFIR. A special magnetic balance was designed to estimate its weight.[3][55] Larger batches were produced later starting from several kilograms of plutonium with the einsteinium yields (mostly 253Es) of 0.48 milligrams in 1967–1970, 3.2 milligrams in 1971–1973, followed by steady production of about 3 milligrams per year between 1974 and 1978.[56] These quantities however refer to the integral amount in the target right after irradiation. Subsequent separation procedures reduced the amount of isotopically pure einsteinium roughly tenfold.[52]

Laboratory synthesis

Heavy neutron irradiation of plutonium results in four major isotopes of einsteinium: 253Es (α-emitter with half-life of 20.47 days and with a spontaneous fission half-life of 7×105 years); 254mEs (β-emitter with half-life of 39.3 hours), 254Es (α-emitter with half-life of about 276 days) and 255Es (β-emitter with half-life of 39.8 days).[57][58] An alternative route involves bombardment of uranium-238 with high-intensity nitrogen or oxygen ion beams.[59]

Einsteinium-247 (half-life 4.55 minutes) was produced by irradiating americium-241 with carbon or uranium-238 with nitrogen ions.[60] The latter reaction was first realized in 1967 in Dubna, Russia, and the involved scientists were awarded the Lenin Komsomol Prize.[61]

The isotope 248Es was produced by irradiating 249Cf with deuterium ions. It mainly decays by emission of electrons to 248Cf with a half-life of 25±5 minutes, but also releases α-particles of 6.87 MeV energy, with the ratio of electrons to α-particles of about 400.[62]

The heavier isotopes 249Es, 250Es, 251Es and 252Es were obtained by bombarding 249Bk with α-particles. One to four neutrons are liberated in this process making possible the formation of four different isotopes in one reaction.[63]

Einsteinium-253 was produced by irradiating a 0.1–0.2 milligram 252Cf target with a thermal neutron flux of (2–5)×1014 neutrons·cm−2·s−1 for 500–900 hours:[64]

Synthesis in nuclear explosions

ActinideExplosionSynthesis
Estimated yield of transuranium elements in the U.S. nuclear tests Hutch and Cyclamen.[65]

The analysis of the debris at the 10-megaton Ivy Mike nuclear test was a part of long-term project. One of the goals of which was studying the efficiency of production of transuranium elements in high-power nuclear explosions. The motivation for these experiments was that synthesis of such elements from uranium requires multiple neutron capture. The probability of such events increases with the neutron flux, and nuclear explosions are the most powerful man-made neutron sources, providing densities of the order 1023 neutrons/cm2 within a microsecond, or about 1029 neutrons/(cm2·s). In comparison, the flux of the HFIR reactor is 5×1015 neutrons/(cm2·s). A dedicated laboratory was set up right at Enewetak Atoll for preliminary analysis of debris, as some isotopes could have decayed by the time the debris samples reached the mainland U.S. The laboratory was receiving samples for analysis as soon as possible, from airplanes equipped with paper filters which flew over the atoll after the tests. Whereas it was hoped to discover new chemical elements heavier than fermium, none of these were found even after a series of megaton explosions conducted between 1954 and 1956 at the atoll.[5]

The atmospheric results were supplemented by the underground test data accumulated in the 1960s at the Nevada Test Site, as it was hoped that powerful explosions conducted in confined space might result in improved yields and heavier isotopes. Apart from traditional uranium charges, combinations of uranium with americium and thorium have been tried, as well as a mixed plutonium-neptunium charge, but they were less successful in terms of yield and was attributed to stronger losses of heavy isotopes due to enhanced fission rates in heavy-element charges. Product isolation was problematic as the explosions were spreading debris through melting and vaporizing the surrounding rocks at depths of 300–600 meters. Drilling to such depths to extract the products was both slow and inefficient in terms of collected volumes.[5][65]

Among the nine underground tests that were carried between 1962 and 1969,[66][67] the last one was the most powerful and had the highest yield of transuranium elements. Milligrams of einsteinium that would normally take a year of irradiation in a high-power reactor, were produced within a microsecond.[65] However, the major practical problem of the entire proposal was collecting the radioactive debris dispersed by the powerful blast. Aircraft filters adsorbed only about 4×1014 of the total amount, and collection of tons of corals at Enewetak Atoll increased this fraction by only two orders of magnitude. Extraction of about 500 kilograms of underground rocks 60 days after the Hutch explosion recovered only about 1×107 of the total charge. The amount of transuranium elements in this 500-kg batch was only 30 times higher than in a 0.4 kg rock picked up 7 days after the test which demonstrated the highly non-linear dependence of the transuranium elements yield on the amount of retrieved radioactive rock.[68] Shafts were drilled at the site before the test in order to accelerate sample collection after explosion, so that explosion would expel radioactive material from the epicenter through the shafts and to collecting volumes near the surface. This method was tried in two tests and instantly provided hundreds kilograms of material, but with actinide concentration 3 times lower than in samples obtained after drilling. Whereas such method could have been efficient in scientific studies of short-lived isotopes, it could not improve the overall collection efficiency of the produced actinides.[69]

Although no new elements (apart from einsteinium and fermium) could be detected in the nuclear test debris, and the total yields of transuranium elements were disappointingly low, these tests did provide significantly higher amounts of rare heavy isotopes than previously available in laboratories.[70]

Separation

Elutionskurven Fm Es Cf Bk Cm Am
Elution curves: chromatographic separation of Fm(100), Es(99), Cf, Bk, Cm and Am

Separation procedure of einsteinium depends on the synthesis method. In the case of light-ion bombardment inside a cyclotron, the heavy ion target is attached to a thin foil, and the generated einsteinium is simply washed off the foil after the irradiation. However, the produced amounts in such experiments are relatively low.[71] The yields are much higher for reactor irradiation, but there, the product is a mixture of various actinide isotopes, as well as lanthanides produced in the nuclear fission decays. In this case, isolation of einsteinium is a tedious procedure which involves several repeating steps of cation exchange, at elevated temperature and pressure, and chromatography. Separation from berkelium is important, because the most common einsteinium isotope produced in nuclear reactors, 253Es, decays with a half-life of only 20 days to 249Bk, which is fast on the timescale of most experiments. Such separation relies on the fact that berkelium easily oxidizes to the solid +4 state and precipitates, whereas other actinides, including einsteinium, remain in their +3 state in solutions.[72]

Separation of trivalent actinides from lanthanide fission products can be done by a cation-exchange resin column using a 90% water/10% ethanol solution saturated with hydrochloric acid (HCl) as eluant. It is usually followed by anion-exchange chromatography using 6 molar HCl as eluant. A cation-exchange resin column (Dowex-50 exchange column) treated with ammonium salts is then used to separate fractions containing elements 99, 100 and 101. These elements can be then identified simply based on their elution position/time, using α-hydroxyisobutyrate solution (α-HIB), for example, as eluant.[73]

