Dwarf galaxy

A dwarf galaxy is a small galaxy composed of about 100 million up to several billion stars, a small number compared to the Milky Way's 200–400 billion stars. The Large Magellanic Cloud, which closely orbits the Milky Way and contains over 30 billion stars, is sometimes classified as a dwarf galaxy; others consider it a full-fledged galaxy. Dwarf galaxies' formation and activity are thought to be heavily influenced by interactions with larger galaxies. Astronomers identify numerous types of dwarf galaxies, based on their shape and composition.

The Large Magellanic Cloud, a satellite galaxy of the Milky Way


NGC 5264 HST
Dwarf galaxies like NGC 5264 typically possess around a billion stars.[1]

Current theory states that most galaxies, including dwarf galaxies, form in association with dark matter, or from gas that contains metals. However, NASA's Galaxy Evolution Explorer space probe identified new dwarf galaxies forming out of gases with low metallicity. These galaxies were located in the Leo Ring, a cloud of hydrogen and helium around two massive galaxies in the constellation Leo.[2]

Because of their small size, dwarf galaxies have been observed being pulled toward and ripped by neighbouring spiral galaxies, resulting in galaxy merger.[3]

Local dwarf galaxies

An explosive phoenix - Phoenix Dwarf
The Phoenix Dwarf Galaxy is a dwarf irregular galaxy, featuring younger stars in its inner regions and older ones at its outskirts.[4]

There are many dwarf galaxies in the Local Group; these small galaxies frequently orbit larger galaxies, such as the Milky Way, the Andromeda Galaxy and the Triangulum Galaxy. A 2007 paper[5] has suggested that many dwarf galaxies were created by galactic tides during the early evolutions of the Milky Way and Andromeda. Tidal dwarf galaxies are produced when galaxies collide and their gravitational masses interact. Streams of galactic material are pulled away from the parent galaxies and the halos of dark matter that surround them.[6] A 2018 study suggests that some local dwarf galaxies formed extremely early, during the Dark Ages within the first billion years after the big bang.[7]

More than 20 known dwarf galaxies orbit the Milky Way, and recent observations[8] have also led astronomers to believe the largest globular cluster in the Milky Way, Omega Centauri, is in fact the core of a dwarf galaxy with a black hole at its centre, which was at some time absorbed by the Milky Way.

Common types

True blue
UGC 11411 is a galaxy known as an irregular blue compact dwarf (BCD) galaxy.[9]

Blue compact dwarf galaxies

An intriguing young-looking dwarf galaxy
Blue compact dwarf PGC 51017.[11]

In astronomy, a blue compact dwarf galaxy (BCD galaxy) is a small galaxy which contains large clusters of young, hot, massive stars. These stars, the brightest of which are blue, cause the galaxy itself to appear blue in colour.[12] Most BCD galaxies are also classified as dwarf irregular galaxies or as dwarf lenticular galaxies. Because they are composed of star clusters, BCD galaxies lack a uniform shape. They consume gas intensely, which causes their stars to become very violent when forming.

BCD galaxies cool in the process of forming new stars. The galaxies' stars are all formed at different time periods, so the galaxies have time to cool and to build up matter to form new stars. As time passes, this star formation changes the shape of the galaxies.

Nearby examples include NGC 1705, NGC 2915, NGC 3353 and UGCA 281.[13][14][15][16]

Ultra-compact dwarfs

Ultra-compact dwarf galaxies (UCD) are a class of very compact galaxies with very high stellar densities, discovered[17][18][19] in the 2000s. They are thought to be on the order of 200 light years across, containing about 100 million stars.[20] It is theorised that these are the cores of nucleated dwarf elliptical galaxies that have been stripped of gas and outlying stars by tidal interactions, travelling through the hearts of rich clusters.[21] UCDs have been found in the Virgo Cluster, Fornax Cluster, Abell 1689, and the Coma Cluster, amongst others.[22] In particular, an unprecedentedly large sample of ~ 100 UCDs has been found in the core region of the Virgo cluster by the Next Generation Virgo Cluster Survey team. The first ever relatively robust studies of the global properties of Virgo UCDs suggest that UCDs have distinct dynamical[23] and structural[24] properties from normal globular clusters. An extreme example of UCD is M60-UCD1, about 54 million light years away, which contains approximately 200 million solar masses within a 160 light year radius; its central region packs in stars about 25 times closer together than stars in Earth's region in the Milky Way.[25][26] M59-UCD3 is approximately the same size as M60-UCD1 with a half-light radius, rh, of approximately 20 parsecs but is 40% more luminous with an apparent relative magnitude of approximately −14.6. This makes M59-UCD3 the densest known galaxy.[27] Based on stellar orbital velocities, two UCD in the Virgo Cluster are claimed to have supermassive black holes weighing 13% and 18% of the galaxies' masses.[28]

