Digital audio broadcasting

Digital audio broadcasting (DAB) is a digital radio standard for broadcasting digital audio radio services, used in many countries around the world, though not North America.

The DAB standard was initiated as a European research project in the 1980s.[1] The Norwegian Broadcasting Corporation (NRK) launched the first DAB channel in the world on 1 June 1995 (NRK Klassisk),[2] and the BBC and Swedish Radio (SR) launched their first DAB digital radio broadcasts in September 1995. DAB receivers have been available in many countries since the end of the 1990s.

DAB is generally more efficient in its use of spectrum than analogue FM radio, and thus can offer more radio services for the same given bandwidth. However the sound quality can be noticeably inferior if the bit-rate allocated to each audio program is not sufficient. DAB is more robust with regard to noise and multipath fading for mobile listening,[3] although DAB reception quality degrades rapidly when the signal strength falls below a critical threshold, whereas FM reception quality degrades slowly with the decreasing signal, providing effective coverage over a larger area.

The original version of DAB used the MP2 audio codec. An upgraded version of the system was released in February 2007, called DAB+, which uses the HE-AAC v2 audio codec. DAB is not forward compatible with DAB+, which means that DAB-only receivers are not able to receive DAB+ broadcasts.[4] However, broadcasters can mix DAB and DAB+ programs inside the same transmission and so make a progressive transition to DAB+. DAB+ is approximately twice as efficient as DAB, and more robust.

In spectrum management, the bands that are allocated for public DAB services, are abbreviated with T-DAB, where the "T" stands for terrestrial.

As of 2018, 41 countries are running DAB services.[5] The majority of these services are using DAB+, with only Ireland, UK, New Zealand, Romania and Brunei still using a significant number of DAB services. See Countries using DAB/DMB. In many countries, it is expected that existing FM services will switch over to DAB+. Norway is the first country to implement a national FM radio analog switchoff, in 2017, however that only applied to national broadcasters, not local ones.

DAB Radio 07
A Pure-branded DAB receiver

History

Digital Audio Broadcasting
  Countries with regular services
  Countries with trials / tests
  Countries with interest
  DAB no longer used

DAB has been under development since 1981 at the Institut für Rundfunktechnik (IRT). The first DAB demonstrations were held in 1985 at the WARC-ORB in Geneva, and in 1988 the first DAB transmissions were made in Germany. Later, DAB was developed as a research project for the European Union (EUREKA), which started in 1987 on initiative by a consortium formed in 1986. The MPEG-1 Audio Layer II ("MP2") codec was created as part of the EU147 project. DAB was the first standard based on orthogonal frequency division multiplexing (OFDM) modulation technique, which since then has become one of the most popular transmission schemes for modern wideband digital communication systems.

A choice of audio codec, modulation and error-correction coding schemes and first trial broadcasts were made in 1990. Public demonstrations were made in 1993 in the United Kingdom. The protocol specification was finalized in 1993 and adopted by the ITU-R standardization body in 1994, the European community in 1995 and by ETSI in 1997. Pilot broadcasts were launched in several countries in 1995.

In October 2005, the World DMB Forum instructed its Technical Committee to carry out the work needed to adopt the AAC+ audio codec and stronger error correction coding. This work led to the launch of the DAB+ system.

By 2006, 500 million people worldwide were in the coverage area of DAB broadcasts, although by this time sales of receivers had only taken off in the United Kingdom (UK) and Denmark. In 2006 there were approximately 1,000 DAB stations in operation worldwide.[6] As of 2018, over 68 million devices have been sold worldwide, and over 2,270 DAB services are on air.[5]

Technology

Bands and modes

DAB uses a wide-bandwidth broadcast technology and typically spectra have been allocated for it in Band III (174–240 MHz) and L band (1.452–1.492 GHz), although the scheme allows for operation between 30 and 300 MHz. The US military has reserved L-Band in the USA only, blocking its use for other purposes in America, and the United States has reached an agreement with Canada to restrict L-Band DAB to terrestrial broadcast to avoid interference.

DAB historically had a number of country specific transmission modes (I, II, III and IV).

  • Mode I for Band III, Earth
  • Mode II for L-Band, Earth and satellite
  • Mode III for frequencies below 3 GHz, Earth and satellite
  • Mode IV for L-Band, Earth and satellite

In January 2017, an updated DAB specification (2.1.1) removed Modes II, III and IV, leaving only Mode I.

Protocol stack

From an OSI model protocol stack viewpoint, the technologies used on DAB inhabit the following layers: the audio codec inhabits the presentation layer. Below that is the data link layer, in charge of statistical time division multiplexing and frame synchronization. Finally, the physical layer contains the error-correction coding, OFDM modulation, and dealing with the over-the-air transmission and reception of data. Some aspects of these are described below.

Audio codec

DAB uses the MPEG-1 Audio Layer II audio codec, which is often referred to as MP2 because of the ubiquitous MP3 (MPEG-1 Audio Layer III).

The newer DAB+ standard adopted the HE-AAC version 2 audio codec, commonly known as 'AAC+' or 'aacPlus'. AAC+ is approximately three times more efficient than MP2,[7] which means that broadcasters using DAB+ are able to provide far higher audio quality or far more stations than they could with DAB, or a combination of both higher audio quality and more stations.

One of the most important decisions regarding the design of a digital radio broadcasting system is the choice of which audio codec to use, because the efficiency of the audio codec determines how many radio stations can be carried on a fixed capacity multiplex at a given level of audio quality.

