Digital audio

Digital audio is sound that has been recorded in, or converted into, digital form. In digital audio, the sound wave of the audio signal is encoded as numerical samples in continuous sequence. For example, in CD audio, samples are taken 44100 times per second each with 16 bit sample depth. Digital audio is also the name for the entire technology of sound recording and reproduction using audio signals that have been encoded in digital form. Following significant advances in digital audio technology during the 1970s, it gradually replaced analog audio technology in many areas of audio engineering and telecommunications in the 1990s and 2000s.

In a digital audio system, an analog electrical signal representing the sound is converted with an analog-to-digital converter (ADC) into a digital signal, typically using pulse-code modulation. This digital signal can then be recorded, edited, modified, and copied using computers, audio playback machines, and other digital tools. When the sound engineer wishes to listen to the recording on headphones or loudspeakers (or when a consumer wishes to listen to a digital sound file), a digital-to-analog converter (DAC) performs the reverse process, converting a digital signal back into an analog signal, which is then sent through an audio power amplifier and ultimately to a loudspeaker.

Digital audio systems may include compression, storage, processing, and transmission components. Conversion to a digital format allows convenient manipulation, storage, transmission, and retrieval of an audio signal. Unlike analog audio, in which making copies of a recording results in generation loss and degradation of signal quality, digital audio allows an infinite number of copies to be made without any degradation of signal quality.

Zoom H4n audio recording levels
Audio levels display on a digital audio recorder (Zoom H4n)

Overview

4-bit-linear-PCM
A sound wave, in red, represented digitally, in blue (after sampling and 4-bit quantization).

Digital audio technologies are used in the recording, manipulation, mass-production, and distribution of sound, including recordings of songs, instrumental pieces, podcasts, sound effects, and other sounds. Modern online music distribution depends on digital recording and data compression. The availability of music as data files, rather than as physical objects, has significantly reduced the costs of distribution.[1] Before digital audio, the music industry distributed and sold music by selling physical copies in the form of records and cassette tapes. With digital-audio and online distribution systems such as iTunes, companies sell digital sound files to consumers, which the consumer receives over the Internet.

An analog audio system converts physical waveforms of sound into electrical representations of those waveforms by use of a transducer, such as a microphone. The sounds are then stored on an analog medium such as magnetic tape, or transmitted through an analog medium such as a telephone line or radio. The process is reversed for reproduction: the electrical audio signal is amplified and then converted back into physical waveforms via a loudspeaker. Analog audio retains its fundamental wave-like characteristics throughout its storage, transformation, duplication, and amplification.

Analog audio signals are susceptible to noise and distortion, due to the innate characteristics of electronic circuits and associated devices. Disturbances in a digital system do not result in error unless the disturbance is so large as to result in a symbol being misinterpreted as another symbol or disturb the sequence of symbols. It is therefore generally possible to have an entirely error-free digital audio system in which no noise or distortion is introduced between conversion to digital format, and conversion back to analog.

A digital audio signal may optionally be encoded for correction of any errors that might occur in the storage or transmission of the signal. This technique, known as channel coding, is essential for broadcast or recorded digital systems to maintain bit accuracy. Eight-to-fourteen modulation is a channel code used in the audio compact disc (CD).

Conversion process

A-D-A Flow
The lifecycle of sound from its source, through an ADC, digital processing, a DAC, and finally as sound again.

A digital audio system starts with an ADC that converts an analog signal to a digital signal.[note 1] The ADC runs at a specified sampling rate and converts at a known bit resolution. CD audio, for example, has a sampling rate of 44.1 kHz (44,100 samples per second), and has 16-bit resolution for each stereo channel. Analog signals that have not already been bandlimited must be passed through an anti-aliasing filter before conversion, to prevent the aliasing distortion that is caused by audio signals with frequencies higher than the Nyquist frequency (half the sampling rate).

A digital audio signal may be stored or transmitted. Digital audio can be stored on a CD, a digital audio player, a hard drive, a USB flash drive, or any other digital data storage device. The digital signal may be altered through digital signal processing, where it may be filtered or have effects applied. Sample-rate conversion including upsampling and downsampling may be used to conform signals that have been encoded with a different sampling rate to a common sampling rate prior to processing. Audio data compression techniques, such as MP3, Advanced Audio Coding, Ogg Vorbis, or FLAC, are commonly employed to reduce the file size. Digital audio can be carried over digital audio interfaces such as AES3 or MADI. Digital audio can be carried over a network using audio over Ethernet, audio over IP or other streaming media standards and systems.