Partial list

A stubborn dwarf galaxy
LEDA 677373 is located about 14 million light-years away.[29]
Dwarf galaxy DDO 68
Dwarf galaxy DDO 68.[30]

See also


  1. ^ "An irregular island". www.spacetelescope.org. Retrieved 25 August 2016.
  2. ^ "New Recipe For Dwarf Galaxies: Start With Leftover Gas". Science Daily. 19 February 2009. Retrieved 2015-07-29.
  3. ^ Jaggard, V. (9 September 2010). "Pictures: New Proof Spiral Galaxies Eat, Digest Dwarfs". National Geographic Society. Retrieved 2012-02-11.
  4. ^ "Hubble Sizes up a Dwarf Galaxy". ESA/Hubble. 24 October 2011. Retrieved 2011-10-25.
  5. ^ Metz, M.; Kroupa, P. (2007). "Dwarf-spheroidal satellites: are they of tidal origin?". Monthly Notices of the Royal Astronomical Society. 376 (1): 387–392. arXiv:astro-ph/0701289. Bibcode:2007MNRAS.376..387M. doi:10.1111/j.1365-2966.2007.11438.x.
  6. ^ "New Recipe for Dwarf Galaxies: Start with Leftover Gas". Newswise.com. 18 February 2009. Retrieved 2009-02-20.
  7. ^ Rincon, Paul (16 August 2018). "Earliest galaxies found 'on our cosmic doorstep'". BBC News. Retrieved 17 August 2018.
  8. ^ Noyola, E.; Gebhardt, K.; Bergmann, M. (2008). "Gemini and Hubble Space Telescope Evidence for an Intermediate-Mass Black Hole in ω Centauri". The Astrophysical Journal. 676 (2): 1008–1015. arXiv:0801.2782. Bibcode:2008ApJ...676.1008N. doi:10.1086/529002.
  9. ^ "True blue". ESA/Hubble. 15 June 2015. Retrieved 2015-06-15.
  10. ^ Schombert, J. M.; Pildis, R. A.; Eder, J. A.; Oelmer, A., Jr. (1995). "Dwarf Spirals". The Astronomical Journal. 110: 2067–2074. Bibcode:1995AJ....110.2067S. doi:10.1086/117669.
  11. ^ "An intriguing young-looking dwarf galaxy". ESA/Hubble. 16 March 2015. Retrieved 2015-03-21.
  12. ^ "WISE Discovers Baby Galaxies in the Nearby Universe". WISE. 2 September 2011. Retrieved 2011-09-03.
  13. ^ López-Sánchez, Á. R.; Koribalski, B.; van Eymeren, J.; Esteban, C.; Popping, A.; Hibbard, J. (2010). "The environment of nearby Blue Compact Dwarf Galaxies". ASP Conference Series. 421: 65. arXiv:0909.5500. Bibcode:2010ASPC..421...65L.
  14. ^ Papaderos, P. (7 May 2010). "Blue Compact Dwarf Galaxies" (PDF). Centro de Astrofísica da Universidade do Porto.
  15. ^ Noeske, K.; Papaderos, P.; Cairos, L. M. (2003). "New insights to the photometric structure of Blue Compact Dwarf Galaxies from deep Near-Infrared Studies" (PDF). Göttingen Observatory. Archived from the original (PDF) on 2011-08-15.
  16. ^ Meurer, G. R.; Mackie, G.; Carignan, C. (1994). "Optical observations of NGC 2915: A nearby blue compact dwarf galaxy". The Astronomical Journal. 107 (6): 2021–2035. Bibcode:1994AJ....107.2021M. doi:10.1086/117013.
  17. ^ Hilker, M.; Infante, L.; Vieira, G.; Kissler-Patig, M.; Richtler, T. (1999). "The central region of the Fornax cluster. II. Spectroscopy and radial velocities of member and background galaxies". Astronomy and Astrophysics Supplement. 134: 75–86. arXiv:astro-ph/9807144. Bibcode:1999A&AS..134...75H. doi:10.1051/aas:1999434.
  18. ^ Drinkwater, M. J.; Jones, J. B.; Gregg, M. D.; Phillipps, S. (2000). "Compact Stellar Systems in the Fornax Cluster: Super-massive Star Clusters or Extremely Compact Dwarf Galaxies?". Publications of the Astronomical Society of Australia. 17: 227–233. arXiv:astro-ph/0002003. Bibcode:2000PASA...17..227D. doi:10.1071/AS00034.