Error-correction coding

Error-correction coding (ECC) is an important technology for a digital communication system because it determines how robust the reception will be for a given signal strength – stronger ECC will provide more robust reception than a weaker form.

The old version of DAB uses punctured convolutional coding for its ECC. The coding scheme uses unequal error protection (UEP), which means that parts of the audio bit-stream that are more susceptible to errors causing audible disturbances are provided with more protection (i.e. a lower code rate) and vice versa. However, the UEP scheme used on DAB results in there being a grey area in between the user experiencing good reception quality and no reception at all, as opposed to the situation with most other wireless digital communication systems that have a sharp "digital cliff", where the signal rapidly becomes unusable if the signal strength drops below a certain threshold. When DAB listeners receive a signal in this intermediate strength area they experience a "burbling" sound which interrupts the playback of the audio.

The DAB+ standard incorporates Reed-Solomon ECC as an "inner layer" of coding that is placed around the byte interleaved audio frame but inside the "outer layer" of convolutional coding used by the original DAB system, although on DAB+ the convolutional coding uses equal error protection (EEP) rather than UEP since each bit is equally important in DAB+. This combination of Reed-Solomon coding as the inner layer of coding, followed by an outer layer of convolutional coding – so-called "concatenated coding" – became a popular ECC scheme in the 1990s, and NASA adopted it for its deep-space missions. One slight difference between the concatenated coding used by the DAB+ system and that used on most other systems is that it uses a rectangular byte interleaver rather than Forney interleaving in order to provide a greater interleaver depth, which increases the distance over which error bursts will be spread out in the bit-stream, which in turn will allow the Reed-Solomon error decoder to correct a higher proportion of errors.

The ECC used on DAB+ is far stronger than is used on DAB, which, with all else being equal (i.e., if the transmission powers remained the same), would translate into people who currently experience reception difficulties on DAB receiving a much more robust signal with DAB+ transmissions. It also has a far steeper "digital cliff", and listening tests have shown that people prefer this when the signal strength is low compared to the shallower digital cliff on DAB.[7]

Modulation

Immunity to fading and inter-symbol interference (caused by multipath propagation) is achieved without equalization by means of the OFDM and DQPSK modulation techniques. For details, see the OFDM system comparison table.

Using values for Transmission Mode I (TM I), the OFDM modulation consists of 1,536 subcarriers that are transmitted in parallel. The useful part of the OFDM symbol period is 1 millisecond, which results in the OFDM subcarriers each having a bandwidth of 1 kHz due to the inverse relationship between these two parameters, and the overall OFDM channel bandwidth is 1,537 kHz. The OFDM guard interval for TM I is 246 microseconds, which means that the overall OFDM symbol duration is 1.246 milliseconds. The guard interval duration also determines the maximum separation between transmitters that are part of the same single-frequency network (SFN), which is approximately 74 km for TM I.

Single-frequency networks

OFDM allows the use of single-frequency networks (SFN), which means that a network of transmitters can provide coverage to a large area – up to the size of a country – where all transmitters use the same transmission frequency. Transmitters that are part of an SFN need to be very accurately synchronised with other transmitters in the network, which requires the transmitters to use very accurate clocks.

When a receiver receives a signal that has been transmitted from the different transmitters that are part of an SFN, the signals from the different transmitters will typically have different delays, but to OFDM they will appear to simply be different multipaths of the same signal. Reception difficulties can arise, however, when the relative delay of multipaths exceeds the OFDM guard interval duration, and there are frequent reports of reception difficulties due to this issue when there is a lift, such as when there's high pressure, due to signals travelling farther than usual, and thus the signals are likely to arrive with a relative delay that is greater than the OFDM guard interval.

Low power gap-filler transmitters can be added to an SFN as and when desired in order to improve reception quality, although the way SFNs have been implemented in the UK up to now they have tended to consist of higher power transmitters being installed at main transmitter sites in order to keep costs down.

Bit rates

An ensemble has a maximum bit rate that can be carried, but this depends on which error protection level is used. However, all DAB multiplexes can carry a total of 864 "capacity units". The number of capacity units, or CU, that a certain bit-rate level requires depends on the amount of error correction added to the transmission, as described above. In the UK, most services transmit using 'protection level three', which provides an average ECC code rate of approximately ½, equating to a maximum bit rate per multiplex of 1,184 kbit/s.

Services and ensembles

Various different services are embedded into one ensemble (which is also typically called a multiplex). These services can include:

  • Primary services, like main radio stations
  • Secondary services, like additional sports commentaries
  • Data services

DAB+

The term "DAB" most commonly refers both to a specific DAB standard using the MP2 audio codec, but can sometimes refer to a whole family of DAB-related standards, such as DAB+, DMB and DAB-IP.

DAB+

WorldDAB, the organisation in charge of the DAB standards, announced DAB+, a major upgrade to the DAB standard in 2006, when the HE-AAC v2 audio codec[8] (also known as eAAC+) was adopted. The new standard, which is called DAB+, has also adopted the MPEG Surround audio format and stronger error correction coding in the form of Reed-Solomon coding. DAB+ has been standardised as European Telecommunications Standards Institute (ETSI) TS 102 563.

As DAB is not forward compatible with DAB+, older DAB receivers cannot receive DAB+ broadcasts. However, DAB receivers that will be able to receive the new DAB+ standard via a firmware upgrade went on sale in July 2007. If a receiver is DAB+ compatible, there will be a sign on the product packaging.

