**David Hilbert** (/ˈhɪlbərt/;^{[4]} German: [ˈdaːvɪt ˈhɪlbɐt]; 23 January 1862 – 14 February 1943) was a German mathematician and one of the most influential and universal mathematicians of the 19th and early 20th centuries. Hilbert discovered and developed a broad range of fundamental ideas in many areas, including invariant theory, calculus of variations, commutative algebra, algebraic number theory, the foundations of geometry, spectral theory of operators and its application to integral equations, mathematical physics, and foundations of mathematics (particularly proof theory).

Hilbert adopted and warmly defended Georg Cantor's set theory and transfinite numbers. A famous example of his leadership in mathematics is his 1900 presentation of a collection of problems that set the course for much of the mathematical research of the 20th century.

Hilbert and his students contributed significantly to establishing rigor and developed important tools used in modern mathematical physics. Hilbert is known as one of the founders of proof theory and mathematical logic, as well as for being among the first to distinguish between mathematics and metamathematics.^{[5]}

Hilbert, the first of two children of Otto and Maria Therese (Erdtmann) Hilbert, was born in the Province of Prussia, Kingdom of Prussia, either in Königsberg (according to Hilbert's own statement) or in Wehlau (known since 1946 as Znamensk) near Königsberg where his father worked at the time of his birth.^{[6]}

In late 1872, Hilbert entered the Friedrichskolleg Gymnasium (*Collegium fridericianum*, the same school that Immanuel Kant had attended 140 years before); but, after an unhappy period, he transferred to (late 1879) and graduated from (early 1880) the more science-oriented Wilhelm Gymnasium.^{[7]} Upon graduation, in autumn 1880, Hilbert enrolled at the University of Königsberg, the "Albertina". In early 1882, Hermann Minkowski (two years younger than Hilbert and also a native of Königsberg but had gone to Berlin for three semesters),^{[8]} returned to Königsberg and entered the university. Hilbert developed a lifelong friendship with the shy, gifted Minkowski.^{[9]}^{[10]}

In 1884, Adolf Hurwitz arrived from Göttingen as an Extraordinarius (i.e., an associate professor). An intense and fruitful scientific exchange among the three began, and Minkowski and Hilbert especially would exercise a reciprocal influence over each other at various times in their scientific careers. Hilbert obtained his doctorate in 1885, with a dissertation, written under Ferdinand von Lindemann,^{[2]} titled *Über invariante Eigenschaften spezieller binärer Formen, insbesondere der Kugelfunktionen* ("On the invariant properties of special binary forms, in particular the spherical harmonic functions").

Hilbert remained at the University of Königsberg as a *Privatdozent* (senior lecturer) from 1886 to 1895. In 1895, as a result of intervention on his behalf by Felix Klein, he obtained the position of Professor of Mathematics at the University of Göttingen. During the Klein and Hilbert years, Göttingen became the preeminent institution in the mathematical world.^{[11]} He remained there for the rest of his life.

Among Hilbert's students were Hermann Weyl, chess champion Emanuel Lasker, Ernst Zermelo, and Carl Gustav Hempel. John von Neumann was his assistant. At the University of Göttingen, Hilbert was surrounded by a social circle of some of the most important mathematicians of the 20th century, such as Emmy Noether and Alonzo Church.

Among his 69 Ph.D. students in Göttingen were many who later became famous mathematicians, including (with date of thesis): Otto Blumenthal (1898), Felix Bernstein (1901), Hermann Weyl (1908), Richard Courant (1910), Erich Hecke (1910), Hugo Steinhaus (1911), and Wilhelm Ackermann (1925).^{[12]} Between 1902 and 1939 Hilbert was editor of the *Mathematische Annalen*, the leading mathematical journal of the time.

"Good, he did not have enough imagination to become a mathematician".

— Hilbert's response upon hearing that one of his students had dropped out to study poetry.^{[13]}

Around 1925, Hilbert developed pernicious anemia, a then-untreatable vitamin deficiency whose primary symptom is exhaustion; his assistant Eugene Wigner described him as subject to "enormous fatigue" and how he "seemed quite old", and that even after eventually being diagnosed and treated, he "was hardly a scientist after 1925, and certainly not a Hilbert."^{[14]}

Hilbert lived to see the Nazis purge many of the prominent faculty members at University of Göttingen in 1933.^{[15]} Those forced out included Hermann Weyl (who had taken Hilbert's chair when he retired in 1930), Emmy Noether and Edmund Landau. One who had to leave Germany, Paul Bernays, had collaborated with Hilbert in mathematical logic, and co-authored with him the important book *Grundlagen der Mathematik* (which eventually appeared in two volumes, in 1934 and 1939). This was a sequel to the Hilbert-Ackermann book *Principles of Mathematical Logic* from 1928. Hermann Weyl's successor was Helmut Hasse.