  19. ^ Smith, Deborah (29 May 2003). "Star search finds millions masquerading as one". Sydney Morning Herald. p. 5. ISSN 0312-6315.
  20. ^ Anglo-Australian Observatory Astronomers discover dozens of mini-galaxies 0100 AEST Friday 2 April 2004.
  21. ^ Stelios Kazantzidis; Ben Moore; Lucio Mayer (2004). "Galaxies and Overmerging: What Does it Take to Destroy a Satellite Galaxy?". ASP Conference Series. 327: 155. arXiv:astro-ph/0307362. Bibcode:2004ASPC..327..155K.
  22. ^ Mieske; Infante; Benitez; Coe; Blakeslee; Zekser; Ford; Broadhurst; et al. (2004). "Ultra Compact Dwarf galaxies in Abell 1689: a photometric study with the ACS". The Astronomical Journal. 128 (4): 1529–1540. arXiv:astro-ph/0406613. Bibcode:2004AJ....128.1529M. doi:10.1086/423701.
  23. ^ Zhang, Hong-Xin; et al. (March 2015). "The Next Generation Virgo Cluster Survey. VI: The Kinematics of Ultracompact Dwarfs and Globular Clusters in M87". Astrophysical Journal. 802: 30. arXiv:1501.03167. Bibcode:2015ApJ...802...30Z. doi:10.1088/0004-637X/802/1/30.
  24. ^ Liu, Chengze; et al. (November 2015). "The Next Generation Virgo Cluster Survey. X: Properties of Ultracompact Dwarfs in The M87, M49 and M60 Regions". Astrophysical Journal. 812: 34. arXiv:1508.07334. Bibcode:2015ApJ...812...34L. doi:10.1088/0004-637X/812/1/34.
  25. ^ Strader, Jay; Seth, Anil C.; Forbes, Duncan A.; Fabbiano, Giuseppina; et al. (August 2013). "The Densest Galaxy". Astrophysical Journal Letters. 775 (1): L6. arXiv:1307.7707. Bibcode:2013ApJ...775L...6S. doi:10.1088/2041-8205/775/1/L6. Retrieved 25 September 2013.
  26. ^ "Evidence for densest galaxy in nearby universe". Phys.org (Omicron Technology Ltd). 24 September 2013. Retrieved 25 September 2013. What makes M60-UCD1 so remarkable is that about half of this mass is found within a radius of only about 80 light years. The density of stars is about 15,000 times greater—meaning the stars are about 25 times closer to each other—than in Earth's region of the Milky Way galaxy.
  27. ^ Sandoval, Michael A.; Vo, Richard P.; Romanowsky, Aaron J.; Strader, Jay; Choi, Jieun; Jennings, Zachary G.; Conroy, Charlie; Brodie, Jean P.; Foster, Caroline; Villaume, Alexa; Norris, Mark A.; Janz, Joachim; Forbes, Duncan A. (23 July 2015). "Hiding in Plain Sight: Record-breaking Compact Stellar Systems in the Sloan Digital Sky Survey". The Astrophysical Journal. 808 (1): L32. arXiv:1506.08828. Bibcode:2015ApJ...808L..32S. doi:10.1088/2041-8205/808/1/L32.
  28. ^ Ahn, C. P.; Seth, A. C.; den Brok, M.; Strader, J.; Baumgardt, H.; van den Bosch, R.; Chilingarian, I.; Frank, M.; Hilker, M.; McDermid, R.; Mieske, S.; Romanowsky, A. J.; Spitler, L.; Brodie, J.; Neumayer, N.; Walsh, J. L. (2017). "Detection of Supermassive Black Holes in Two Virgo Ultracompact Dwarf Galaxies". Astrophysical Journal. 839: 72. arXiv:1703.09221. Bibcode:2017ApJ...839...72A. doi:10.3847/1538-4357/aa6972.
  29. ^ "A stubborn dwarf galaxy". Retrieved 6 July 2016.
  30. ^ "A galaxy of deception". Retrieved 29 September 2014.