Separation of the 3+ actinides can also be achieved by solvent extraction chromatography, using bis-(2-ethylhexyl) phosphoric acid (abbreviated as HDEHP) as the stationary organic phase, and nitric acid as the mobile aqueous phase. The actinide elution sequence is reversed from that of the cation-exchange resin column. The einsteinium separated by this method has the advantage to be free of organic complexing agent, as compared to the separation using a resin column.[73]

Preparation of the metal

Einsteinium is highly reactive and therefore strong reducing agents are required to obtain the pure metal from its compounds.[74] This can be achieved by reduction of einsteinium(III) fluoride with metallic lithium:

EsF3 + 3 Li → Es + 3 LiF

However, owing to its low melting point and high rate of self-radiation damage, einsteinium has high vapor pressure, which is higher than that of lithium fluoride. This makes this reduction reaction rather inefficient. It was tried in the early preparation attempts and quickly abandoned in favor of reduction of einsteinium(III) oxide with lanthanum metal:[27][29][75]

Es2O3 + 2 La → 2 Es + La2O3

Chemical compounds

Crystal structure and lattice constants of some Es compounds
Compound Color Symmetry Space group No Pearson symbol a (pm) b (pm) c (pm)
Es2O3 Colorless Cubic[35] Ia3 206 cI80 1076.6
Es2O3 Colorless Monoclinic[76] C2/m 12 mS30 1411 359 880
Es2O3 Colorless Hexagonal[76] P3m1 164 hP5 370 600
EsF3 Hexagonal[34]
EsF4 Monoclinic[77] C2/c 15 mS60
EsCl3 Orange Hexagonal[78][79] C63/m hP8 727 410
EsBr3 Yellow Monoclinic[80] C2/m 12 mS16 727 1259 681
EsI3 Amber Hexagonal[81][82] R3 148 hR24 753 2084
EsOCl Tetragonal[81][83] P4/nmm 394.8 670.2

Oxides

Einsteinium(III) oxide (Es2O3) was obtained by burning einsteinium(III) nitrate. It forms colorless cubic crystals, which were first characterized from microgram samples sized about 30 nanometers.[28][35] Two other phases, monoclinic and hexagonal, are known for this oxide. The formation of a certain Es2O3 phase depends on the preparation technique and sample history, and there is no clear phase diagram. Interconversions between the three phases can occur spontaneously, as a result of self-irradiation or self-heating.[84] The hexagonal phase is isotypic with lanthanum(III) oxide where the Es3+ ion is surrounded by a 6-coordinated group of O2− ions.[76][81]

Halides

Einsteinium triiodide by transmitted light
Einsteinium(III) iodide glowing in the dark

Einsteinium halides are known for the oxidation states +2 and +3.[83][85] The most stable state is +3 for all halides from fluoride to iodide.

Einsteinium(III) fluoride (EsF3) can be precipitated from einsteinium(III) chloride solutions upon reaction with fluoride ions. An alternative preparation procedure is to exposure einsteinium(III) oxide to chlorine trifluoride (ClF3) or F2 gas at a pressure of 1–2 atmospheres and a temperature between 300 and 400 °C. The EsF3 crystal structure is hexagonal, as in californium(III) fluoride (CfF3) where the Es3+ ions are 8-fold coordinated by fluorine ions in a bicapped trigonal prism arrangement.[34][86][87]

Einsteinium(III) chloride (EsCl3) can be prepared by annealing einsteinium(III) oxide in the atmosphere of dry hydrogen chloride vapors at about 500 °C for some 20 minutes. It crystallizes upon cooling at about 425 °C into an orange solid with a hexagonal structure of UCl3 type, where einsteinium atoms are 9-fold coordinated by chlorine atoms in a tricapped trigonal prism geometry.[79][86][88] Einsteinium(III) bromide (EsBr3) is a pale-yellow solid with a monoclinic structure of AlCl3 type, where the einsteinium atoms are octahedrally coordinated by bromine (coordination number 6).[82][86]

The divalent compounds of einsteinium are obtained by reducing the trivalent halides with hydrogen:[89]

2 EsX3 + H2 → 2 EsX2 + 2 HX,    X = F, Cl, Br, I

Einsteinium(II) chloride (EsCl2),[90] einsteinium(II) bromide (EsBr2),[91] and einsteinium(II) iodide (EsI2)[83] have been produced and characterized by optical absorption, with no structural information available yet.[82]

Known oxyhalides of einsteinium include EsOCl,[83] EsOBr[89] and EsOI.[83] They are synthesized by treating a trihalide with a vapor mixture of water and the corresponding hydrogen halide: for example, EsCl3 + H2O/HCl to obtain EsOCl.[33]

Organoeinsteinium compounds

The high radioactivity of einsteinium has a potential use in radiation therapy, and organometallic complexes have been synthesized in order to deliver einsteinium atoms to an appropriate organ in the body. Experiments have been performed on injecting einsteinium citrate (as well as fermium compounds) to dogs.[2] Einsteinium(III) was also incorporated into beta-diketone chelate complexes, since analogous complexes with lanthanides previously showed strongest UV-excited luminescence among metallorganic compounds. When preparing einsteinium complexes, the Es3+ ions were 1000 times diluted with Gd3+ ions. This allowed reducing the radiation damage so that the compounds did not disintegrate during the period of 20 minutes required for the measurements. The resulting luminescence from Es3+ was much too weak to be detected. This was explained by the unfavorable relative energies of the individual constituents of the compound that hindered efficient energy transfer from the chelate matrix to Es3+ ions. Similar conclusion was drawn for other actinides americium, berkelium and fermium.[92]

Luminescence of Es3+ ions was however observed in inorganic hydrochloric acid solutions as well as in organic solution with di(2-ethylhexyl)orthophosphoric acid. It shows a broad peak at about 1064 nanometers (half-width about 100 nm) which can be resonantly excited by green light (ca. 495 nm wavelength). The luminescence has a lifetime of several microseconds and the quantum yield below 0.1%. The relatively high, compared to lanthanides, non-radiative decay rates in Es3+ were associated with the stronger interaction of f-electrons with the inner Es3+ electrons.[93]

Applications

There is almost no use for any isotope of einsteinium outside basic scientific research aiming at production of higher transuranic elements and transactinides.[94]

In 1955, mendelevium was synthesized by irradiating a target consisting of about 109 atoms of 253Es in the 60-inch cyclotron at Berkeley Laboratory. The resulting 253Es(α,n)256Md reaction yielded 17 atoms of the new element with the atomic number of 101.[95]