DAB+ broadcasts have launched in several countries like Australia, Czech Republic, Denmark, Germany, Hong Kong (now terminated), Italy, Malta, Norway, Poland, Switzerland, Belgium (October 2017),[9] the United Kingdom and the Netherlands. Malta was the first country to launch DAB+ in Europe. Several other countries are also expected to launch DAB+ broadcasts over the next few years, such as Austria, Hungary, Thailand, Vietnam and Indonesia. South Africa began a DAB+ technical pilot in November 2014 on channel 13F in Band 3. If DAB+ stations launch in established DAB countries, they can transmit alongside existing DAB stations that use the older MPEG-1 Audio Layer II audio format, and most existing DAB stations are expected to continue broadcasting until the vast majority of receivers support DAB+.[10]

Ofcom in the UK published a consultation for a new national multiplex containing a mix of DAB and DAB+ services, with the intention of moving all services to DAB+ in the long term.[11] In February 2016, the new national network Sound Digital launched with three DAB+ stations.[12]

DMB

Digital multimedia broadcasting (DMB) and DAB-IP are suitable for mobile radio and TV both because they support MPEG 4 AVC and WMV9 respectively as video codecs. However, a DMB video subchannel can easily be added to any DAB transmission, as it was designed to be carried on a DAB subchannel. DMB broadcasts in Korea carry conventional MPEG 1 Layer II DAB audio services alongside their DMB video services.

As of 2017, DMB is currently broadcast in Norway, South Korea and Thailand.

Countries using DAB

More than 40 countries provide DAB, DAB+ or DMB broadcasts, either as a permanent technology or as test transmissions.

DAB is not used in the United States. The United States' FCC argues that stations on such a national DAB Band would be more difficult to control from signal interference than AM/FM/TV because of the continent's large land mass; and corporations who sell DAB radio in North America could find it more expensive to market these types of radio to consumers. There are no DAB radio stations that operate in North America as of 2018.

DAB and AM/FM compared

Traditionally radio programmes were broadcast on different frequencies via AM and FM, and the radio had to be tuned into each frequency, as needed. This used up a comparatively large amount of spectrum for a relatively small number of stations, limiting listening choice. DAB is a digital radio broadcasting system that through the application of multiplexing and compression combines multiple audio streams onto a relatively narrow band centred on a single broadcast frequency called a DAB ensemble.

Within an overall target bit rate for the DAB ensemble, individual stations can be allocated different bit rates. The number of channels within a DAB ensemble can be increased by lowering average bit rates, but at the expense of the quality of streams. Error correction under the DAB standard makes the signal more robust but reduces the total bit rate available for streams.

FM HD Radio versus DAB

Some countries have implemented Eureka-147 digital audio broadcasting (DAB). DAB broadcasts a single multiplex that is approximately 1,500 kilohertz wide (≈1,000 kilobits per second). That multiplex is then subdivided into multiple digital streams of between 9 and 12 programs. In contrast, FM HD Radio adds its digital carriers to the traditional 270 kilohertz-wide analog channels, with capability of up to 300 kbit/s per station (pure digital mode). The full bandwidth of the hybrid mode approaches 400 kHz.

The first generation DAB uses the MPEG-1 Audio Layer II (MP2) audio codec, which has less efficient compression than newer codecs. The typical bitrate for DAB stereo programs is only 128 kbit/s or less, and as a result, most radio stations on DAB have a lower sound quality than FM, prompting a number of complaints among the audiophile community.[13] As with DAB+ or T-DMB in Europe, FM HD Radio uses a codec based upon the MPEG-4 HE-AAC standard.

HD Radio is a proprietary system from the company IBiquity. DAB is an open standard deposited at ETSI.

Use of frequency spectrum and transmitter sites

DAB can give substantially higher spectral efficiency, measured in programmes per MHz and per transmitter site, than analogue systems. In many places, this has led to an increase in the number of stations available to listeners, especially outside of the major urban areas.

Numerical example: Analog FM requires 0.2 MHz per programme. The frequency reuse factor in most countries is approximately 15 for stereo transmissions (with lesser factors for mono FM networks), meaning (in the case of stereo FM) that only one out of 15 transmitter sites can use the same channel frequency without problems with co-channel interference, i.e. cross-talk. Assuming a total availability of 102 FM channels at a bandwidth of 0.2MHz over the Band II spectrum of 87.5 to 108.0 MHz, an average of 102/15 = 6.8 radio channels are possible on each transmitter site (plus lower-power local transmitters causing less interference). This results in a system spectral efficiency of 1 / 15 / (0.2 MHz) = 0.30 programmes/transmitter/MHz. DAB with 192 kbit/s codec requires 1.536 MHz * 192 kbit/s / 1,136 kbit/s = 0.26 MHz per audio programme. The frequency reuse factor for local programmes and multi-frequency broadcasting networks (MFN) is typically 4 or 5, resulting in 1 / 4 / (0.26 MHz) = 0.96 programmes/transmitter/MHz. This is 3.2 times as efficient as analog FM for local stations. For single frequency network (SFN) transmission, for example of national programmes, the channel re-use factor is 1, resulting in 1/1/0.25 MHz = 3.85 programmes/transmitter/MHz, which is 12.7 times as efficient as FM for national and regional networks.

Note the above capacity improvement may not always be achieved at the L-band frequencies, since these are more sensitive to obstacles than the FM band frequencies, and may cause shadow fading for hilly terrain and for indoor communication. The number of transmitter sites or the transmission power required for full coverage of a country may be rather high at these frequencies, to avoid the system becoming noise limited rather than limited by co-channel interference.