External links

Antlia 2

Antlia 2 (Ant 2) is a low-surface-brightness dwarf satellite galaxy of the Milky Way at a galactic latitude of 11.2°. It spans 1.26° in the sky just southeast of Epsilon Antliae. The galaxy is similar in size to the Large Magellanic Cloud, despite being 10,000 times fainter. Antlia 2 has the lowest surface brightness of any galaxy discovered and is ~ 100 times more diffuse than any known ultra diffuse galaxy. It was discovered by the European Space Agency's Gaia spacecraft in November 2018.

Aquarius Dwarf

The Aquarius Dwarf is a dwarf irregular galaxy, first catalogued in 1959 by the DDO survey. It is located within the boundaries of the constellation of Aquarius. It is a member of the Local Group of galaxies, albeit an extremely isolated one; it is one of only a few known Local Group members for which a past close approach to the Milky Way or Andromeda galaxy can be ruled out, based on its current location and velocity.

Local Group membership was firmly established only in 1999, with the derivation of a distance based on the tip of the red-giant branch method. Its distance from the Milky Way of 3.2 ±0.2 Mly (980 ±40 kpc) means that Aquarius Dwarf is quite isolated in space. It is one of the least luminous Local Group galaxies to contain significant amounts of neutral hydrogen and support to ongoing star formation, although it does so only at an extremely low level.

Because of its large distance, the Hubble Space Telescope is required in order to study its stellar populations in detail. RR Lyrae stars have been discovered in Aquarius Dwarf, indicating the existence of stars more than 10 billion years old, but the majority of its stars are much younger (median age 6.8 billion years). Among Local Group galaxies, only Leo A has a younger mean age, leading to the suggestion that delayed star formation could be correlated with galaxy isolation.

Boötes III (dwarf galaxy)

Boötes III is an overdensity in the Milky Way's halo, which may be a disrupted dwarf spheroidal galaxy. It is situated in the constellation Boötes and was discovered in 2009 in the data obtained by Sloan Digital Sky Survey. The galaxy is located at the distance of about 46 kpc from the Sun and moves away the Sun with the speed of about 200 km/s. It has an elongated shape (axis ratio of 2:1) with the radius of about 0.5 kpc. The large size and an irregular shape may indicate that Bootes III in a transitional phase between a gravitationally bound galaxy and completely unbound system.Boötes III is one of the smallest and faintest satellites of the Milky Way—its integrated luminosity is about 18,000 times that of the Sun (absolute visible magnitude of about −5.8), which is much lower than the luminosity of many globular clusters. The mass of Bootes III is difficult to estimate because the galaxy is in process of being disrupted. In this case the velocity dispersion of its stars is not related to its mass.The stellar population of Bootes III consists mainly of moderately old stars formed more than 12 billion years ago. The metallicity of these old stars is low at [Fe/H]=−2.1 ± 0.2, which means that they contain 120 times less heavy elements than the Sun. Bootes III may the source of stars of the Styx stream in the galactic halo, which was discovered together with this galaxy.

Boötes II (dwarf galaxy)