The rare isotope einsteinium-254 is favored for production of ultraheavy elements because of its large mass, relatively long half-life of 270 days, and availability in significant amounts of several micrograms.[96] Hence einsteinium-254 was used as a target in the attempted synthesis of ununennium (element 119) in 1985 by bombarding it with calcium-48 ions at the superHILAC linear accelerator at Berkeley, California. No atoms were identified, setting an upper limit for the cross section of this reaction at 300 nanobarns.[97]

Einsteinium-254 was used as the calibration marker in the chemical analysis spectrometer ("alpha-scattering surface analyzer") of the Surveyor 5 lunar probe. The large mass of this isotope reduced the spectral overlap between signals from the marker and the studied lighter elements of the lunar surface.[98]

Safety

Most of the available einsteinium toxicity data originate from research on animals. Upon ingestion by rats, only about 0.01% einsteinium ends in the blood stream. From there, about 65% goes to the bones, where it remains for about 50 years, 25% to the lungs (biological half-life about 20 years, although this is rendered irrelevant by the short half-lives of einsteinium isotopes), 0.035% to the testicles or 0.01% to the ovaries – where einsteinium stays indefinitely. About 10% of the ingested amount is excreted. The distribution of einsteinium over the bone surfaces is uniform and is similar to that of plutonium.[99]