For playback, digital audio must be converted back to an analog signal with a DAC which may use oversampling.

History in recording

Pulse-code modulation was invented by British scientist Alec Reeves in 1937[2] and was used in telecommunications applications long before its first use in commercial broadcast and recording. Commercial digital recording was pioneered in Japan by NHK and Nippon Columbia and their Denon brand, in the 1960s. The first commercial digital recordings were released in 1971.[3]

The BBC also began to experiment with digital audio in the 1960s. By the early 1970s, it had developed a 2-channel recorder, and in 1972 it deployed a digital audio transmission system that linked their broadcast center to their remote transmitters.[3]

The first 16-bit PCM recording in the United States was made by Thomas Stockham at the Santa Fe Opera in 1976, on a Soundstream recorder. An improved version of the Soundstream system was used to produce several classical recordings by Telarc in 1978. The 3M digital multitrack recorder in development at the time was based on BBC technology. The first all-digital album recorded on this machine was Ry Cooder's Bop till You Drop in 1979. British record label Decca began development of its own 2-track digital audio recorders in 1978 and released the first European digital recording in 1979.[3]

Popular professional digital multitrack recorders produced by Sony and Mitsubishi in the early 1980s helped to bring about digital recording's acceptance by the major record companies. The 1982 introduction of the CD popularized digital audio with consumers.[3]

Technologies

Sony PCM-7030 of DR 20111102a
Sony digital audio recorder PCM-7030
Digital audio broadcasting
Storage technologies

Interfaces

Digital-audio-specific interfaces include:

Several interfaces are engineered to carry digital video and audio together, including HDMI and DisplayPort.

In professional architectural or installation applications, many digital audio audio over Ethernet protocols and interfaces exist.

See also

Notes

  1. ^ Some audio signals such as those created by digital synthesis originate entirely in the digital domain, in which case analog to digital conversion does not take place.

References

  1. ^ Janssens, Jelle; Stijn Vandaele; Tom Vander Beken (2009). "The Music Industry on (the) Line? Surviving Music Piracy in a Digital Era". European Journal of Crime. 77 (96): 77–96. doi:10.1163/157181709X429105. hdl:1854/LU-608677.
  2. ^ Genius Unrecognised, BBC, 2011-03-27, retrieved 2011-03-30
  3. ^ a b c d Fine, Thomas (2008). Barry R. Ashpole (ed.). "The Dawn of Commercial Digital Recording" (PDF). ARSC Journal. Retrieved 2010-05-02.

Further reading

  • Borwick, John, ed., 1994: Sound Recording Practice (Oxford: Oxford University Press)
  • Bosi, Marina, and Goldberg, Richard E., 2003: Introduction to Digital Audio Coding and Standards (Springer)
  • Ifeachor, Emmanuel C., and Jervis, Barrie W., 2002: Digital Signal Processing: A Practical Approach (Harlow, England: Pearson Education Limited)
  • Rabiner, Lawrence R., and Gold, Bernard, 1975: Theory and Application of Digital Signal Processing (Englewood Cliffs, New Jersey: Prentice-Hall, Inc.)
  • Watkinson, John, 1994: The Art of Digital Audio (Oxford: Focal Press)

External links

Audio editing software

Audio editing software is software which allows editing and generating of audio data. Audio editing software can be implemented completely or partly as library, as computer application, as Web application or as a loadable kernel module. Wave Editors are digital audio editors and there are many sources of software available to perform this function. Most can edit music, apply effects and filters, adjust stereo channels etc.

A digital audio workstation (DAW) consists of software to a great degree, and usually is composed of many distinct software suite components, giving access to them through a unified graphical user interface using GTK+, Qt or some other library for the GUI widgets.

Audio file format

An audio file format is a file format for storing digital audio data on a computer system. The bit layout of the audio data (excluding metadata) is called the audio coding format and can be uncompressed, or compressed to reduce the file size, often using lossy compression. The data can be a raw bitstream in an audio coding format, but it is usually embedded in a container format or an audio data format with defined storage layer.

Audio mixing

Audio mixing is the process by which multiple sounds are combined into one or more channels. In the process, a source's volume level, frequency content, dynamics, and panoramic position are manipulated and or enhanced. This practical, aesthetic, or otherwise creative treatment is done in order to produce a finished version that is appealing to listeners.