About a year later, Hilbert attended a banquet and was seated next to the new Minister of Education, Bernhard Rust. Rust asked whether "the *Mathematical Institute* really suffered so much because of the departure of the Jews". Hilbert replied,
"Suffered? It doesn't exist any longer, does it!"^{[16]}^{[17]}

By the time Hilbert died in 1943, the Nazis had nearly completely restaffed the university, as many of the former faculty had either been Jewish or married to Jews. Hilbert's funeral was attended by fewer than a dozen people, only two of whom were fellow academics, among them Arnold Sommerfeld, a theoretical physicist and also a native of Königsberg.^{[18]} News of his death only became known to the wider world six months after he had died.

The epitaph on his tombstone in Göttingen consists of the famous lines he spoke at the conclusion of his retirement address to the Society of German Scientists and Physicians on 8 September 1930. The words were given in response to the Latin maxim: "Ignoramus et ignorabimus" or "We do not know, we shall not know":^{[19]}

*Wir müssen wissen.**Wir werden wissen.*

In English:

- We must know.
- We will know.

The day before Hilbert pronounced these phrases at the 1930 annual meeting of the Society of German Scientists and Physicians, Kurt Gödel—in a round table discussion during the Conference on Epistemology held jointly with the Society meetings—tentatively announced the first expression of his incompleteness theorem.^{[20]} Gödel's incompleteness theorems show that even elementary axiomatic systems such as Peano arithmetic are either self-contradicting or contain logical propositions that are impossible to prove or disprove.

In 1892, Hilbert married Käthe Jerosch (1864–1945), "the daughter of a Königsberg merchant, an outspoken young lady with an independence of mind that matched his own".^{[21]} While at Königsberg they had their one child, Franz Hilbert (1893–1969).

Hilbert's son Franz suffered throughout his life from an undiagnosed mental illness. His inferior intellect was a terrible disappointment to his father and this misfortune was a matter of distress to the mathematicians and students at Göttingen.^{[22]}

Hilbert considered the mathematician Hermann Minkowski to be his "best and truest friend".^{[23]}

Hilbert was baptized and raised a Calvinist in the Prussian Evangelical Church.^{[24]} He later on left the Church and became an agnostic.^{[25]} He also argued that mathematical truth was independent of the existence of God or other *a priori* assumptions.^{[26]}^{[27]}

Hilbert's first work on invariant functions led him to the demonstration in 1888 of his famous *finiteness theorem*. Twenty years earlier, Paul Gordan had demonstrated the theorem of the finiteness of generators for binary forms using a complex computational approach. Attempts to generalize his method to functions with more than two variables failed because of the enormous difficulty of the calculations involved. In order to solve what had become known in some circles as *Gordan's Problem*, Hilbert realized that it was necessary to take a completely different path. As a result, he demonstrated *Hilbert's basis theorem*, showing the existence of a finite set of generators, for the invariants of quantics in any number of variables, but in an abstract form. That is, while demonstrating the existence of such a set, it was not a constructive proof — it did not display "an object" — but rather, it was an existence proof^{[28]} and relied on use of the law of excluded middle in an infinite extension.

Hilbert sent his results to the *Mathematische Annalen*. Gordan, the house expert on the theory of invariants for the *Mathematische Annalen*, could not appreciate the revolutionary nature of Hilbert's theorem and rejected the article, criticizing the exposition because it was insufficiently comprehensive. His comment was:

*Das ist nicht Mathematik. Das ist Theologie.*- (
*This is not Mathematics. This is Theology.*)^{[29]}

- (

Klein, on the other hand, recognized the importance of the work, and guaranteed that it would be published without any alterations. Encouraged by Klein, Hilbert extended his method in a second article, providing estimations on the maximum degree of the minimum set of generators, and he sent it once more to the *Annalen*. After having read the manuscript, Klein wrote to him, saying:

*Without doubt this is the most important work on general algebra that the*Annalen*has ever published.*^{[30]}

Later, after the usefulness of Hilbert's method was universally recognized, Gordan himself would say:

*I have convinced myself that even theology has its merits.*^{[31]}

For all his successes, the nature of his proof stirred up more trouble than Hilbert could have imagined at the time. Although Kronecker had conceded, Hilbert would later respond to others' similar criticisms that "many different constructions are subsumed under one fundamental idea" — in other words (to quote Reid): "Through a proof of existence, Hilbert had been able to obtain a construction"; "the proof" (i.e. the symbols on the page) *was* "the object".^{[31]} Not all were convinced. While Kronecker would die soon afterwards, his constructivist philosophy would continue with the young Brouwer and his developing intuitionist "school", much to Hilbert's torment in his later years.^{[32]} Indeed, Hilbert would lose his "gifted pupil" Weyl to intuitionism — "Hilbert was disturbed by his former student's fascination with the ideas of Brouwer, which aroused in Hilbert the memory of Kronecker".^{[33]} Brouwer the intuitionist in particular opposed the use of the Law of Excluded Middle over infinite sets (as Hilbert had used it). Hilbert would respond:

*Taking the Principle of the Excluded Middle from the mathematician ... is the same as ... prohibiting the boxer the use of his fists.*^{[34]}