References

  1. ^ Einsteinium. periodic.lanl.gov
  2. ^ a b c Haire, p. 1579
  3. ^ a b c Hammond C. R. "The elements" in Lide, D. R., ed. (2005). CRC Handbook of Chemistry and Physics (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  4. ^ a b c d e f g Ghiorso, Albert (2003). "Einsteinium and Fermium". Chemical and Engineering News. 81 (36): 174–175. doi:10.1021/cen-v081n036.p174.
  5. ^ a b c Seaborg, p. 39
  6. ^ a b John Emsley Nature's building blocks: an A-Z guide to the elements, Oxford University Press, 2003, ISBN 0-19-850340-7 pp. 133–135
  7. ^ 254Es, 254Fm and 253Fm would not be produced because of lack of beta decay in 254Cf and 253Es
  8. ^ a b c Ghiorso, A.; Thompson, S.; Higgins, G.; Seaborg, G.; Studier, M.; Fields, P.; Fried, S.; Diamond, H.; Mech, J.; Pyle, G.; Huizenga, J.; Hirsch, A.; Manning, W.; Browne, C.; Smith, H.; Spence, R. (1955). "New Elements Einsteinium and Fermium, Atomic Numbers 99 and 100". Phys. Rev. 99 (3): 1048–1049. Bibcode:1955PhRv...99.1048G. doi:10.1103/PhysRev.99.1048. Google Books
  9. ^ Fields, P.; Studier, M.; Diamond, H.; Mech, J.; Inghram, M.; Pyle, G.; Stevens, C.; Fried, S.; Manning, W.; Pyle, G.; Huizenga, J.; Hirsch, A.; Manning, W.; Browne, C.; Smith, H.; Spence, R. (1956). "Transplutonium Elements in Thermonuclear Test Debris". Physical Review. 102: 180–182. Bibcode:1956PhRv..102..180F. doi:10.1103/PhysRev.102.180. Google Books
  10. ^ Byrne, J. Neutrons, Nuclei, and Matter, Dover Publications, Mineola, NY, 2011, ISBN 978-0-486-48238-5 (pbk.) pp. 267.
  11. ^ Ghiorso, Albert; Rossi, G. Bernard; Harvey, Bernard G. & Thompson, Stanley G. (1954). "Reactions of U-238 with Cyclotron-Produced Nitrogen Ions". Physical Review. 93 (1): 257. Bibcode:1954PhRv...93..257G. doi:10.1103/PhysRev.93.257.
  12. ^ Thompson, S. G.; Ghiorso, A.; Harvey, B. G.; Choppin, G. R. (1954). "Transcurium Isotopes Produced in the Neutron Irradiation of Plutonium". Physical Review. 93 (4): 908. Bibcode:1954PhRv...93..908T. doi:10.1103/PhysRev.93.908.
  13. ^ Harvey, Bernard; Thompson, Stanley; Ghiorso, Albert; Choppin, Gregory (1954). "Further Production of Transcurium Nuclides by Neutron Irradiation". Physical Review. 93 (5): 1129. Bibcode:1954PhRv...93.1129H. doi:10.1103/PhysRev.93.1129.
  14. ^ Studier, M.; Fields, P.; Diamond, H.; Mech, J.; Friedman, A.; Sellers, P.; Pyle, G.; Stevens, C.; Magnusson, L.; Huizenga, J. (1954). "Elements 99 and 100 from Pile-Irradiated Plutonium". Physical Review. 93 (6): 1428. Bibcode:1954PhRv...93.1428S. doi:10.1103/PhysRev.93.1428.
  15. ^ Choppin, G. R.; Thompson, S. G.; Ghiorso, A.; Harvey, B. G. (1954). "Nuclear Properties of Some Isotopes of Californium, Elements 99 and 100". Physical Review. 94 (4): 1080–1081. Bibcode:1954PhRv...94.1080C. doi:10.1103/PhysRev.94.1080.
  16. ^ Fields, P.; Studier, M.; Mech, J.; Diamond, H.; Friedman, A.; Magnusson, L.; Huizenga, J. (1954). "Additional Properties of Isotopes of Elements 99 and 100". Physical Review. 94: 209–210. Bibcode:1954PhRv...94..209F. doi:10.1103/PhysRev.94.209.
  17. ^ Seaborg, G. T.; Thompson, S.G.; Harvey, B.G. and Choppin, G.R. (July 23, 1954) "Chemical Properties of Elements 99 and 100", Radiation Laboratory, University of California, Berkeley, UCRL-2591
  18. ^ Thompson, S. G.; Harvey, B. G.; Choppin, G. R.; Seaborg, G. T. (1954). "Chemical Properties of Elements 99 and 100". Journal of the American Chemical Society. 76 (24): 6229–6236. doi:10.1021/ja01653a004.
  19. ^ Atterling, Hugo; Forsling, Wilhelm; Holm, Lennart; Melander, Lars; Åström, Björn (1954). "Element 100 Produced by Means of Cyclotron-Accelerated Oxygen Ions". Physical Review. 95 (2): 585–586. Bibcode:1954PhRv...95..585A. doi:10.1103/PhysRev.95.585.2.
  20. ^ Richard Lee Miller (1991). Under the cloud: the decades of nuclear testing. Two-Sixty Press. p. 115. ISBN 1-881043-05-3.
  21. ^ John McPhee (1980). The Curve of Binding Energy. Farrar, Straus & Giroux Inc. p. 116. ISBN 0-374-51598-0.
  22. ^ Haire, p. 1577
  23. ^ Seaborg, G.T. (1994) Modern alchemy: selected papers of Glenn T. Seaborg, World Scientific, p. 6, ISBN 981-02-1440-5.
  24. ^ Haire, p. 1580
  25. ^ Haire, R. G. (1990) "Properties of the Transplutonium Metals (Am-Fm)", in: Metals Handbook, Vol. 2, 10th edition, (ASM International, Materials Park, Ohio), pp. 1198–1201.
  26. ^ Haire, p. 1591
  27. ^ a b Haire, R. (1986). "Preparation, properties, and some recent studies of the actinide metals". Journal of the Less Common Metals. 121: 379–398. doi:10.1016/0022-5088(86)90554-0.
  28. ^ a b Greenwood, p. 1268
  29. ^ a b Haire, R. G.; Baybarz, R. D. (1979). "Studies of einsteinium metal" (PDF). Le Journal de Physique. 40: C4–101. doi:10.1051/jphyscol:1979431. draft manuscript
  30. ^ Seaborg, p. 61
  31. ^ Kleinschmidt, Phillip D.; Ward, John W.; Matlack, George M.; Haire, Richard G. (1984). "Henry's Law vaporization studies and thermodynamics of einsteinium-253 metal dissolved in ytterbium". The Journal of Chemical Physics. 81: 473. Bibcode:1984JChPh..81..473K. doi:10.1063/1.447328.
  32. ^ Seaborg, p. 52
  33. ^ a b Seaborg, p. 60
  34. ^ a b c Ensor, D. D.; Peterson, J. R.; Haire, R. G.; Young, J. P. (1981). "Absorption spectrophotometric study of 253EsF3 and its decay products in the bulk-phase solid state". Journal of Inorganic and Nuclear Chemistry. 43 (10): 2425–2427. doi:10.1016/0022-1902(81)80274-6.
  35. ^ a b c Haire, R. G.; Baybarz, R. D. (1973). "Identification and analysis of einsteinium sesquioxide by electron diffraction". Journal of Inorganic and Nuclear Chemistry. 35 (2): 489–496. doi:10.1016/0022-1902(73)80561-5.
  36. ^ Seaborg, p. 55
  37. ^ Seaborg, p. 76
  38. ^ Huray, P.; Nave, S.; Haire, R. (1983). "Magnetism of the heavy 5f elements". Journal of the Less Common Metals. 93 (2): 293–300. doi:10.1016/0022-5088(83)90175-3.
  39. ^ Huray, Paul G.; Nave, S. E.; Haire, R. G.; Moore, J. R. (1984). "Magnetic Properties of Es2O3 and EsF3". Inorganica Chimica Acta. 94: 120–122. doi:10.1016/S0020-1693(00)94587-0.
  40. ^ Holleman, p. 1956
  41. ^ Seaborg, p. 53
  42. ^ Haire, p. 1578
  43. ^ Ahmad, I.; Wagner, Frank (1977). "Half-life of the longest-lived einsteinium isotope-252Es". Journal of Inorganic and Nuclear Chemistry. 39 (9): 1509–1511. doi:10.1016/0022-1902(77)80089-4.
  44. ^ McHarris, William; Stephens, F.; Asaro, F.; Perlman, I. (1966). "Decay Scheme of Einsteinium-254". Physical Review. 144 (3): 1031–1045. Bibcode:1966PhRv..144.1031M. doi:10.1103/PhysRev.144.1031.
  45. ^ Audi, G.; Bersillon, O.; Blachot, J.; Wapstra, A. H. (1997). "The NUBASE evaluation of nuclear and decay properties" (PDF). Nuclear Physics A. 624: 1–124. Bibcode:1997NuPhA.624....1A. doi:10.1016/S0375-9474(97)00482-X. Archived from the original (PDF) on 2008-09-23.
  46. ^ Institut de Radioprotection et de Sûreté Nucléaire, "Evaluation of nuclear criticality safety data and limits for actinides in transport", p. 16.
  47. ^ Emsley, John (2011). Nature's Building Blocks: An A-Z Guide to the Elements (New ed.). New York, NY: Oxford University Press. ISBN 978-0-19-960563-7.
  48. ^ "Identification of absorption lines of short half-life actinides in the spectrum of Przybylski's star (HD 101065)". Kinematics and Physics of Celestial Bodies. 24: 89–98. Bibcode:2008KPCB...24...89G. doi:10.3103/S0884591308020049.
  49. ^ Seaborg, p. 51
  50. ^ "High Flux Isotope Reactor". Oak Ridge National Laboratory. Retrieved 2010-09-23.
  51. ^ Радионуклидные источники и препараты (in Russian). Research Institute of Atomic Reactors. Retrieved 2010-09-26.
  52. ^ a b Haire, p. 1582
  53. ^ Greenwood, p. 1262