Audio mixing is practiced for music, film, television and live sound. The process is generally carried out by a mixing engineer operating a mixing console or digital audio workstation.

Audio signal processing

Audio signal processing is a subfield of signal processing that is concerned with the electronic manipulation of audio signals. Audio signals are electronic representations of sound waves—longitudinal waves which travel through air, consisting of compressions and rarefactions. The energy contained in audio signals is typically measured in decibels. As audio signals may be represented in either digital or analog format, processing may occur in either domain. Analog processors operate directly on the electrical signal, while digital processors operate mathematically on its digital representation.

Bandcamp

Bandcamp is an American online music company founded in 2008 by former Oddpost co-founder Ethan Diamond and programmers Shawn Grunberger, Joe Holt and Neal Tucker, headquartered in Oakland, California.

Compact Disc Digital Audio

Compact Disc Digital Audio (CDDA or CD-DA), also known as Audio CD, is the standard format for audio compact discs. The standard is defined in the Red Book, one of a series of "Rainbow Books" (named for their binding colors) that contain the technical specifications for all CD formats.

Compact disc

Compact disc (CD) is a digital optical disc data storage format that was co-developed by Philips and Sony and released in 1982. The format was originally developed to store and play only sound recordings (CD-DA) but was later adapted for storage of data (CD-ROM). Several other formats were further derived from these, including write-once audio and data storage (CD-R), rewritable media (CD-RW), Video Compact Disc (VCD), Super Video Compact Disc (SVCD), Photo CD, PictureCD, CD-i, and Enhanced Music CD. The first commercially available audio CD player, the Sony CDP-101, was released October 1982 in Japan.

Standard CDs have a diameter of 120 millimetres (4.7 in) and can hold up to about 80 minutes of uncompressed audio or about 700 MiB of data. The Mini CD has various diameters ranging from 60 to 80 millimetres (2.4 to 3.1 in); they are sometimes used for CD singles, storing up to 24 minutes of audio, or delivering device drivers.

At the time of the technology's introduction in 1982, a CD could store much more data than a personal computer hard drive, which would typically hold 10 MB. By 2010, hard drives commonly offered as much storage space as a thousand CDs, while their prices had plummeted to commodity level. In 2004, worldwide sales of audio CDs, CD-ROMs and CD-Rs reached about 30 billion discs. By 2007, 200 billion CDs had been sold worldwide.From the early 2000s CDs were increasingly being replaced by other forms of digital storage and distribution, with the result that by 2010 the number of audio CDs being sold in the U.S. had dropped about 50% from their peak; however, they remained one of the primary distribution methods for the music industry. In 2014, revenues from digital music services matched those from physical format sales for the first time.

Digital Audio Tape

Digital Audio Tape (DAT or R-DAT) is a signal recording and playback medium developed by Sony and introduced in 1987. In appearance it is similar to a Compact Cassette, using 3.81 mm / 0.15" (commonly referred to as 4 mm) magnetic tape enclosed in a protective shell, but is roughly half the size at 73 mm × 54 mm × 10.5 mm. As the name suggests, the recording is digital rather than analog. DAT has the ability to record at sampling rates equal to, as well as higher and lower than a CD (44.1, 48 or 32 kHz sampling rate respectively) at 16 bits quantization. If a comparable digital source is copied without returning to the analogue domain, then the DAT will produce an exact clone, unlike other digital media such as Digital Compact Cassette or non-Hi-MD MiniDisc, both of which use a lossy data reduction system.

Like most formats of videocassette, a DAT cassette may only be recorded and played in one direction, unlike an analog compact audio cassette, although many DAT recorders had the capability to record program numbers and IDs, which can be used to select an individual track like on a CD player.

Although intended as a replacement for analog audio compact cassettes, the format was never widely adopted by consumers because of issues regarding expense as well as concerns from the music industry about unauthorized high-quality copies. The format saw moderate success in professional markets and as a computer storage medium, which was developed into the Digital Data Storage format. As Sony has ceased production of new recorders, it will become more difficult to play archived recordings in this format unless they are copied to other formats or hard drives. Meanwhile, the phenomenon of sticky-shed syndrome has been noted by some engineers involved in re-mastering archival recordings on DAT, which presents a further threat to audio held exclusively in this medium.