Sound quality

The original objectives of converting to digital transmission were to enable higher fidelity, more stations and more resistance to noise, co-channel interference and multipath than in analogue FM radio. However, many countries in implementing DAB on stereo radio stations use compression to such a degree that it produces lower sound quality than that received from FM broadcasts. This is because of the bit rate levels being too low for the MPEG Layer 2 audio codec to provide high fidelity audio quality.[14]

The BBC Research & Development department states that at least 192 kbit/s is necessary for a high fidelity stereo broadcast :

A value of 256 kbit/s has been judged to provide a high quality stereo broadcast signal. However, a small reduction, to 224 kbit/s is often adequate, and in some cases it may be possible to accept a further reduction to 192 kbit/s, especially if redundancy in the stereo signal is exploited by a process of 'joint stereo' encoding (i.e. some sounds appearing at the centre of the stereo image need not be sent twice). At 192 kbit/s, it is relatively easy to hear imperfections in critical audio material.

— BBC R&D White Paper WHP 061 June 2003[15]

When the BBC in July 2006 reduced the bit-rate of transmission of its classical music station Radio 3 from 192 kbit/s to 160 kbit/s, the resulting degradation of audio quality prompted a number of complaints to the Corporation.[16] The BBC later announced that following this testing of new equipment, it would resume the previous practice of transmitting Radio 3 at 192 kbit/s whenever there were no other demands on bandwidth. (For comparison, BBC Radio 3 is now streamed using AAC+ at 320 kbit/s, described as 'HD', on BBC Radio iPlayer after a period when it was available at two different bit rates.)

Despite the above, a survey in 2007 of DAB listeners (including mobile) has shown most find DAB to have equal or better sound quality than FM.[17]

Benefits of DAB

Improved features for users

DAB devices perform band-scans over the entire frequency range, presenting all stations from a single list for the user to select from.

DAB can carry "radiotext" (in DAB terminology, Dynamic Label Segment, or DLS) from the station giving real-time information such as song titles, music type and news or traffic updates, of up to 128 characters in length. This is similar to a feature of FM RDS, which enables a radiotext of up to 64 characters.

The DAB transmission contains a local time of day and so a device may use this to automatically correct its internal clock when travelling between time zones and when changing to or from Daylight Saving.

More stations

DAB is not more bandwidth efficient than analogue measured in programmes per MHz of a specific transmitter (the so-called link spectral efficiency), but it is less susceptible to co-channel interference (cross talk), which makes it possible to reduce the reuse distance, i.e. use the same radio frequency channel more densely. The system spectral efficiency (the average number of radio programmes per MHz and transmitter) is a factor three more efficient than analogue FM for local radio stations. For national and regional radio networks, the efficiency is improved by more than an order of magnitude due to the use of SFNs. In that case, adjacent transmitters use the same frequency.

In certain areas – particularly rural areas – the introduction of DAB gives radio listeners a greater choice of radio stations. For instance, in Southern Norway, radio listeners experienced an increase in available stations from 6 to 21 when DAB was introduced in November 2006.

Reception quality

The DAB standard integrates features to reduce the negative consequences of multipath fading and signal noise, which afflict existing analogue systems.

Also, as DAB transmits digital audio, there is no hiss with a weak signal, which can happen on FM. However, radios in the fringe of a DAB signal, can experience a "bubbling mud" sound interrupting the audio or the audio cutting out altogether.

Due to sensitivity to doppler shift in combination with multipath propagation, DAB reception range (but not audio quality) is reduced when travelling speeds of more than 120 to 200 km/h, depending on carrier frequency.[3]

Less unlicensed ("pirate") station interference

The specialised nature, limited spectrum and higher cost of DAB broadcasting equipment provides barriers to unlicensed ("pirate") stations broadcasting on DAB. In cities such as London with large numbers of unlicensed radio stations broadcasting on FM, this means that some stations can be reliably received via DAB in areas where they are regularly difficult or impossible to receive on FM because of interference from unlicensed radio stations.

Variable bandwidth

Mono talk radio, news and weather channels and other non-music programs need significantly less bandwidth than a typical music radio station, which allows DAB to carry these programmes at lower bit rates, leaving more bandwidth to be used for other programs.

However, this led to the situation where some stations are being broadcast in mono; see music radio stations broadcasting in mono for more details.

Transmission costs

DAB transmitters are inevitably more expensive than their FM counterparts. DAB uses higher frequencies than FM and therefore there may be a need to compensate with more transmitters to achieve the same coverage as a single FM transmitter. DAB is commonly transmitted by a different company from the broadcaster who then sells the capacity to a number of radio stations. This shared cost can work out cheaper than operating an individual FM transmitter.

This efficiency originates from the ability a DAB network has in broadcasting more channels per transmitter/network. One network can broadcast 6–10 channels (with MP2 audio codec) or 10–18 channels (with HE AAC codec). Hence, it is thought that the replacement of FM-radios and FM-transmitters with new DAB-radios and DAB-transmitters will not cost any more compared with new FM facilities. It is also argued that the power consumption will be lower for stations transmitted on a single DAB multiplex compared with individual analog transmitters.[18]

Once applied, one operator has claimed that DAB transmission is as low as one-nineteenth of the cost of FM transmission.[19]

Disadvantages of DAB

Reception quality

The reception quality during the early stage of deployment of DAB was poor even for people who live well within the coverage area. The reason for this is that DAB uses weak error correction coding, so that when there are a lot of errors with the received data not enough of the errors can be corrected and a "bubbling mud" sound occurs. In some cases a complete loss of signal can happen. This situation has been improved upon in the newer DAB+ version that uses stronger error correction coding and as additional transmitters are built.