Bootes II or Boo II is a dwarf spheroidal galaxy situated in the Bootes constellation and discovered in 2007 in the data obtained by Sloan Digital Sky Survey. The galaxy is located at the distance of about 42 kpc from the Sun and moves towards the Sun with the speed of 120 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an approximately round shape with the half-light radius of about 51 pc.Bootes II is one of the smallest and faintest satellites of the Milky Way—its integrated luminosity is about 1,000 times that of the Sun (absolute visible magnitude of about −2.7), which is much lower than the luminosity of the majority of globular clusters. However the mass of the galaxy is substantial corresponding to the mass to light ratio of more than 100.The stellar population of Bootes II consists mainly of moderately old stars formed 10–12 billion years ago. The metallicity of these old stars is low at [Fe/H]=−1.8, which means that they contain 80 times less heavy elements than the Sun. Currently there is no star formation in Bootes II. The measurements have so far failed to detect any neutral hydrogen in it—the upper limit is only 86 solar masses.Bootes II is located only 1.5 degrees (~1.6 kpc) away from another dwarf galaxy—Boötes I, although they are unlikely to be physically associated because they move in opposite directions relative to the Milky Way. Their relative velocity—about 200 km/s is too high. It is more likely associated with the Sagittarius Stream and, therefore, with the Sagittarius Dwarf Elliptical Galaxy (SagDEG). Bootes II may be either a satellite galaxy of SagDEG or one of its star clusters torn from the main galaxy 4–7 billion years ago.

Boötes I (dwarf galaxy)

The Boötes Dwarf Galaxy (Boo I dSph) is a galaxy, which appears faint, with a luminosity of 100,000 L☉ and an absolute magnitude of –5.8. It lies about 197 thousand light-years (60.4 kiloparsecs) away in the constellation Boötes. This dwarf spheroidal galaxy appears to be tidally disrupted by the Milky Way Galaxy, which it orbits, and has two stellar tails that cross over to form a cross. Tidally disrupted galaxies usually only form one tail.Like many of the ultrafaint dwarf spheroidals, the entire galaxy appears fainter than the Rigel system (absolute magnitude –7.84).

Canis Major Overdensity

The Canis Major Dwarf Galaxy (CMa Dwarf) or Canis Major Overdensity (CMa Overdensity) is a disputed dwarf irregular galaxy in the Local Group, located in the same part of the sky as the constellation Canis Major.

The supposed small galaxy contains a relatively high percentage of red giants and is thought to contain an estimated one billion stars in all.

The Canis Major Dwarf Galaxy is classified as an irregular galaxy and is now thought to be the closest neighboring galaxy to the Earth's location in the Milky Way, being located about 25,000 light-years (7.7 kiloparsecs) away from the Solar System and 42,000 ly (13 kpc) from the Galactic Center. It has a roughly elliptical shape and is thought to contain as many stars as the Sagittarius Dwarf Elliptical Galaxy, the previous contender for closest galaxy to our location in the Milky Way.

Carina Dwarf Spheroidal Galaxy

The Carina Dwarf Spheroidal Galaxy is a dwarf galaxy in the Carina constellation. It was discovered in 1977 with the UK Schmidt Telescope by Cannon et al. The Carina Dwarf Spheroidal galaxy is a satellite galaxy of the Milky Way and is receding from it at 230 km/s. The diameter of the galaxy is about 1600 light-years, which is 75 times smaller than the Milky Way. Most of the stars in the galaxy formed 7 billion years ago, although it also experienced bursts of star formation about 13 and 3 billion years ago. It is also being tidally disrupted by the Milky Way galaxy.

Crater 2 Dwarf

Crater 2 is a low-surface-brightness dwarf satellite galaxy of the Milky Way, located approximately 380,000 ly from Earth. Crater 2 was identified in imaging data from the VST ATLAS survey.The galaxy has a half-light radius of ∼1100 pc, making it the fourth largest satellite of the Milky Way. It has an angular size about double of that of the moon.

Draco Dwarf

The Draco Dwarf is a spheroidal galaxy which was discovered by Albert George Wilson of Lowell Observatory in 1954 on photographic plates of the National Geographic Society's Palomar Observatory Sky Survey (POSS). It is part of the Local Group and a satellite galaxy of the Milky Way galaxy. The Draco Dwarf is situated in the direction of the Draco Constellation at 34.6° above the galactic plane.