Digital audio broadcasting

Digital audio broadcasting (DAB) is a digital radio standard for broadcasting digital audio radio services, used in many countries around the world, though not North America.

The DAB standard was initiated as a European research project in the 1980s. The Norwegian Broadcasting Corporation (NRK) launched the first DAB channel in the world on 1 June 1995 (NRK Klassisk), and the BBC and Swedish Radio (SR) launched their first DAB digital radio broadcasts in September 1995. DAB receivers have been available in many countries since the end of the 1990s.

DAB is generally more efficient in its use of spectrum than analogue FM radio, and thus can offer more radio services for the same given bandwidth. However the sound quality can be noticeably inferior if the bit-rate allocated to each audio program is not sufficient. DAB is more robust with regard to noise and multipath fading for mobile listening, although DAB reception quality degrades rapidly when the signal strength falls below a critical threshold, whereas FM reception quality degrades slowly with the decreasing signal, providing effective coverage over a larger area.

The original version of DAB used the MP2 audio codec. An upgraded version of the system was released in February 2007, called DAB+, which uses the HE-AAC v2 audio codec. DAB is not forward compatible with DAB+, which means that DAB-only receivers are not able to receive DAB+ broadcasts. However, broadcasters can mix DAB and DAB+ programs inside the same transmission and so make a progressive transition to DAB+. DAB+ is approximately twice as efficient as DAB, and more robust.

In spectrum management, the bands that are allocated for public DAB services, are abbreviated with T-DAB, where the "T" stands for terrestrial.

As of 2018, 41 countries are running DAB services. The majority of these services are using DAB+, with only Ireland, UK, New Zealand, Romania and Brunei still using a significant number of DAB services. See Countries using DAB/DMB. In many countries, it is expected that existing FM services will switch over to DAB+. Norway is the first country to implement a national FM radio analog switchoff, in 2017, however that only applied to national broadcasters, not local ones.

Digital audio workstation

A digital audio workstation (DAW) is an electronic device or application software used for recording, editing and producing audio files. DAWs come in a wide variety of configurations from a single software program on a laptop, to an integrated stand-alone unit, all the way to a highly complex configuration of numerous components controlled by a central computer. Regardless of configuration, modern DAWs have a central interface that allows the user to alter and mix multiple recordings and tracks into a final produced piece.DAWs are used for the production and recording of music, songs, speech, radio, television, soundtracks, podcasts, sound effects and nearly any other situation where complex recorded audio is needed.

Digital radio

Digital radio is the use of digital technology to transmit or receive across the radio spectrum. Digital transmission by radio waves includes digital broadcasting, and especially digital audio radio services.

Groove Music

Groove Music is music player software included with Windows 10.

The app is also associated with a now-discontinued music streaming service, Groove Music Pass (formerly Zune Music Pass and Xbox Music Pass), which was supported across Windows, Xbox video game consoles, Windows Phone, as well as Android and iOS. The Groove catalogue had over 50 million tracks. Groove Music Pass was officially discontinued on December 31, 2017, and the Android and iOS versions of the Groove Music app were discontinued December 2018.

MP3 player

An MP3 player or Digital Audio Player is an electronic device that can play digital audio files. It is a type of Portable Media Player. The term 'MP3 player' is a misnomer, as most players play more than the MP3 file format.

Since the MP3 format is widely used, almost all players can play that format. In addition, there are many other digital audio formats. Some formats are proprietary, such as Windows Media Audio (WMA), and Advanced Audio Coding (AAC). Some of these formats also may incorporate digital rights management (DRM), such as WMA DRM, which are often part of paid download sites. Other formats are patent-free or otherwise open, such as MP3, Vorbis, FLAC, and Speex (the latter three part of the Ogg open multimedia project).

Portable media player

A portable media player (PMP) or digital audio player (DAP) is a portable consumer electronics device capable of storing and playing digital media such as audio, images, and video files. The data is typically stored on a CD, DVD, BD, flash memory, microdrive, or hard drive. Most portable media players are equipped with a 3.5 mm headphone jack, which users can plug headphones into, or connect to a boombox or hifi system. In contrast, analogue portable audio players play music from non-digital media that use analogue signal storage, such as cassette tapes or vinyl records.