The text *Grundlagen der Geometrie* (tr.: *Foundations of Geometry*) published by Hilbert in 1899 proposes a formal set, called Hilbert's axioms, substituting for the traditional axioms of Euclid. They avoid weaknesses identified in those of Euclid, whose works at the time were still used textbook-fashion. It is difficult to specify the axioms used by Hilbert without referring to the publication history of the *Grundlagen* since Hilbert changed and modified them several times. The original monograph was quickly followed by a French translation, in which Hilbert added V.2, the Completeness Axiom. An English translation, authorized by Hilbert, was made by E.J. Townsend and copyrighted in 1902.^{[35]}^{[36]} This translation incorporated the changes made in the French translation and so is considered to be a translation of the 2nd edition. Hilbert continued to make changes in the text and several editions appeared in German. The 7th edition was the last to appear in Hilbert's lifetime. New editions followed the 7th, but the main text was essentially not revised.

Hilbert's approach signaled the shift to the modern axiomatic method. In this, Hilbert was anticipated by Moritz Pasch's work from 1882. Axioms are not taken as self-evident truths. Geometry may treat *things*, about which we have powerful intuitions, but it is not necessary to assign any explicit meaning to the undefined concepts. The elements, such as point, line, plane, and others, could be substituted, as Hilbert is reported to have said to Schoenflies and Kötter, by tables, chairs, glasses of beer and other such objects.^{[37]} It is their defined relationships that are discussed.

Hilbert first enumerates the undefined concepts: point, line, plane, lying on (a relation between points and lines, points and planes, and lines and planes), betweenness, congruence of pairs of points (line segments), and congruence of angles. The axioms unify both the plane geometry and solid geometry of Euclid in a single system.

Hilbert put forth a most influential list of 23 unsolved problems at the International Congress of Mathematicians in Paris in 1900. This is generally reckoned as the most successful and deeply considered compilation of open problems ever to be produced by an individual mathematician.

After re-working the foundations of classical geometry, Hilbert could have extrapolated to the rest of mathematics. His approach differed, however, from the later 'foundationalist' Russell-Whitehead or 'encyclopedist' Nicolas Bourbaki, and from his contemporary Giuseppe Peano. The mathematical community as a whole could enlist in problems, which he had identified as crucial aspects of the areas of mathematics he took to be key.

The problem set was launched as a talk "The Problems of Mathematics" presented during the course of the Second International Congress of Mathematicians held in Paris. The introduction of the speech that Hilbert gave said:

*Who among us would not be happy to lift the veil behind which is hidden the future; to gaze at the coming developments of our science and at the secrets of its development in the centuries to come? What will be the ends toward which the spirit of future generations of mathematicians will tend? What methods, what new facts will the new century reveal in the vast and rich field of mathematical thought?*^{[38]}

He presented fewer than half the problems at the Congress, which were published in the acts of the Congress. In a subsequent publication, he extended the panorama, and arrived at the formulation of the now-canonical 23 Problems of Hilbert. See also Hilbert's twenty-fourth problem. The full text is important, since the exegesis of the questions still can be a matter of inevitable debate, whenever it is asked how many have been solved.

Some of these were solved within a short time. Others have been discussed throughout the 20th century, with a few now taken to be unsuitably open-ended to come to closure. Some even continue to this day to remain a challenge for mathematicians.

In an account that had become standard by the mid-century, Hilbert's problem set was also a kind of manifesto, that opened the way for the development of the formalist school, one of three major schools of mathematics of the 20th century. According to the formalist, mathematics is manipulation of symbols according to agreed upon formal rules. It is therefore an autonomous activity of thought. There is, however, room to doubt whether Hilbert's own views were simplistically formalist in this sense.

In 1920 he proposed explicitly a research project (in *metamathematics*, as it was then termed) that became known as Hilbert's program. He wanted mathematics to be formulated on a solid and complete logical foundation. He believed that in principle this could be done, by showing that:

- all of mathematics follows from a correctly chosen finite system of axioms; and
- that some such axiom system is provably consistent through some means such as the epsilon calculus.

He seems to have had both technical and philosophical reasons for formulating this proposal. It affirmed his dislike of what had become known as the *ignorabimus*, still an active issue in his time in German thought, and traced back in that formulation to Emil du Bois-Reymond.

This program is still recognizable in the most popular philosophy of mathematics, where it is usually called *formalism*. For example, the Bourbaki group adopted a watered-down and selective version of it as adequate to the requirements of their twin projects of (a) writing encyclopedic foundational works, and (b) supporting the axiomatic method as a research tool. This approach has been successful and influential in relation with Hilbert's work in algebra and functional analysis, but has failed to engage in the same way with his interests in physics and logic.

Hilbert wrote in 1919:

- We are not speaking here of arbitrariness in any sense. Mathematics is not like a game whose tasks are determined by arbitrarily stipulated rules. Rather, it is a conceptual system possessing internal necessity that can only be so and by no means otherwise.
^{[39]}

Hilbert published his views on the foundations of mathematics in the 2-volume work Grundlagen der Mathematik.

Hilbert and the mathematicians who worked with him in his enterprise were committed to the project. His attempt to support axiomatized mathematics with definitive principles, which could banish theoretical uncertainties, ended in failure.