  54. ^ Porter, C. E.; Riley, F. D., Jr.; Vandergrift, R. D.; Felker, L. K. (1997). "Fermium Purification Using Teva Resin Extraction Chromatography" (PDF). Sep. Sci. Technol. 32 (1–4): 83–92. doi:10.1080/01496399708003188.
  55. ^ Hoffman, Darleane C.; Ghiorso, Albert and Seaborg, Glenn Theodore (2000) The Transuranium People: The Inside Story, Imperial College Press, pp. 190–191, ISBN 978-1-86094-087-3.
  56. ^ Seaborg, pp. 36–37
  57. ^ Jones, M.; Schuman, R.; Butler, J.; Cowper, G.; Eastwood, T.; Jackson, H. (1956). "Isotopes of Einsteinium and Fermium Produced by Neutron Irradiation of Plutonium". Physical Review. 102: 203–207. Bibcode:1956PhRv..102..203J. doi:10.1103/PhysRev.102.203.
  58. ^ Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017), "The NUBASE2016 evaluation of nuclear properties" (PDF), Chinese Physics C, 41 (3): 030001–1—030001–138, Bibcode:2017ChPhC..41c0001A, doi:10.1088/1674-1137/41/3/030001
  59. ^ Guseva, L.; Filippova, K.; Gerlit, Y.; Druin, V.; Myasoedov, B.; Tarantin, N. (1956). "Experiments on the production of einsteinium and fermium with a cyclotron". Journal of Nuclear Energy (1954). 3 (4): 341–346. doi:10.1016/0891-3919(56)90064-X.
  60. ^ Harry H. Binder: Lexikon der chemischen Elemente, S. Hirzel Verlag, Stuttgart 1999, ISBN 3-7776-0736-3, pp. 18–23.
  61. ^ Эйнштейний (in Russian, a popular article by one of the involved scientists)
  62. ^ Chetham-Strode, A.; Holm, L. (1956). "New Isotope Einsteinium-248". Physical Review. 104 (5): 1314. Bibcode:1956PhRv..104.1314C. doi:10.1103/PhysRev.104.1314.
  63. ^ Harvey, Bernard; Chetham-Strode, Alfred; Ghiorso, Albert; Choppin, Gregory; Thompson, Stanley (1956). "New Isotopes of Einsteinium". Physical Review. 104 (5): 1315–1319. Bibcode:1956PhRv..104.1315H. doi:10.1103/PhysRev.104.1315.
  64. ^ Kulyukhin, S.; Auerman, L. N.; Novichenko, V. L.; Mikheev, N. B.; Rumer, I. A.; Kamenskaya, A. N.; Goncharov, L. A.; Smirnov, A. I. (1985). "Production of microgram quantities of einsteinium-253 by the reactor irradiation of californium". Inorganica Chimica Acta. 110: 25–26. doi:10.1016/S0020-1693(00)81347-X.
  65. ^ a b c Seaborg, p. 40
  66. ^ These were codenamed: "Anacostia" (5.2 kilotons, 1962), "Kennebec" (<5 kilotons, 1963), "Par" (38 kilotons, 1964), "Barbel" (<20 kilotons, 1964), "Tweed" (<20 kilotons, 1965), "Cyclamen" (13 kilotons, 1966), "Kankakee" (20-200 kilotons, 1966), "Vulcan" (25 kilotons, 1966) and "Hutch" (20-200 kilotons, 1969)
  67. ^ United States Nuclear Tests July 1945 through September 1992 Archived June 15, 2010, at the Wayback Machine, DOE/NV--209-REV 15, December 2000.
  68. ^ Seaborg, p. 43
  69. ^ Seaborg, p. 44
  70. ^ Seaborg, p. 47
  71. ^ Haire, p. 1583
  72. ^ Haire, pp. 1584–1585
  73. ^ a b Hall, Nina (2000). The new chemistry. Cambridge University Press. pp. 9–11. ISBN 0-521-45224-4.
  74. ^ Haire, p. 1588
  75. ^ Haire, p. 1590
  76. ^ a b c Haire, R. G. & Eyring, L. (1994). "Lanthanides and Actinides Chemistry". In K.A. Gscheidner, Jr.; et al. Handbook on the Physics and Chemistry of Rare Earths. 18. North-Holland, New York. pp. 414–505. ISBN 0-444-81724-7.
  77. ^ Kleinschmidt, P. (1994). "Thermochemistry of the actinides". Journal of Alloys and Compounds. 213–214: 169–172. doi:10.1016/0925-8388(94)90898-2.
  78. ^ Fujita, D.; Cunningham, B. B.; Parsons, T. C. (1969). "Crystal structures and lattice parameters of einsteinium trichloride and einsteinium oxychloride". Inorganic and Nuclear Chemistry Letters. 5 (4): 307–313. doi:10.1016/0020-1650(69)80203-5.
  79. ^ a b Miasoedov, B. F. Analytical chemistry of transplutonium elements, Wiley, 1974 (Original from the University of California), ISBN 0-470-62715-8, p. 99
  80. ^ Fellows, R.; Peterson, J. R.; Noé, M.; Young, J. P.; Haire, R. G. (1975). "X-ray diffraction and spectroscopic studies of crystalline einsteinium(III) bromide, 253EsBr3". Inorganic and Nuclear Chemistry Letters. 11 (11): 737–742. doi:10.1016/0020-1650(75)80090-0.
  81. ^ a b c Haire, pp. 1595–1596
  82. ^ a b c Seaborg, p. 62
  83. ^ a b c d e Young, J. P.; Haire, R. G.; Peterson, J. R.; Ensor, D. D.; Fellow, R. L. (1981). "Chemical consequences of radioactive decay. 2. Spectrophotometric study of the ingrowth of berkelium-249 and californium-249 into halides of einsteinium-253". Inorganic Chemistry. 20 (11): 3979–3983. doi:10.1021/ic50225a076.
  84. ^ Haire, p. 1598
  85. ^ Holleman, p. 1969
  86. ^ a b c Greenwood, p. 1270
  87. ^ Young, J. P.; Haire, R. G.; Fellows, R. L.; Peterson, J. R. (1978). "Spectrophotometric studies of transcurium element halides and oxyhalides in the solid state". Journal of Radioanalytical Chemistry. 43 (2): 479–488. doi:10.1007/BF02519508.
  88. ^ Fujita, D.; Cunningham, B. B.; Parsons, T. C.; Peterson, J. R. (1969). "The solution absorption spectrum of Es3+". Inorganic and Nuclear Chemistry Letters. 5 (4): 245–250. doi:10.1016/0020-1650(69)80192-3.
  89. ^ a b Peterson, J.R.; et al. (1979). "Preparation, characterization, and decay of einsteinium(II) in the solid state" (PDF). Le Journal de Physique. 40 (4): C4–111. doi:10.1051/jphyscol:1979435. manuscript draft
  90. ^ Fellows, R.L.; Young, J.P.; Haire, R.G. and Peterson J.R. (1977) in: GJ McCarthy and JJ Rhyne (eds) The Rare Earths in Modern Science and Technology, Plenum Press, New York, pp. 493–499.
  91. ^ Young, J.P.; Haire R.G., Fellows, R.L.; Noe, M. and Peterson, J.R. (1976) "Spectroscopic and X-Ray Diffraction Studies of the Bromides of Californium-249 and Einsteinium-253", in: W. Müller and R. Lindner (eds.) Plutonium 1975, North Holland, Amsterdam, pp. 227–234.
  92. ^ Nugent, Leonard J.; Burnett, J. L.; Baybarz, R. D.; Werner, George Knoll; Tanner, S. P.; Tarrant, J. R.; Keller, O. L. (1969). "Intramolecular energy transfer and sensitized luminescence in actinide(III) .beta.-diketone chelates". The Journal of Physical Chemistry. 73 (5): 1540–1549. doi:10.1021/j100725a060.
  93. ^ Beitz, J.; Wester, D.; Williams, C. (1983). "5f state interaction with inner coordination sphere ligands: Es3+ ion fluorescence in aqueous and organic phases". Journal of the Less Common Metals. 93 (2): 331–338. doi:10.1016/0022-5088(83)90178-9.
  94. ^ It's Elemental – The Element Einsteinium. Retrieved 2 December 2007.
  95. ^ Ghiorso, A.; Harvey, B.; Choppin, G.; Thompson, S.; Seaborg, G. (1955). "New Element Mendelevium, Atomic Number 101". Physical Review. 98 (5): 1518–1519. Bibcode:1955PhRv...98.1518G. doi:10.1103/PhysRev.98.1518. ISBN 978-981-02-1440-1.
  96. ^ Schadel, M.; Bruchle, W.; Brugger, M.; Gaggeler, H.; Moody, K.; Schardt, D.; Summerer, K.; Hulet, E.; Dougan, A.; Dougan, R.; Landrum, J.; Lougheed, R.; Wild, J.; O'Kelley, G.; Hahn, R. (1986). "Heavy isotope production by multinucleon transfer reactions with 254Es" (PDF). Journal of the Less Common Metals. 122: 411–417. doi:10.1016/0022-5088(86)90435-2.
  97. ^ Lougheed, R. W.; Landrum, J. H.; Hulet, E. K.; Wild, J. F.; Dougan, R. J.; Dougan, A. D.; Gäggeler, H.; Schädel, M.; Moody, K. J.; Gregorich, K. E. & Seaborg, G. T. (1985). "Search for superheavy elements using 48Ca + 254Esg reaction". Physical Review C. 32 (5): 1760–1763. Bibcode:1985PhRvC..32.1760L. doi:10.1103/PhysRevC.32.1760.
  98. ^ Turkevich, A. L.; Franzgrote, E. J.; Patterson, J. H. (1967). "Chemical Analysis of the Moon at the Surveyor V Landing Site". Science. 158 (3801): 635–637. Bibcode:1967Sci...158..635T. doi:10.1126/science.158.3801.635. PMID 17732956.
  99. ^ International Commission on Radiological Protection (1988). Limits for intakes of radionuclides by workers, Part 4. 19. Elsevier Health Sciences. pp. 18–19. ISBN 0-08-036886-7.