As with other digital systems, when the signal is weak or suffers severe interference, it will not work at all. DAB reception may also be a problem for receivers when the wanted signal is adjacent to a stronger one. This was a particular issue for early and low cost receivers.

Audio quality

A common complaint by listeners is that broadcasters ‘squeeze in’ more stations per ensemble than recommended [15] by:

  • Minimizing the bit-rate, to the lowest level of sound-quality that listeners are willing to tolerate, such as 112 kbit/s for stereo and even 48 kbit/s for mono speech radio (LBC 1152 and the Voice of Russia are examples).
  • Having few digital channels broadcasting in stereo.

Signal delay

The nature of a single-frequency network (SFN) is such that the transmitters in a network must broadcast the same signal at the same time. To achieve synchronization, the broadcaster must counter any differences in propagation time incurred by the different methods and distances involved in carrying the signal from the multiplexer to the different transmitters. This is done by applying a delay to the incoming signal at the transmitter based on a timestamp generated at the multiplexer, created taking into account the maximum likely propagation time, with a generous added margin for safety. Delays in the audio encoder and the receiver due to digital processing (e.g. deinterleaving) add to the overall delay perceived by the listener.[3] The signal is delayed, usually by around 1 to 4 seconds and can be considerably longer for DAB+. This has disadvantages:

  • DAB radios are out of step with live events, so the experience of listening to live commentaries on events being watched is impaired;
  • Listeners using a combination of analogue (AM or FM) and DAB radios (e.g. in different rooms of a house) will hear a mixture when both receivers are within earshot.

Time signals, on the contrary, are not a problem in a well-defined network with a fixed delay. The DAB multiplexer adds the proper offset to the distributed time information. The time information is also independent from the (possibly varying) audio decoding delay in receivers since the time is not embedded inside the audio frames. This means that built in clocks in receivers can be precisely correct.

Transmission costs

DAB can provide savings for networks of several stations. The original development of DAB was driven by national network operators with a number of channels to transmit from multiple sites. However, for individual stations such as small community or local stations which traditionally operate their own FM transmitter on their own building the cost of DAB transmission will be much higher than analog. Operating a DAB transmitter for a single station is not an efficient use of spectrum or power.

Coverage

Although FM coverage still exceeds DAB coverage in most countries implementing any kind of DAB services, a number of countries moving to digital switchover have undergone significant DAB network rollouts.

As of 2018, the following coverages were given by WorldDAB:[20]

Country Coverage (% of population)
Norway 99.7
Switzerland 99.5
Denmark 98
Germany 98
UK 97.3
Belgium 95
Netherlands 95
Italy 80
Australia 65
Spain 20
France 19

Compatibility

In 2006 tests began using the much improved HE-AAC codec for DAB+. Hardly any of the receivers made before 2008 support the newer codec, however, making them partially obsolete once DAB+ broadcasts begin and completely obsolete once all MP2 encoded stations are gone. Most new receivers are both DAB and DAB+ compatible; however, the issue is exacerbated by some manufacturers disabling the DAB+ features on otherwise compatible radios to save on licensing fees when sold in countries without current DAB+ broadcasts.

Power requirements

Roberts Sports DAB 5 Portable DAB and FM Radio
Portable DAB/DAB+ and FM receiver, circa 2016. This unit requires two "AA" size batteries. (Headphones not shown).

As DAB requires digital signal processing techniques to convert from the received digitally encoded signal to the analogue audio content, the complexity of the electronic circuitry required to do this is higher. This translates into needing more power to effect this conversion than compared to an analogue FM to audio conversion, meaning that portable receiving equipment will have a much shorter battery life, and require higher power (and hence more bulk). This means that they use more energy than analogue Band II VHF receivers. However, thanks to increased integration (radio-on-chip), DAB receiver power usage has been reduced dramatically, making portable receivers far more usable.

FM radio switch-off

Norway

Norway was the first country to announce a complete switch-off of national FM radio stations. The switch-off started on 11 January 2017 and ended on 13 December 2017.[21][22] The 2017 switch-off did not affect some local and regional radio stations. They can continue to transmit on FM until 2022.

The timetable for the closure of FM signals in 2017 were as follows:[23]

Other countries

  • Sweden in 2015 suspended its plans to switch off.[24]
  • Italy, RAS planned the switchover in the province of Trentino between December 2017 and November 2018, a national switchover isn't planned.[25]
  • Denmark in 2018 decided not to switch off FM transmitters.[26]
  • Switzerland announced its plans for a progressive digital switchover between 2020 and 2024.[27]

DAB radio switch-off

Whilst many counties have expected a shift to digital audio broadcasting, a few have moved in the opposite direction following unsuccessful trials.

  • Canada conducted trials of DAB in L-band in major cities. However the success of satellite digital radio and lack of L-band DAB receivers led to the analogue switch-off being abandoned. Canada subsequently adopted HD Radio as used in the neighboring United States instead of DAB.[28]
  • Hong Kong announced the termination of DAB in March 2017.[29]
  • Portugal announced the termination of DAB in April 2011.[30]