Gödel demonstrated that any non-contradictory formal system, which was comprehensive enough to include at least arithmetic, cannot demonstrate its completeness by way of its own axioms. In 1931 his incompleteness theorem showed that Hilbert's grand plan was impossible as stated. The second point cannot in any reasonable way be combined with the first point, as long as the axiom system is genuinely finitary.

Nevertheless, the subsequent achievements of proof theory at the very least *clarified* consistency as it relates to theories of central concern to mathematicians. Hilbert's work had started logic on this course of clarification; the need to understand Gödel's work then led to the development of recursion theory and then mathematical logic as an autonomous discipline in the 1930s. The basis for later theoretical computer science, in the work of Alonzo Church and Alan Turing, also grew directly out of this 'debate'.

Around 1909, Hilbert dedicated himself to the study of differential and integral equations; his work had direct consequences for important parts of modern functional analysis. In order to carry out these studies, Hilbert introduced the concept of an infinite dimensional Euclidean space, later called Hilbert space. His work in this part of analysis provided the basis for important contributions to the mathematics of physics in the next two decades, though from an unanticipated direction. Later on, Stefan Banach amplified the concept, defining Banach spaces. Hilbert spaces are an important class of objects in the area of functional analysis, particularly of the spectral theory of self-adjoint linear operators, that grew up around it during the 20th century.

Until 1912, Hilbert was almost exclusively a "pure" mathematician. When planning a visit from Bonn, where he was immersed in studying physics, his fellow mathematician and friend Hermann Minkowski joked he had to spend 10 days in quarantine before being able to visit Hilbert. In fact, Minkowski seems responsible for most of Hilbert's physics investigations prior to 1912, including their joint seminar in the subject in 1905.

In 1912, three years after his friend's death, Hilbert turned his focus to the subject almost exclusively. He arranged to have a "physics tutor" for himself.^{[40]} He started studying kinetic gas theory and moved on to elementary radiation theory and the molecular theory of matter. Even after the war started in 1914, he continued seminars and classes where the works of Albert Einstein and others were followed closely.

By 1907 Einstein had framed the fundamentals of the theory of gravity, but then struggled for nearly 8 years with a confounding problem of putting the theory into final form.^{[41]} By early summer 1915, Hilbert's interest in physics had focused on general relativity, and he invited Einstein to Göttingen to deliver a week of lectures on the subject.^{[42]} Einstein received an enthusiastic reception at Göttingen.^{[43]} Over the summer Einstein learned that Hilbert was also working on the field equations and redoubled his own efforts. During November 1915 Einstein published several papers culminating in "The Field Equations of Gravitation" (see Einstein field equations).^{[44]} Nearly simultaneously David Hilbert published "The Foundations of Physics", an axiomatic derivation of the field equations (see Einstein–Hilbert action). Hilbert fully credited Einstein as the originator of the theory, and no public priority dispute concerning the field equations ever arose between the two men during their lives.^{[45]} See more at priority.

Additionally, Hilbert's work anticipated and assisted several advances in the mathematical formulation of quantum mechanics. His work was a key aspect of Hermann Weyl and John von Neumann's work on the mathematical equivalence of Werner Heisenberg's matrix mechanics and Erwin Schrödinger's wave equation and his namesake Hilbert space plays an important part in quantum theory. In 1926 von Neumann showed that if atomic states were understood as vectors in Hilbert space, then they would correspond with both Schrödinger's wave function theory and Heisenberg's matrices.^{[46]}

Throughout this immersion in physics, Hilbert worked on putting rigor into the mathematics of physics. While highly dependent on higher mathematics, physicists tended to be "sloppy" with it. To a "pure" mathematician like Hilbert, this was both "ugly" and difficult to understand. As he began to understand physics and how physicists were using mathematics, he developed a coherent mathematical theory for what he found, most importantly in the area of integral equations. When his colleague Richard Courant wrote the now classic *Methoden der mathematischen Physik* (Methods of Mathematical Physics) including some of Hilbert's ideas, he added Hilbert's name as author even though Hilbert had not directly contributed to the writing. Hilbert said "Physics is too hard for physicists", implying that the necessary mathematics was generally beyond them; the Courant-Hilbert book made it easier for them.

Hilbert unified the field of algebraic number theory with his 1897 treatise *Zahlbericht* (literally "report on numbers"). He also resolved a significant number-theory problem formulated by Waring in 1770. As with the finiteness theorem, he used an existence proof that shows there must be solutions for the problem rather than providing a mechanism to produce the answers.^{[47]} He then had little more to publish on the subject; but the emergence of Hilbert modular forms in the dissertation of a student means his name is further attached to a major area.

He made a series of conjectures on class field theory. The concepts were highly influential, and his own contribution lives on in the names of the Hilbert class field and of the Hilbert symbol of local class field theory. Results were mostly proved by 1930, after work by Teiji Takagi.^{[48]}

Hilbert did not work in the central areas of analytic number theory, but his name has become known for the Hilbert–Pólya conjecture, for reasons that are anecdotal.