Dwarf galaxy problem

The dwarf galaxy problem, also known as the missing satellites problem, arises from numerical cosmological simulations that predict the evolution of the distribution of matter in the universe. Dark matter seems to cluster hierarchically and in ever increasing number counts for smaller-and-smaller-sized halos. However, although there seem to be enough observed normal-sized galaxies to account for this distribution, the number of dwarf galaxies is orders of magnitude lower than expected from simulation. For comparison, there were observed to be around 38 dwarf galaxies in the Local Group, and only around 11 orbiting the Milky Way, (for a detailed and more up to date list see List of Milky Way's satellite galaxies) yet one dark matter simulation predicted around 500 Milky Way dwarf satellites.There are two main alternatives to resolving this problem. One is that the smaller halos do exist but only a few of them end up becoming visible because they have not been able to attract enough baryonic matter to create a visible dwarf galaxy. In support of this, Keck observations in 2007 of eight newly discovered ultra-faint Milky Way dwarf satellites showed that six were around 99.9% dark matter (with a mass-to-light ratio of about 1000). Other solutions may be that dwarf galaxies tend to be merged into or tidally stripped apart by larger galaxies due to complex interactions. This tidal stripping has been part of the problem in identifying dwarf galaxies in the first place, which is an extremely difficult task since these objects have low surface brightness and are highly diffused, so much that they are virtually unnoticeable.

Fornax Dwarf

The Fornax Dwarf Spheroidal is an elliptical dwarf galaxy in the constellation Fornax that was discovered in 1938 by Harlow Shapley. He discovered it while he was in South Africa on photographic plates taken by the 24 inch (61 cm) Bruce refractor at Boyden Observatory, shortly after he discovered the Sculptor Dwarf Galaxy.The galaxy is a satellite of the Milky Way and contains six globular clusters; the largest, NGC 1049, was discovered before the galaxy itself. The galaxy is also receding from the Milky Way at 53 km/s. It mostly contains population II stars.

Leo II (dwarf galaxy)

Leo II (or Leo B) is a dwarf spheroidal galaxy about 690,000 light-years away in the constellation Leo. It is one of 24 known satellite galaxies of the Milky Way.

Leo II is thought to have a core radius of 178 ± 13 pc and a tidal radius of 632 ± 32 pc.

It was discovered in 1950 by Robert George Harrington and Albert George Wilson, from the Mount Wilson and Palomar Observatories in California.

Leo I (dwarf galaxy)

Leo I is a dwarf spheroidal galaxy in the constellation Leo. At about 820,000 light-years distant, it is a member of the Local Group of galaxies and is thought to be one of the most distant satellites of the Milky Way galaxy. It was discovered in 1950 by Albert George Wilson on photographic plates of the National Geographic Society – Palomar Observatory Sky Survey, which were taken with the 48-inch Schmidt camera at Palomar Observatory.

Local Group

The Local Group is the galaxy group that includes the Milky Way. The Local Group comprises more than 54 galaxies, most of them dwarf galaxies. Its gravitational center is located somewhere between the Milky Way and the Andromeda Galaxy. The Local Group has a diameter of 10 Mly (3.1 Mpc) (about 1023 meters) and has a binary (dumbbell)

distribution. The group itself is a part of the larger Virgo Supercluster, which may be a part of the Laniakea Supercluster.

The three largest members of the group (in descending order) are the Andromeda Galaxy, the Milky Way and the significantly smaller Triangulum Galaxy. The larger two of these spiral galaxies each have their own system of satellite galaxies.

The Andromeda Galaxy's satellite system consists of Messier 32 (M32), Messier 110 (M110), NGC 147, NGC 185, Andromeda I (And I), And II, And III, And V, And VI (also known as Pegasus Dwarf Spheroidal Galaxy, or Pegasus DSph), And VII (also known as Cassiopeia Dwarf Galaxy), And VIII, And IX, And X, And XI, And XIX, And XXI and And XXII, plus several additional ultra-faint dwarf spheroidal galaxies.

The Milky Way's satellite galaxies system comprises Sagittarius Dwarf Galaxy, Large Magellanic Cloud, Small Magellanic Cloud, Canis Major Dwarf Galaxy (disputed, considered by some not a galaxy), Ursa Minor Dwarf Galaxy, Draco Dwarf Galaxy, Carina Dwarf Galaxy, Sextans Dwarf Galaxy, Sculptor Dwarf Galaxy, Fornax Dwarf Galaxy, Leo I (a dwarf galaxy), Leo II (a dwarf galaxy), and Ursa Major I Dwarf Galaxy and Ursa Major II Dwarf Galaxy, plus several additional ultra-faint dwarf spheroidal galaxies.

The Triangulum Galaxy may or may not be a companion to the Andromeda Galaxy. Pisces Dwarf Galaxy is equidistant from the Andromeda Galaxy and the Triangulum Galaxy, so it may be a satellite of either.