See also

References

  1. ^ "DAB Eureka-147: a European vision for digital radio". sagepub.com.
  2. ^ "St.meld. nr. 30 (2006-2007)". Regjeringen.no.
  3. ^ a b c Digital Audio Broadcasting (EBU Technical Review article)
  4. ^ dead link] DAB/DAB+/DMB Receivers, worlddab.org
  5. ^ a b "WorldDAB DAB Global Summary" (PDF). worlddab.org. 2018-08-29.
  6. ^ World DMB forums list of benefits Archived 2007-10-17 at the Wayback Machine, worlddab.org
  7. ^ a b "Worlddab.org" (PDF). Archived from the original (PDF) on 2007-11-28. Retrieved 2007-11-17.
  8. ^ Worlddab.org Archived 2013-06-27 at the Wayback Machine
  9. ^ "Settings and stations". dab-digitalradio.ch.
  10. ^ Press release: New High Efficiency Audio Option Added for DAB Digital Radio, worlddab.org Archived March 8, 2008, at the Wayback Machine
  11. ^ http://stakeholders.ofcom.org.uk/binaries/consultations/digital-radio-tech-codes/summary/Digital_Radio_Tech_Codes.pdf
  12. ^ Group, Andy Finney ATSF for the Digital TV. "DTG :: News :: DAB Radio launches 18 new stations with Government support". Archived from the original on 2016-03-18. Retrieved 2016-03-26.
  13. ^ Holm, Sverre (2007). "Lydkvalitetet i DAB digitalradio". Digitale Utgivelser ved UiO. Archived from the original on 2008-05-01. Retrieved 2009-01-03. (Norwegian).
  14. ^ OFCOM: Regulation in digital broadcasting: DAB digital radio bitrates and audio quality; Dynamic range compression and loudness Archived 2008-07-08 at the Wayback Machine, david.robinson.org
  15. ^ a b "BBC R&D White Paper WHP 061 June 2003, DAB:An introduction to the EUREKA DAB System and a guide to how it works" (PDF). BBC.co.uk. Retrieved 2007-05-08.
  16. ^ Friends of Radio 3 (FoR3) BBC & R3 News Archived 2008-10-06 at the Wayback Machine, for3.org
  17. ^ James Welsh. "Ofcom reveals DAB sound quality opinions". Digital Spy.
  18. ^ Garfors, Gunnar. "DAB 20 Times Greener Than FM". Archived from the original on 13 October 2016. Retrieved 21 June 2012.
  19. ^ Davide Moro (12 December 2017). "Italy's South Tyrol Begins FM Switch off". Radio World. Archived from the original on 16 December 2017. Retrieved 18 December 2017. For us, DAB+ is 19 times more efficient than FM
  20. ^ "WorldDAB Q2 2018 Infographic" (PDF). www.worlddab.org. 2018-11-28. Retrieved 2018-12-21.
  21. ^ Norway is first country to turn off FM radio and go digital-only
  22. ^ "Slik slukkes FM-nettet". NRK.
  23. ^ Medieprofessor: – Et kritisk øyeblikk for radiomediet
  24. ^ "Regeringen stoppar övergången till DAB-radio".
  25. ^ "Digitalradio weiter ausgebaut – UKW Abschaltplan der RAS von der Landesregierung genehmigt" (in German). 14 November 2017.
  26. ^ Frygtede for to millioner biler - nu får FM-båndet lov til at overleve
  27. ^ "Global Summary" (PDF). WorldDAB. 29 July 2016.
  28. ^ https://www.worlddab.org/country-information/canada#current_situation
  29. ^ https://www.info.gov.hk/gia/general/201703/28/P2017032800689.htm
  30. ^ http://www.mundodaradio.com/historia/dab_em_portugal.html

General

  • ETSI specifications available at ETSI Publications Download Area, pda.etsi.org (this will open ETSI document search engine; to find the latest version of the document enter a search string; free registration is required to download PDF)
  • Stott, J. H.; The How and Why of COFDM, BBC Research Development

External links

Absolute Radio 60s

Absolute Radio 60s is a British radio station dedicated to music from the 1960s. Launched by Absolute Radio to complement its decade format radio stations, it first aired on 22 November 2011, debuting a week before Absolute Radio 70s. The station broadcasts through Digital Audio Broadcasting (DAB) on the Bauer Radio multiplex in Inverness, and is also available online, where it can be accessed using Radioplayer. Absolute Radio 60s was the first UK radio station to be dedicated solely to music from the decade.

BBC National DAB

BBC National DAB is a digital audio broadcasting multiplex in the UK, for a number of radio stations which have UK wide coverage. The multiplex is owned and operated by the BBC and is transmitted from a number of transmitter sites across the country; it only carries BBC radio stations.

As of the end of 2017, more than 97% of the UK's population are within reach of the multiplex following the completion of the switching on of a fourth set of new transmitters over the previous two years which had seen the reach increase from 93%. Any further expansion of DAB radio is awaiting a decision by Government on any possible digital radio switchover.

BBC Radio Sheffield

BBC Radio Sheffield is the BBC Local Radio service for English metropolitan county of South Yorkshire and North Derbyshire. This includes the city of Sheffield, plus Rotherham, Doncaster, Barnsley, Chesterfield and surrounding areas. It was the second BBC local radio station, beginning on 15 November 1967 broadcasting from a large Victorian house in Westbourne Road in the Broomhill area of the city. It now broadcasts from a new studio complex at 54 Shoreham Street in Sheffield city centre, on 88.6, 94.7, 104.1 FM, 1035 AM, DAB (Digital Audio Broadcasting) and DTR (Digital Television Radio). It is also available through live streaming on the internet.

According to RAJAR, the station has a weekly audience of 260,000 listeners and a 7.9% share as of December 2018.

CD-Text

CD-Text is an extension of the Red Book Compact Disc specifications standard for audio CDs. It allows for storage of additional information (e.g. album name, song name, and artist name) on a standards-compliant audio CD.