His collected works (*Gesammelte Abhandlungen*) have been published several times. The original versions of his papers contained "many technical errors of varying degree";^{[49]} when the collection was first published, the errors were corrected and it was found that this could be done without major changes in the statements of the theorems, with one exception—a claimed proof of the continuum hypothesis.^{[50]}^{[51]} The errors were nonetheless so numerous and significant that it took Olga Taussky-Todd three years to make the corrections.^{[51]}

- List of things named after David Hilbert
- Brouwer–Hilbert controversy
- Foundations of geometry
- Geometry and the Imagination
- Hilbert–Burch theorem
- Hilbert C*-module
- Hilbert cube
- Hilbert curve
- Hilbert matrix
- Hilbert metric
- Hilbert–Mumford criterion
- Hilbert number
- Hilbert ring
- Hilbert–Poincaré series
- Hilbert series and Hilbert polynomial
- Hilbert spectrum
- Hilbert system
- Hilbert transform
- Hilbert's arithmetic of ends
- Hilbert's irreducibility theorem
- Hilbert's Nullstellensatz
- Hilbert's paradox of the Grand Hotel
- Hilbert's theorem (differential geometry)
- Hilbert's Theorem 90
- Hilbert's syzygy theorem
- Hilbert–Schmidt operator
- Hilbert–Smith conjecture
- Hilbert–Speiser theorem
- Relativity priority dispute

**^**Weyl, H. (1944). "David Hilbert. 1862-1943".*Obituary Notices of Fellows of the Royal Society*.**4**(13): 547–553. doi:10.1098/rsbm.1944.0006.- ^
^{a}^{b}David Hilbert at the Mathematics Genealogy Project **^**Richard Zach, "Hilbert's Program", The Stanford Encyclopedia of Philosophy.**^**"Hilbert".*Random House Webster's Unabridged Dictionary*.**^**Zach, Richard (2003-07-31). "Hilbert's Program".*Stanford Encyclopedia of Philosophy*. Retrieved 2009-03-23.**^**Reid 1996, pp. 1–2; also on p. 8, Reid notes that there is some ambiguity as to exactly where Hilbert was born. Hilbert himself stated that he was born in Königsberg.**^**Reid 1996, pp. 4–7.**^**Reid 1996, p. 11.**^**Reid 1996, p. 12.**^**Weyl, Hermann (2012), "David Hilbert and his Mathematical Work", in Peter Pesic (ed.),*Levels of Infinity/Selected writings on Mathematics and Philosophy*, Dover, p. 94, ISBN 978-0-486-48903-2**^**Suzuki, Jeff (2009),*Mathematics in Historical Context*, Mathematical Association of America, p. 342, ISBN 978-0883855706**^**"The Mathematics Genealogy Project - David Hilbert". Retrieved 2007-07-07.**^**David J. Darling (2004).*The Universal Book of Mathematics*. John Wiley and Sons. p. 151. ISBN 978-0-471-27047-8.**^**1992 (as told to Andrew Szanton).*The Recollections of Eugene P. Wigner*. Plenum. ISBN 0-306-44326-0**^**""Shame" at Göttingen". (Hilbert's colleagues exiled)**^**Eckart Menzler-Trott:*Gentzens Problem. Mathematische Logik im nationalsozialistischen Deutschland.*, Birkhäuser, 2001, ISBN 3-764-36574-9, Birkhäuser; Auflage: 2001 p. 142.**^**Hajo G. Meyer:*Tragisches Schicksal. Das deutsche Judentum und die Wirkung historischer Kräfte: Eine Übung in angewandter Geschichtsphilosophie*, Frank & Timme, 2008, ISBN 3-865-96174-6, p. 202.**^**Reid 1996, p. 213.**^**Reid 1996, p. 192**^**"The Conference on Epistemology of the Exact Sciences ran for three days, from 5 to 7 September" (Dawson 1997:68). "It ... was held in conjunction with and just before the ninety-first annual meeting of the Society of German Scientists and Physicians ... and the sixth Assembly of German Physicists and Mathematicians.... Gödel's contributed talk took place on Saturday, 6 September [1930], from 3 until 3:20 in the afternoon, and on Sunday the meeting concluded with a round table discussion of the first day's addresses. During the latter event, without warning and almost offhandedly, Gödel quietly announced that "one can even give examples of propositions (and in fact of those of the type of Goldbach or Fermat) that, while contentually true, are unprovable in the formal system of classical mathematics [153]" (Dawson:69) "... As it happened, Hilbert himself was present at Königsberg, though apparently not at the Conference on Epistemology. The day after the roundtable discussion he delivered the opening address before the Society of German Scientists and Physicians -- his famous lecture*Naturerkennen und Logik*(Logic and the knowledge of nature), at the end of which he declared: 'For the mathematician there is no Ignorabimus, and, in my opinion, not at all for natural science either. ... The true reason why [no one] has succeeded in finding an unsolvable problem is, in my opinion, that there is*no*unsolvable problem. In contrast to the foolish Ignorabimus, our credo avers: We must know, We shall know [159]'"(Dawson:71). Gödel's paper was received on November 17, 1930 (cf Reid p. 197, van Heijenoort 1976:592) and published on 25 March 1931 (Dawson 1997:74). But Gödel had given a talk about it beforehand... "An abstract had been presented on October 1930 to the Vienna Academy of Sciences by Hans Hahn" (van Heijenoort:592); this abstract and the full paper both appear in van Heijenoort:583ff.**^**Reid 1996, p. 36.**^**Reid 1996, p. 139.**^**Reid 1996, p. 121.**^**The Hilberts had by this time left the Reformed Protestant Church in which they had been baptized and married. - Reid 1996, p.91**^**Shaposhnikov, Vladislav (2016). "Theological Underpinnings of the Modern Philosophy of Mathematics. Part II: The Quest for Autonomous Foundations".*Studies in Logic, Grammar and Rhetoric*.**44**(1): 147–168. doi:10.1515/slgr-2016-0009.David Hilbert seemed to be agnostic and had nothing to do with theology proper or even religion. Constance Reid tells a story on the subject:

In the 1927 Hamburg address, Hilbert asserted: "mathematics is pre-suppositionless science (die Mathematik ist eine voraussetzungslose Wissenschaft)" and "to found it I do not need a good God ([z]u ihrer Begründung brauche ich weder den lieben Gott)" (1928, S. 85; van Heijenoort, 1967, p. 479). However, from Mathematische Probleme (1900) to Naturerkennen und Logik (1930) he placed his quasi-religious faith in the human spirit and in the power of pure thought with its beloved child– mathematics. He was deeply convinced that every mathematical problem could be solved by pure reason: in both mathematics and any part of natural science (through mathematics) there was "no ignorabimus" (Hilbert, 1900, S. 262; 1930, S. 963; Ewald, 1996, pp. 1102, 1165). That is why finding an inner absolute grounding for mathematics turned into Hilbert’s life-work. He never gave up this position, and it is symbolic that his words "wir müssen wissen, wir werden wissen" ("we must know, we shall know") from his 1930 Königsberg address were engraved on his tombstone. Here, we meet a ghost of departed theology (to modify George Berkeley’s words), for to absolutize human cognition means to identify it tacitly with a divine one.The Hilberts had by this time [around 1902] left the Reformed Protestant Church in which they had been baptized and married. It was told in Göttingen that when [David Hilbert's son] Franz had started to school he could not answer the question, ‘What religion are you?’ (1970, p. 91)

**^**"Mathematics is a presuppositionless science. To found it I do not need God, as does Kronecker, or the assumption of a special faculty of our understanding attuned to the principle of mathematical induction, as does Poincaré, or the primal intuition of Brouwer, or, finally, as do Russell and Whitehead, axioms of infinity, reducibility, or completeness, which in fact are actual, contentual assumptions that cannot be compensated for by consistency proofs." David Hilbert,*Die Grundlagen der Mathematik*, Hilbert's program, 22C:096, University of Iowa.**^**Michael R. Matthews (2009).*Science, Worldviews and Education*. Springer. p. 129. ISBN 9789048127795.As is well known, Hilbert rejected Leopold Kronecker's God for the solution of the problem of the foundations of mathematics.

**^**Constance Reid 1996, pp. 36–37.**^**Reid 1996, p. 34.**^**Rowe, p. 195- ^
^{a}^{b}Reid 1996, p. 37. **^**cf. Reid 1996, pp. 148–149.**^**Reid 1996, p. 148.**^**Reid 1996, p. 150.**^**Hilbert 1950**^**G. B. Mathews(1909) The Foundations of Geometry from Nature 80:394,5 (#2066)**^**Otto Blumenthal (1935). David Hilbert (ed.).*Lebensgeschichte*. Gesammelte Abhandlungen.**3**. Julius Springer. pp. 388–429. Archived from the original on 2016-03-04. Retrieved 2018-09-06. Here: p.402-403**^**"Archived copy" (PDF). Archived from the original on 2009-05-30. Retrieved 2012-09-11.CS1 maint: Archived copy as title (link) CS1 maint: BOT: original-url status unknown (link), archived from [www.seas.harvard.edu/courses/cs121/handouts/Hilbert.pdf]**^**Hilbert, D. (1919-20), Natur und Mathematisches Erkennen: Vorlesungen, gehalten 1919-1920 in G\"ottingen. Nach der Ausarbeitung von Paul Bernays (Edited and with an English introduction by David E. Rowe), Basel, Birkh\"auser (1992).**^**Reid 1996, p. 129.**^**Isaacson 2007:218**^**Sauer 1999, Folsing 1998, Isaacson 2007:212**^**Isaacson 2007:213**^**In time, associating the gravitational field equations with Hilbert's name became less and less common. A noticeable exception is P. Jordan (Schwerkraft und Weltall, Braunschweig, Vieweg, 1952), who called the equations of gravitation in the vacuum the Einstein–Hilbert equations. (Leo Corry, David Hilbert and the Axiomatization of Physics, p. 437)**^**Since 1971 there have been some spirited and scholarly discussions about which of the two men first presented the now accepted form of the field equations. "Hilbert freely admitted, and frequently stated in lectures, that the great idea was Einstein's."Every boy in the streets of Gottingen understands more about four dimensional geometry than Einstein," he once remarked. "Yet, in spite of that, Einstein did the work and not the mathematicians" (Reid 1996, pp. 141–142, also Isaacson 2007:222 quoting Thorne p. 119).**^**In 1926, the year after the matrix mechanics formulation of quantum theory by Max Born and Werner Heisenberg, the mathematician John von Neumann became an assistant to David Hilbert at Göttingen. When von Neumann left in 1932, von Neumann's book on the mathematical foundations of quantum mechanics, based on Hilbert's mathematics, was published under the title*Mathematische Grundlagen der Quantenmechanik*. See: Norman Macrae,*John von Neumann: The Scientific Genius Who Pioneered the Modern Computer, Game Theory, Nuclear Deterrence, and Much More*(Reprinted by the American Mathematical Society, 1999) and Reid 1996.**^**Reid 1996, p. 114**^**This work established Takagi as Japan's first mathematician of international stature.**^**Reid, chap.13**^**Page 284f in: Wilfried Sieg (2013).*Hilbert's Programs and Beyond*. Oxford University Press. ISBN 9780195372229.- ^
^{a}^{b}Rota G.-C. (1997), "Ten lessons I wish I had been taught",*Notices of the AMS, 44: 22-25.*