Bibliography

External links

Actinide

The actinide or actinoid (IUPAC nomenclature) series encompasses the 15 metallic chemical elements with atomic numbers from 89 to 103, actinium through lawrencium.Strictly speaking, both actinium and lawrencium have been labeled as group 3 elements, but both elements are often included in any general discussion of the chemistry of the actinide elements. Actinium is the more often omitted of the two, because its placement as a group 3 element is somewhat more common in texts and for semantic reasons: since "actinide" means "like actinium", it has been argued that actinium cannot logically be an actinide, even though IUPAC acknowledges its inclusion based on common usage.The actinide series derives its name from the first element in the series, actinium. The informal chemical symbol An is used in general discussions of actinide chemistry to refer to any actinide. All but one of the actinides are f-block elements, with the exception being either actinium or lawrencium. The series mostly corresponds to the filling of the 5f electron shell, although actinium and thorium lack any f-electrons, and curium and lawrencium have the same number as the preceding element. In comparison with the lanthanides, also mostly f-block elements, the actinides show much more variable valence. They all have very large atomic and ionic radii and exhibit an unusually large range of physical properties. While actinium and the late actinides (from americium onwards) behave similarly to the lanthanides, the elements thorium, protactinium, and uranium are much more similar to transition metals in their chemistry, with neptunium and plutonium occupying an intermediate position.

All actinides are radioactive and release energy upon radioactive decay; naturally occurring uranium and thorium, and synthetically produced plutonium are the most abundant actinides on Earth. These are used in nuclear reactors and nuclear weapons. Uranium and thorium also have diverse current or historical uses, and americium is used in the ionization chambers of most modern smoke detectors.

Of the actinides, primordial thorium and uranium occur naturally in substantial quantities. The radioactive decay of uranium produces transient amounts of actinium and protactinium, and atoms of neptunium and plutonium are occasionally produced from transmutation reactions in uranium ores. The other actinides are purely synthetic elements. Nuclear weapons tests have released at least six actinides heavier than plutonium into the environment; analysis of debris from a 1952 hydrogen bomb explosion showed the presence of americium, curium, berkelium, californium, einsteinium and fermium.In presentations of the periodic table, the lanthanides and the actinides are customarily shown as two additional rows below the main body of the table, with placeholders or else a selected single element of each series (either lanthanum or lutetium, and either actinium or lawrencium, respectively) shown in a single cell of the main table, between barium and hafnium, and radium and rutherfordium, respectively. This convention is entirely a matter of aesthetics and formatting practicality; a rarely used wide-formatted periodic table inserts the lanthanide and actinide series in their proper places, as parts of the table's sixth and seventh rows (periods).

Californium

Californium is a radioactive chemical element with symbol Cf and atomic number 98. The element was first synthesized in 1950 at the Lawrence Berkeley National Laboratory (then the University of California Radiation Laboratory), by bombarding curium with alpha particles (helium-4 ions). It is an actinide element, the sixth transuranium element to be synthesized, and has the second-highest atomic mass of all the elements that have been produced in amounts large enough to see with the unaided eye (after einsteinium). The element was named after the university and the state of California.

Two crystalline forms exist for californium under normal pressure: one above and one below 900 °C (1,650 °F). A third form exists at high pressure. Californium slowly tarnishes in air at room temperature. Compounds of californium are dominated by the +3 oxidation state. The most stable of californium's twenty known isotopes is californium-251, which has a half-life of 898 years. This short half-life means the element is not found in significant quantities in the Earth's crust. Californium-252, with a half-life of about 2.645 years, is the most common isotope used and is produced at the Oak Ridge National Laboratory in the United States and the Research Institute of Atomic Reactors in Russia.

Californium is one of the few transuranium elements that have practical applications. Most of these applications exploit the property of certain isotopes of californium to emit neutrons. For example, californium can be used to help start up nuclear reactors, and it is employed as a source of neutrons when studying materials using neutron diffraction and neutron spectroscopy. Californium can also be used in nuclear synthesis of higher mass elements; oganesson (element 118) was synthesized by bombarding californium-249 atoms with calcium-48 ions. Users of californium must take into account radiological concerns and the element's ability to disrupt the formation of red blood cells by bioaccumulating in skeletal tissue.

Einsteinium(III) iodide

Einsteinium triiodide is an iodide of the synthetic actinide einsteinium which has the molecular formula EsI3. This crystalline salt is an amber-coloured solid. It glows red in the dark due to einsteinium's intense radioactivity.

It crystallises in the hexagonal crystal system in the space group R3 with the lattice parameters a = 753 pm and c = 2084.5 pm with six formula units per unit cell. Its crystal structure is isotypic with that of bismuth(III) iodide.

Einsteinium(III) oxide

Einsteinium(III) oxide is an oxide of the synthetic actinide einsteinium which has the molecular formula Es2O3. It is a colourless solid.Three modifications are known. The body-centered cubic form has lattice parameter a = 1076.6 ± 0.6 pm; this allows the ionic radius of the Es3+ ion to be calculated as 92.8 pm. The other two forms are monoclinic and hexagonal: the hexagonal form has the lanthanum(III) oxide structure.Einsteinium(III) oxide can be obtained by annealing einsteinium(III) nitrate in sub-microgram quantities.

Extended periodic table

An extended periodic table theorizes about chemical elements beyond those currently known in the periodic table and proven up through oganesson, which completes the seventh period (row) in the periodic table at atomic number (Z) 118.