The specification for CD-Text was included in the Multi-Media Commands Set 3 R01 (MMC-3) standard, released in September 1996 and backed by Sony. It was also added to new revisions of the Red Book. The actual text is stored in a format compatible with Interactive Text Transmission System (ITTS), defined in the IEC 61866 standard. The ITTS standard is also applied in the MiniDisc format, as well as in Digital Audio Broadcasting technology and Digital Compact Cassette.

DRG London

DRG London is a Digital Audio Broadcasting multiplex available in the London area that has been broadcasting since January 2002. It is also referred to as the Greater London 3 multiplex. The station operates from ten transmitters: Croydon, Alexandra Palace, Blue Bell Hill, Reigate, Guildford, Brookmans Park, Zouches Farm, BT Bedmont, High Wycombe and Kemsing.

The Kemsing site (2 kW) was replaced in 2010 by the more powerful Wrotham site (5 kW) in Kent.

Digital Broadcasting Corporation (Hong Kong)

Digital Broadcasting Corporation Hong Kong Limited (DBC) (Chinese: 香港數碼廣播有限公司), former known as Wave Media Limited (Chinese: 雄濤廣播有限公司), is a licensed independent digital audio broadcasting (DAB+) operator with most number of channels in Hong Kong. DBC was granted licence by the Hong Kong Broadcasting Authority in March 2011. There are currently four operators providing digital audio broadcasting services with a total of 18 channels. Being the largest digital broadcaster in the territory, DBC operates 7 channels. Major shareholder of DBC is Bill Wong. Board of directors are Arthur Li, Ambrose Lee Siu-kwong and Loh Chan.In summer 2012,DBC underwent a period of corporate dispute, leading the station to closure. Albert Cheng said shareholder Bill Wong had refused to invest more funds after receiving instructions from an unnamed official at the Central Government's Liaison Office in Hong Kong. The radio station announced its closure on 10 October 2012. On 19 October 2012, activists and radio hosts began a three-day sit-in protest in front of the government headquarters in Admiralty.On 20 December 2013, DBC held its grand re-launch. Calling an end to the previous corporate dispute was the restructuring of board of directors. Albert Cheng is no longer a shareholder of nor a host in DBC.

DBC decided to close and return its operating licence to the government with effect from 7 September 2016 affecting 113 staff, because the digital audio broadcasting was not popular, and it did not receive enough advertisement to support the revenue.

Digital broadcasting

Digital broadcasting is the practice of using digital signals rather than analogue signals for broadcasting over radio frequency bands. Digital television broadcasting (especially satellite television) is widespread. Digital audio broadcasting is being adopted more slowly for radio broadcasting where it is mainly used in Satellite radio.

Digital links, thanks to the use of data compression, generally have greater spectral efficiency than analog links. Content providers can provide more services or a higher-quality signal than was previously available.

It is estimated that the share of digital broadcasting increased from 7% of the total amount of broadcast information in 2000, to 25% in 2007. Some countries have completed a Digital television transition.

Digital multimedia broadcasting

Digital multimedia broadcasting (DMB) is a digital radio transmission technology developed in South Korea as part of the national IT project for sending multimedia such as TV, radio and datacasting to mobile devices such as mobile phones, laptops and GPS navigation systems. This technology, sometimes known as mobile TV, should not be confused with Digital Audio Broadcasting which was developed as a research project for the European Union. DMB was developed in South Korea as the next generation digital technology to replace FM radio, but the technological foundations were laid by Prof. Dr. Gert Siegle and Dr. Hamed Amor at Robert Bosch GmbH in Germany. The world's first official mobile TV service started in South Korea in May 2005, although trials were available much earlier. It can operate via satellite (S-DMB) or terrestrial (T-DMB) transmission. DMB has also some similarities with the main competing mobile TV standard, DVB-H.

Digital radio

Digital radio is the use of digital technology to transmit or receive across the radio spectrum. Digital transmission by radio waves includes digital broadcasting, and especially digital audio radio services.

Digital radio in the United Kingdom

In the United Kingdom, the roll-out of digital radio is proceeding since engineering test transmissions were started by the BBC in 1990 followed by a public launch in September 1995. The UK currently has the world's biggest digital radio network, with 103 transmitters, three national DAB ensembles and 48 local and regional DAB ensembles broadcasting over 250 commercial and 34 BBC radio stations across the UK. In the capital, London there are already more than 64 different digital stations available. In addition to DAB and DAB+, radio stations are also broadcast on digital television platform as well as internet radio in the UK. Digital radio ensemble operators and stations need a broadcasting licence from the UK's media regulator Ofcom to broadcast.

In the long term there will be a switchover from analogue to digital radio when the AM and FM services will cease. The government has set criteria on the coverage and proportion of digital listening before this occurs. In 2018 the criteria of over 50% of digital radio listening was met which will now require the UK Government to review digital radio in view of a potential switchover. In the same year, the BBC stated it would keep some FM radio for the foreseeable future.Digital radio in the United Kingdom is being promoted by radio stations and the broadcasting industry on the premise that it provides superior quality sound over AM, a wider choice of radio stations, is easier to use, and is resistant to the interference which other broadcast media are susceptible to. On the other hand, critics say that coverage is not yet sufficient and the quality can be less than that of FM.