- Ewald, William B., ed. (1996).
*From Kant to Hilbert: A Source Book in the Foundations of Mathematics*. Oxford, UK: Oxford University Press.- 1918. "Axiomatic thought," 1114–1115.
- 1922. "The new grounding of mathematics: First report," 1115–1133.
- 1923. "The logical foundations of mathematics," 1134–1147.
- 1930. "Logic and the knowledge of nature," 1157–1165.
- 1931. "The grounding of elementary number theory," 1148–1156.
- 1904. "On the foundations of logic and arithmetic," 129–138.
- 1925. "On the infinite," 367–392.
- 1927. "The foundations of mathematics," with comment by Weyl and Appendix by Bernays, 464–489.

- van Heijenoort, Jean (1967).
*From Frege to Gödel: A source book in mathematical logic, 1879–1931*. Harvard University Press. - Hilbert, David (1950) [1902].
*The Foundations of Geometry [Grundlagen der Geometrie]*(PDF). Translated by Townsend, E.J. (2nd ed.). La Salle, IL: Open Court Publishing. - Hilbert, David (1990) [1971].
*Foundations of Geometry [Grundlagen der Geometrie]*. Translated by Unger, Leo (2nd English ed.). La Salle, IL: Open Court Publishing. ISBN 978-0-87548-164-7.translated from the 10th German edition

- Hilbert, David; Cohn-Vossen, Stephan (1999).
*Geometry and Imagination*. American Mathematical Society. ISBN 978-0-8218-1998-2.An accessible set of lectures originally for the citizens of Göttingen.

- Hilbert, David (2004). Hallett, Michael; Majer, Ulrich (eds.).
*David Hilbert's Lectures on the Foundations of Mathematics and Physics, 1891–1933*. Berlin & Heidelberg: Springer-Verlag. ISBN 978-3-540-64373-9.

- Bertrand, Gabriel (20 December 1943b), "Allocution",
*Comptes rendus hebdomadaires des séances de l'Académie des sciences*(in French), Paris,**217**: 625–640, available at Gallica. The "Address" of Gabriel Bertrand of December 20, 1943 at the French Academy: he gives biographical sketches of the lives of recently deceased members, including Pieter Zeeman, David Hilbert and Georges Giraud. - Bottazzini Umberto, 2003.
*Il flauto di Hilbert. Storia della matematica*. UTET, ISBN 88-7750-852-3 - Corry, L., Renn, J., and Stachel, J., 1997, "Belated Decision in the Hilbert-Einstein Priority Dispute,"
*Science 278*: nn-nn. - Dawson, John W. Jr 1997.
*Logical Dilemmas: The Life and Work of Kurt Gödel*. Wellesley MA: A. K. Peters. ISBN 1-56881-256-6. - Folsing, Albrecht, 1998.
*Albert Einstein*. Penguin. - Grattan-Guinness, Ivor, 2000.
*The Search for Mathematical Roots 1870-1940*. Princeton Univ. Press. - Gray, Jeremy, 2000.
*The Hilbert Challenge*. ISBN 0-19-850651-1 - Mancosu, Paolo (1998).
*From Brouwer to Hilbert, The Debate on the Foundations of Mathematics in 1920s*. Oxford Univ. Press. ISBN 978-0-19-509631-6. - Mehra, Jagdish, 1974.
*Einstein, Hilbert, and the Theory of Gravitation*. Reidel. - Piergiorgio Odifreddi, 2003.
*Divertimento Geometrico - Da Euclide ad Hilbert*. Bollati Boringhieri, ISBN 88-339-5714-4. A clear exposition of the "errors" of Euclid and of the solutions presented in the*Grundlagen der Geometrie*, with reference to non-Euclidean geometry. - Reid, Constance, 1996.
*Hilbert*, Springer, ISBN 0-387-94674-8. The definitive English-language biography of Hilbert. - Rowe, D. E. (1989). "Klein, Hilbert, and the Gottingen Mathematical Tradition".
*Osiris*.**5**: 186–213. doi:10.1086/368687. - Sauer, Tilman (1999). "The relativity of discovery: Hilbert's first note on the foundations of physics".
*Arch. Hist. Exact Sci*.**53**: 529–75. arXiv:physics/9811050. Bibcode:1998physics..11050S. - Sieg, Wilfried, and Ravaglia, Mark, 2005, "Grundlagen der Mathematik" in Grattan-Guinness, I., ed.,
*Landmark Writings in Western Mathematics*. Elsevier: 981-99. (in English) - Thorne, Kip, 1995.
*Black Holes and Time Warps: Einstein's Outrageous Legacy*, W. W. Norton & Company; Reprint edition. ISBN 0-393-31276-3.