If further elements with higher atomic numbers than this are discovered, they will be placed in additional periods, laid out (as with the existing periods) to illustrate periodically recurring trends in the properties of the elements concerned. Any additional periods are expected to contain a larger number of elements than the seventh period, as they are calculated to have an additional so-called g-block, containing at least 18 elements with partially filled g-orbitals in each period.An eight-period table containing this block was suggested by Glenn T. Seaborg in 1969. The first element of the g-block may have atomic number 121, and thus would have the systematic name unbiunium. Despite many searches, no elements in this region have been synthesized or discovered in nature.According to the orbital approximation in quantum mechanical descriptions of atomic structure, the g-block would correspond to elements with partially filled g-orbitals, but spin-orbit coupling effects reduce the validity of the orbital approximation substantially for elements of high atomic number. While Seaborg's version of the extended period had the heavier elements following the pattern set by lighter elements, as it did not take into account relativistic effects, models that take relativistic effects into account do not. Pekka Pyykkö and Burkhard Fricke used computer modeling to calculate the positions of elements up to Z = 172, and found that several were displaced from the Madelung rule. As a result of uncertainty and variability in predictions of chemical and physical properties of elements beyond 120, there is currently no consensus on their placement in the extended periodic table.

Elements in this region are likely to be highly unstable with respect to radioactive decay and undergo alpha decay or spontaneous fission with extremely short half-lives, though element 126 is hypothesized to be within an island of stability that is resistant to fission but not to alpha decay. Other islands of stability beyond the known elements may also be possible, including one theorized around element 164, though the extent of stabilizing effects from closed nuclear shells is uncertain. It is not clear how many elements beyond the expected island of stability are physically possible, whether period 8 is complete, or if there is a period 9. The International Union of Pure and Applied Chemistry (IUPAC) defines an element to exist if its lifetime is longer than 10−14 seconds (0.01 picoseconds, or 10 femtoseconds), which is the time it takes for the nucleus to form an electron cloud.As early as 1940, it was noted that a simplistic interpretation of the relativistic Dirac equation runs into problems with electron orbitals at Z > 1/α ≈ 137, suggesting that neutral atoms cannot exist beyond element 137, and that a periodic table of elements based on electron orbitals therefore breaks down at this point. On the other hand, a more rigorous analysis calculates the analogous limit to be Z ≈ 173 where the 1s subshell dives into the Dirac sea, and that it is instead not neutral atoms that cannot exist beyond element 173, but bare nuclei, thus posing no obstacle to the further extension of the periodic system. Atoms beyond this critical atomic number are called supercritical atoms.

Fermium

Fermium is a synthetic element with symbol Fm and atomic number 100. It is an actinide and the heaviest element that can be formed by neutron bombardment of lighter elements, and hence the last element that can be prepared in macroscopic quantities, although pure fermium metal has not yet been prepared. A total of 19 isotopes are known, with 257Fm being the longest-lived with a half-life of 100.5 days.

It was discovered in the debris of the first hydrogen bomb explosion in 1952, and named after Enrico Fermi, one of the pioneers of nuclear physics. Its chemistry is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. Owing to the small amounts of produced fermium and all of its isotopes having relatively short half-lives, there are currently no uses for it outside basic scientific research.

Inorganic compounds by element

This is a list of common inorganic and organometallic compounds of each element. Compounds are listed alphabetically by their chemical element name rather than by symbol, as in list of inorganic compounds.

Ionic radius

Ionic radius, rion, is the radius of an atom's ion in ionic crystals structure. Although neither atoms nor ions have sharp boundaries, they are sometimes treated as if they were hard spheres with radii such that the sum of ionic radii of the cation and anion gives the distance between the ions in a crystal lattice. Ionic radii are typically given in units of either picometers (pm) or angstroms (Å), with 1 Å = 100 pm. Typical values range from 30 pm (0.3 Å) to over 200 pm (2 Å).

The concept can be extended to solvated ions in liquid solutions taking into consideration the solvation shell.

Isotopes of einsteinium

Einsteinium (99Es) is a synthetic element, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. The first isotope to be discovered (in nuclear fallout from an H-bomb test) was 253Es in 1952. There are 19 known radioisotopes from 240Es to 258Es, and 3 nuclear isomers (250mEs, 254mEs, and 256mEs). The longest-lived isotope is 252Es with a half-life of 471.7 days, or around 1.293 years.

Major actinide

Major actinides is a term used in the nuclear power industry that refers to the plutonium and uranium present in used nuclear fuel, as opposed to the minor actinides neptunium, americium, curium, berkelium, and californium.

Mendelevium

Mendelevium is a synthetic element with chemical symbol Md (formerly Mv) and atomic number 101. A metallic radioactive transuranic element in the actinide series, it is the first element that currently cannot be produced in macroscopic quantities through neutron bombardment of lighter elements. It is the third-to-last actinide and the ninth transuranic element. It can only be produced in particle accelerators by bombarding lighter elements with charged particles. A total of sixteen mendelevium isotopes are known, the most stable being 258Md with a half-life of 51 days; nevertheless, the shorter-lived 256Md (half-life 1.17 hours) is most commonly used in chemistry because it can be produced on a larger scale.

Mendelevium was discovered by bombarding einsteinium with alpha particles in 1955, the same method still used to produce it today. It was named after Dmitri Mendeleev, father of the periodic table of the chemical elements. Using available microgram quantities of the isotope einsteinium-253, over a million mendelevium atoms may be produced each hour. The chemistry of mendelevium is typical for the late actinides, with a preponderance of the +3 oxidation state but also an accessible +2 oxidation state. Owing to the small amounts of produced mendelevium and all of its isotopes having relatively short half-lives, there are currently no uses for it outside basic scientific research.

Minor actinide

The minor actinides are the actinide elements in used nuclear fuel other than uranium and plutonium, which are termed the major actinides. The minor actinides include neptunium (element 93), americium (element 95), curium (element 96), berkelium (element 97), californium (element 98), einsteinium (element 99), and fermium (element 100). The most important isotopes in spent nuclear fuel are neptunium-237, americium-241, americium-243, curium-242 through -248, and californium-249 through -252.

Plutonium and the minor actinides will be responsible for the bulk of the radiotoxicity and heat generation of used nuclear fuel in the medium term (300 to 20,000 years in the future).The plutonium from a power reactor tends to have a greater amount of Pu-241 than the plutonium generated by the lower burnup operations designed to create weapons-grade plutonium. Because the reactor-grade plutonium contains so much Pu-241 the presence of americium-241 makes the plutonium less suitable for making a nuclear weapon. The ingrowth of americium in plutonium is one of the methods for identifying the origin of an unknown sample of plutonium and the time since it was last separated chemically from the americium.