Often mobile digital audio players are marketed and sold as "portable MP3 players", even if they also support other file formats and media types. Increasing sales of smartphones and tablet computers have led to a decline in sales of portable media players, leading to most devices being phased out, though flagship devices like the Apple iPod and Sony Walkman are still in production. Portable DVD/BD players are still manufactured by brands across the world.This article focuses on portable devices that have the main function of playing media.

Pulse-code modulation

Pulse-code modulation (PCM) is a method used to digitally represent sampled analog signals. It is the standard form of digital audio in computers, compact discs, digital telephony and other digital audio applications. In a PCM stream, the amplitude of the analog signal is sampled regularly at uniform intervals, and each sample is quantized to the nearest value within a range of digital steps.

Linear pulse-code modulation (LPCM) is a specific type of PCM where the quantization levels are linearly uniform. This is in contrast to PCM encodings where quantization levels vary as a function of amplitude (as with the A-law algorithm or the μ-law algorithm). Though PCM is a more general term, it is often used to describe data encoded as LPCM.

A PCM stream has two basic properties that determine the stream's fidelity to the original analog signal: the sampling rate, which is the number of times per second that samples are taken; and the bit depth, which determines the number of possible digital values that can be used to represent each sample.

S/PDIF

S/PDIF (Sony/Philips Digital Interface) is a type of digital audio interconnect used in consumer audio equipment to output audio over reasonably short distances. The signal is transmitted over either a coaxial cable with RCA connectors or a fibre optic cable with TOSLINK connectors. S/PDIF interconnects components in home theatres and other digital high-fidelity systems.

S/PDIF is based on the AES3 interconnect standard. S/PDIF can carry two channels of uncompressed PCM audio or compressed 5.1/7.1 surround sound (such as DTS audio codec); it cannot support lossless surround formats that require greater bandwidth.S/PDIF is a data link layer protocol as well as a set of physical layer specifications for carrying digital audio signals between devices and components over either optical or electrical cable. The name stands for Sony/Philips Digital Interconnect Format but is also known as Sony/Philips Digital Interface. Sony and Philips were the primary designers of S/PDIF. S/PDIF is standardized in IEC 60958 as IEC 60958 type II (IEC 958 before 1998).

Sampling (signal processing)

In signal processing, sampling is the reduction of a continuous-time signal to a discrete-time signal. A common example is the conversion of a sound wave (a continuous signal) to a sequence of samples (a discrete-time signal).

A sample is a value or set of values at a point in time and/or space.

A sampler is a subsystem or operation that extracts samples from a continuous signal.

A theoretical ideal sampler produces samples equivalent to the instantaneous value of the continuous signal at the desired points.

TOSLINK

TOSLINK (from Toshiba Link) is a standardized optical fiber connector system. Also known generically as an "optical audio cable" or just "optical cable", its most common use is in consumer audio equipment (via a "digital optical" socket), where it carries a digital audio stream from components such as CD and DVD players, DAT recorders, computers, and modern video game consoles, to an AV receiver that can decode two channels of uncompressed lossless PCM audio or compressed 5.1/7.1 surround sound such as Dolby Digital or DTS Surround System. Unlike HDMI, TOSLINK does not have the bandwidth to carry the lossless versions of Dolby TrueHD, DTS-HD Master Audio, or more than two channels of PCM audio.

Although TOSLINK supports several different media formats and physical standards, digital audio connections using the rectangular EIAJ/JEITA RC-5720 (also CP-1201 and JIS C5974-1993 F05) connector are by far the most common. The optical signal is a red light with a peak wavelength of 650 nm. Depending on the type of modulated signal being carried, other optical wavelengths may be present.

White van speaker scam

The white van speaker scam is a scam sales technique in which a con artist makes a buyer believe they are getting a good price on home entertainment products. Often a con artist will buy generic speakers worth around $40 and convince potential buyers that they are premium products worth over $2,000, offering them for sale at around $200. Con artists in this type of scam call themselves "speakerguys" or "speakermen", and usually claim to be working for a speaker delivery or installation company.

The speaker scam was common in the 1980s and is believed to be the origin of the use of the term "high-end", and despite widespread information about the scam on consumer forums and watchdog sites, the scams continue operating across several continents.

Analog and digital audio broadcasting
Terrestrial
Satellite
Codecs
Subcarrier signals
Components
Theory
Design
Applications
Design issues
Music technology
Sound recording
Recording media
Analog recording
Playback transducers
Digital audio
Live music
Electronic music
Software
Professions
People and organizations
Related topics

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.