In the UK, 50.9% of all radio listening hours by the first quarter of 2018 were through digital platforms, with DAB making up for the majority of digital radio listening (72.3%), and 63.7% of UK households claim to have access to a DAB radio set. However in the second quarter, digital listening had dropped back to 50.2%

HD Radio

HD Radio is a trademarked term for Xperi's in-band on-channel (IBOC) digital radio technology used by AM and FM radio stations to transmit audio and data by using a digital signal embedded "on-frequency" immediately above and below a station's standard analog signal, providing the means to listen to the same program in either HD (digital radio with less noise) or as a standard broadcast (analog radio with standard sound quality). The HD format also provides the means for a single radio station to simultaneously broadcast one or more different programs in addition to the program being transmitted on the radio station's analog channel. It was originally developed by iBiquity. In September 2015 iBiquity was acquired by DTS bringing the HD Radio technology under the same banner as DTS' eponymous theater surround sound systems.. It was later acquired by Xperi in 2016.

It was selected by the U.S. Federal Communications Commission (FCC) in 2002 as a digital audio broadcasting method for the United States, and is the only digital system approved by the FCC for digital AM/FM broadcasts in the United States. It is officially known as NRSC-5, with the latest version being NRSC-5-D. Other digital radio systems include FMeXtra, Digital Audio Broadcasting (DAB) (Eureka 147), Digital Radio Mondiale (DRM30 and DRM+ configurations), and Compatible AM-Digital (CAM-D).

While HD Radio does allow for an all-digital mode, this system currently is used by some AM and FM radio stations to simulcast both digital and analog audio within the same channel (a hybridized digital-analog signal) as well as to add new FM channels and text information. Although HD Radio broadcasting's content is currently free-to-air, listeners must purchase new receivers in order to receive the digital portion of the signal.

By May 2018, HD Radio technology was claimed to be used by more than 3500 individual services, mostly in the United States. This compares with more than 2200 services operating with the DAB system.

HD Radio increases the bandwidth required in the FM band to 400 kHz for the analog/digital hybrid version. This makes adoption outside the United States problematic. In the United States the FM broadcast band channels have a spacing of 200 kHz, as opposed to the 100 kHz that is normal elsewhere. The 200 kHz spacing means that in practice, stations having concurrent or adjacent coverage areas will not be spaced at less than 400 kHz in order to respect protection ratios which would not be met with 200 kHz spacing. This also leaves space for the digital sidebands. Outside the US, spacing can be 300 kHz, which causes problems with the digital sidebands.

The FCC has not indicated any intent to force off analog radio broadcasts as it has with analog television broadcasts, as it would not result in the recovery of any radio spectrum rights which could be sold. Thus, there is no deadline by which consumers must buy an HD Radio receiver. In addition, there are many more analog AM/FM radio receivers than there were analog televisions, and many of these are car stereos or portable units that cannot be upgraded.

L band

The L band is the Institute of Electrical and Electronics Engineers (IEEE) designation for the range of frequencies in the radio spectrum from 1 to 2 gigahertz (GHz).

List of radio stations in Hong Kong

This is a list of radio stations in Hong Kong.

MPEG-1 Audio Layer II

MPEG-1 Audio Layer II or MPEG-2 Audio Layer II (MP2, sometimes incorrectly called Musicam or MUSICAM) is a lossy audio compression format defined by ISO/IEC 11172-3 alongside MPEG-1 Audio Layer I and MPEG-1 Audio Layer III (MP3). While MP3 is much more popular for PC and Internet applications, MP2 remains a dominant standard for audio broadcasting.

NRK P2

NRK P2 is one of three main, nationwide radio channels produced by the Norwegian Broadcasting Corporation (NRK). Its current format – focusing on news and current affairs, debate, analysis, culture, science, and society – is the result of the NRK radio channel reform initiated in 1993 by radio director Tor Fuglevik. In style and content, the channel is similar to the Danish DR P1 and the Swedish SR P1. The original P2, established as NRK's second radio channel in 1984, had carried lighter programming.

In 1999 the channel's employees were collectively awarded the Fritt Ord Award for their championship of freedom of speech.The last transmitters radiating P2 on FM were switched off on 13 December 2017, and the channel is now receivable only via digital audio broadcasting (DAB+), satellite TV, and internet.

Radio Suisse Romande

The Radio suisse romande (RSR) was an enterprise unit within public-broadcasting corporation SRG SSR. It is responsible for the production and transmission of French-language radio programmes in Switzerland. RSR's headquarters are situated in Lausanne. Radio suisse romande and Télévision suisse romande merged in 2010 to create Radio Télévision Suisse.

RSR broadcasts on four radio channels:

La 1ère – news, talk, and general programming

Espace 2 – culture and classical music

Couleur 3 – youth-oriented programming

Option Musique – music ("the hits of yesterday and today")These channels are broadcast on FM as well as via Digital Audio Broadcasting and satellite (DVB-S). Up until 5 December 2010, Option Musique was also available on AM at 765 kHz from the Sottens transmitter.

Radio in Norway

There are many radio stations in Norway. For a more comprehensive list see List of Norwegian-language radio stations. Norway is in the process of transitioning all radio stations away from FM broadcasting to Digital Audio Broadcasting only. The country's national radio outlets transitioned to DAB on December 13, 2017. Local radio stations remain available in FM.

Timeline of digital audio broadcasting in the UK

This is a list of notable events in the timeline of digital audio broadcasting in the UK.

TooLAME

TooLAME is a free software MPEG-1 Layer II (MP2) audio encoder written primarily by Mike Cheng. While there are many MP2 encoders, TooLAME is well-known and widely used for its particularly high audio quality. It has been unmaintained since 2003, but is directly succeeded by the TwoLAME code fork (the latest version, TwoLAME 0.3.13, was released January 21, 2011). The name TooLAME is a play on LAME and Layer II.

Terrestrial
Satellite
Codecs
Subcarrier signals
History
Pioneers
Transmission
media
Network topology
and switching
Multiplexing
Networks

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.