Americium is commonly used in industry as both an alpha particle and as a low photon energy gamma radiation source. For instance it is used in many smoke detectors. Americium can be formed by neutron capture of Pu-239 and Pu-240 forming Pu-241 which then beta decays to Am-241. In general, as the energy of the neutrons increases, the ratio of the fission cross section to the neutron capture cross section changes in favour of fission. Hence if MOX is used in a thermal reactor such as a boiling water reactor (BWR) or pressurized water reactor (PWR) then more americium can be expected in the used fuel than that from a fast neutron reactor.Some of the minor actinides have been found in fallout from bomb tests. See Actinides in the environment for details.

Nobelium

Nobelium is a synthetic chemical element with symbol No and atomic number 102. It is named in honor of Alfred Nobel, the inventor of dynamite and benefactor of science. A radioactive metal, it is the tenth transuranic element and is the penultimate member of the actinide series. Like all elements with atomic number over 100, nobelium can only be produced in particle accelerators by bombarding lighter elements with charged particles. A total of twelve nobelium isotopes are known to exist; the most stable is 259No with a half-life of 58 minutes, but the shorter-lived 255No (half-life 3.1 minutes) is most commonly used in chemistry because it can be produced on a larger scale.

Chemistry experiments have confirmed that nobelium behaves as a heavier homolog to ytterbium in the periodic table. The chemical properties of nobelium are not completely known: they are mostly only known in aqueous solution. Before nobelium's discovery, it was predicted that it would show a stable +2 oxidation state as well as the +3 state characteristic of the other actinides: these predictions were later confirmed, as the +2 state is much more stable than the +3 state in aqueous solution and it is difficult to keep nobelium in the +3 state.

In the 1950s and 1960s, many claims of the discovery of nobelium were made from laboratories in Sweden, the Soviet Union, and the United States. Although the Swedish scientists soon retracted their claims, the priority of the discovery and therefore the naming of the element was disputed between Soviet and American scientists, and it was not until 1997 that International Union of Pure and Applied Chemistry (IUPAC) credited the Soviet team with the discovery, but retained nobelium, the Swedish proposal, as the name of the element due to its long-standing use in the literature.

OpenMandriva Lx

OpenMandriva Lx is a Linux distribution forked from Mandriva Linux. It is published by the OpenMandriva Association.

Period 7 element

A period 7 element is one of the chemical elements in the seventh row (or period) of the periodic table of the chemical elements. The periodic table is laid out in rows to illustrate recurring (periodic) trends in the chemical behaviour of the elements as their atomic number increases: a new row is begun when chemical behaviour begins to repeat, meaning that elements with similar behaviour fall into the same vertical columns. The seventh period contains 32 elements, tied for the most with period 6, beginning with francium and ending with oganesson, the heaviest element currently discovered. As a rule, period 7 elements fill their 7s shells first, then their 5f, 6d, and 7p shells, in that order; however, there are exceptions, such as plutonium.

Quirino Navarro

Quirino O. Navarro (born March 29, 1936) is a Filipino nuclear physicist and chemist who studied isotopes of californium, dysprosium, and einsteinium. His work was published in two books and three volumes and even became useful for teaching students in the University of California. In 1956 he graduated from the University of the Philippines with a bachelor's degree in chemistry and by 1962 he got his Ph.D. in nuclear chemistry from the University of California.

R-process

The rapid neutron-capture process, or so-called r-process, is a set of nuclear reactions that in nuclear astrophysics is responsible for the creation (nucleosynthesis) of approximately half the abundances of the atomic nuclei heavier than iron, usually synthesizing the entire abundance of the two most neutron-rich stable isotopes of each heavy element. Chemical elements heavier than iron typically are enabled by the force between nucleons to be capable of six to ten stable isotopic forms having the same nuclear charge Z but differing in neutron number N, each of whose natural abundances contribute to the natural abundance of the chemical element. Each isotope is characterized by the number of neutrons that it contains. The r-process typically synthesizes new nuclei of the heaviest four isotopes of any heavy element, being totally responsible for the abundances of its two heaviest isotopes, which are referred to as r-only nuclei. The most abundant of these contribute to the r-process abundance peaks near atomic weights A = 82 (elements Se, Br and Kr), A = 130 (elements Te, I, and Xe) and A = 196 (elements Os, Ir and Pt).The r-process entails a succession of rapid neutron captures (hence the name) by one or more heavy seed nuclei, typically beginning with nuclei in the abundance peak centered on 56Fe. The captures must be rapid in the sense that the nuclei must not have time to undergo radioactive decay before another neutron arrives to be captured, a sequence that is halted only when the increasingly neutron-rich nuclei cannot physically retain another neutron. The r-process therefore must occur in locations where there exists a high density of free neutrons. Early studies reasoned that 1024 free neutrons per cm3 would be required if the temperature were about one billion degrees in order that the waiting points, at which no more neutrons can be captured, be at the atomic numbers of the abundance peaks for r-process nuclei. This amounts to almost a gram of free neutrons in every cubic centimeter, an astonishing number requiring extreme locations. Traditionally this suggested the material ejected from the reexpanded core of a core-collapse supernova (as part of supernova nucleosynthesis) or decompression of neutron-star matter thrown off by a binary neutron star merger. The relative contributions of these sources to the astrophysical abundance of r-process elements is a matter of ongoing research.A limited r-process-like series of neutron captures occurs to a minor extent in thermonuclear weapon explosions. These led to the discovery of the elements einsteinium (element 99) and fermium (element 100) in nuclear weapon fallout.

The r-process contrasts with the s-process, the other predominant mechanism for the production of heavy elements, which is nucleosynthesis by means of slow captures of neutrons. The s-process primarily occurs within ordinary stars, particularly AGB stars, where the neutron flux is sufficient to cause neutron captures to recur every 10–100 years, much too slow for the r-process, which requires 100 captures per second. The s-process is secondary, meaning that it requires pre-existing heavy isotopes as seed nuclei to be converted into other heavy nuclei by a slow sequence of captures of free neutrons. The r-process scenarios create their own seed nuclei, so they might proceed in massive stars that contain no heavy seed nuclei. Taken together, the r- and s-processes account for almost the entire abundance of chemical elements heavier than iron. The historical challenge has been to locate physical settings appropriate for their time scales.

Synthetic element

In chemistry, a synthetic element is a chemical element that does not occur naturally on Earth, and can only be created artificially. So far, 24 synthetic elements have been created (those with atomic numbers 95–118). All are unstable, decaying with half-lives ranging from 15.6 million years to a few hundred microseconds.

Seven other elements were first created artificially and thus considered synthetic, but later discovered to exist naturally (in trace quantities) as well; among them plutonium—first synthesized in 1940—the one best known to laypeople, because of its use in atomic bombs and nuclear reactors.

Transuranium element

The transuranium elements (also known as transuranic elements) are the chemical elements with atomic numbers greater than 92, which is the atomic number of uranium. All of these elements are unstable and decay radioactively into other elements.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.