The membership of NGC 3109, with its companions Sextans A and the Antlia Dwarf Galaxy, is uncertain due to extreme distances from the center of the Local Group.

The other members of the group are likely gravitationally secluded from these large subgroups: IC 10, IC 1613, Phoenix Dwarf Galaxy, Leo A, Tucana Dwarf Galaxy, Cetus Dwarf Galaxy, Pegasus Dwarf Irregular Galaxy, Wolf–Lundmark–Melotte, Aquarius Dwarf Galaxy, and Sagittarius Dwarf Irregular Galaxy.

Pisces I (dwarf galaxy)

Pisces I (Psc I) or Pisces Overdensity is a clump of stars in the Milky Way's halo, which may be a disrupted dwarf spheroidal galaxy. It is situated in the Pisces constellation and was discovered in 2009 by analysis of distribution of RR Lyrae stars in the data obtained by the Sloan Digital Sky Survey's data. The galaxy is located at the distance of about 80 kpc from the Sun and moves towards it with a speed of about 75 km/s.Pisces I is one of the faintest satellites of the Milky Way. Its mass is estimated to be at least 105 Solar masses. However it has a large size of about several degrees (around 1 kpc) and may be in a transitional phase between a gravitationally bound galaxy and completely unbound system. Pisces I is located near the plane, where the Magellanic Clouds lie. There may exist a connection between the Magellanic stream and this galaxy.


Sagittarius (Latin plural and genitive Sagittarii) may refer to:

Sagittarius (constellation)

Sagittarius (astrology), a sign of the Zodiac

Sculptor Dwarf Galaxy

The Sculptor Dwarf Galaxy (also known as Sculptor Dwarf Elliptical Galaxy or the Sculptor Dwarf Spheroidal Galaxy) is a dwarf spheroidal galaxy that is a satellite of the Milky Way. The galaxy lies within the constellation Sculptor. It was discovered in 1937 by American astronomer Harlow Shapley using the 24-inch Bruce refractor at Boyden Observatory. The galaxy is located about 290,000 light-years away from the Solar System. The Sculptor Dwarf contains only 4 percent of the carbon and other heavy elements in our own galaxy, the Milky Way, making it similar to primitive galaxies seen at the edge of the universe.

Segue 2

Segue 2 is a dwarf spheroidal galaxy situated in the constellation Aries and discovered in 2009 in the data obtained by Sloan Digital Sky Survey. The galaxy is located at the distance of about 35 kpc (35,000 parsecs (110,000 ly)) from the Sun and moves towards the Sun with the speed of 40 km/s. It is classified as a dwarf spheroidal galaxy (dSph) meaning that it has an approximately round shape with the half-light radius of about 34 pc.The name is due to the fact that it was found by the SEGUE program, the Sloan Extension for Galactic Understanding and Exploration.

Segue 2 is one of the smallest and faintest satellites of the Milky Way—its integrated luminosity is about 800 times that of the Sun (absolute visible magnitude of about −2.5), which is much lower than the luminosity of the majority of globular clusters. However, the mass of the galaxy—about 550,000 solar masses—is substantial, corresponding to the mass to light ratio of about 650.The stellar population of Segue 2 consists mainly of old stars formed more than 12 billion years ago. The metallicity of these old stars is also very low at [Fe/H] < −2, which means that they contain at least 100 times less heavy elements than the Sun. The stars of Segue 2 were probably among the first stars to form in the Universe. Currently, there is no star formation in Segue 2.Segue 2 is located near the edge of Sagittarius Stream and at the same distance. It may once have been a satellite of Sagittarius Dwarf Elliptical Galaxy or its star cluster.In June 2013 The Astrophysical Journal reported that Segue 2 was bound together with dark matter.Circa 1,000 stars are supposed to exist within the galaxy.

Ursa Minor Dwarf

The Ursa Minor Dwarf is a dwarf spheroidal galaxy, discovered by A.G. Wilson of the Lowell Observatory, in the United States, during the Palomar Sky Survey in 1955. It appears in the Ursa Minor constellation, and is a satellite galaxy of the Milky Way. The galaxy consists mainly of older stars and seems to house little to no ongoing star formation. Its centre is around 225,000 light years distant from Earth.

Active nuclei
Energetic galaxies
Low activity
See also

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.