- Hilbert Bernays Project
- Hilbert's 23 Problems Address
- ICMM 2014 dedicated to the memory of D.Hilbert
- Works by David Hilbert at Project Gutenberg
- Works by or about David Hilbert at Internet Archive
- Works by David Hilbert at LibriVox (public domain audiobooks)
- Hilbert's radio speech recorded in Königsberg 1930 (in German), with English translation
- Wolfram MathWorld – Hilbert'Constant
- O'Connor, John J.; Robertson, Edmund F., "David Hilbert",
*MacTutor History of Mathematics archive*, University of St Andrews. - 'From Hilbert's Problems to the Future', lecture by Professor Robin Wilson, Gresham College, 27 February 2008 (available in text, audio and video formats).
- Newspaper clippings about David Hilbert in the 20th Century Press Archives of the German National Library of Economics (ZBW)

In mathematics, the ascending chain condition (ACC) and descending chain condition (DCC) are finiteness properties satisfied by some algebraic structures, most importantly ideals in certain commutative rings. These conditions played an important role in the development of the structure theory of commutative rings in the works of David Hilbert, Emmy Noether, and Emil Artin.

The conditions themselves can be stated in an abstract form, so that they make sense for any partially ordered set. This point of view is useful in abstract algebraic dimension theory due to Gabriel and Rentschler.

Classical mathematicsIn the foundations of mathematics, classical mathematics refers generally to the mainstream approach to mathematics, which is based on classical logic and ZFC set theory. It stands in contrast to other types of mathematics such as constructive mathematics or predicative mathematics. In practice, the most common non-classical systems are used in constructive mathematics.Classical mathematics is sometimes attacked on philosophical grounds, due to constructivist and other objections to the logic, set theory, etc., chosen as its foundations, such as have been expressed by L. E. J. Brouwer. Almost all mathematics, however, is done in the classical tradition, or in ways compatible with it.

Defenders of classical mathematics, such as David Hilbert, have argued that it is easier to work in, and is most fruitful; although they acknowledge non-classical mathematics has at times led to fruitful results that classical mathematics could not (or could not so easily) attain, they argue that on the whole, it is the other way round.

David Hilbert AwardThe David Hilbert Award, named after David Hilbert, was established by the World Federation of National Mathematics Competitions to acknowledge mathematicians who have contributed to the development of mathematics worldwide.

Each awardee is selected by the Executive and Advisory Committee of the World Federation of National Mathematics Competitions on the recommendation of the WFNMC Awards Subcommittee.

Einstein–Hilbert actionThe **Einstein–Hilbert action** (also referred to as Hilbert action) in general relativity is the action that yields the Einstein field equations through the principle of least action. With the (− + + +) metric signature, the gravitational part of the action is given as

where is the determinant of the metric tensor matrix, is the Ricci scalar, and is Einstein's constant ( is the gravitational constant and is the speed of light in vacuum). If it converges, the integral is taken over the whole spacetime. If it does not converge, is no longer well-defined, but a modified definition where one integrates over arbitrarily large, relatively compact domains, still yields the Einstein equation as the Euler–Lagrange equation of the Einstein–Hilbert action.

The action was first proposed by David Hilbert in 1915.

EntscheidungsproblemIn mathematics and computer science, the Entscheidungsproblem (pronounced [ɛntˈʃaɪ̯dʊŋspʁoˌbleːm], German for "decision problem") is a challenge posed by David Hilbert in 1928. The problem asks for an algorithm that takes as input a statement of a first-order logic (possibly with a finite number of axioms beyond the usual axioms of first-order logic) and answers "Yes" or "No" according to whether the statement is universally valid, i.e., valid in every structure satisfying the axioms. By the completeness theorem of first-order logic, a statement is universally valid if and only if it can be deduced from the axioms, so the Entscheidungsproblem can also be viewed as asking for an algorithm to decide whether a given statement is provable from the axioms using the rules of logic.

In 1936, Alonzo Church and Alan Turing published independent papers showing that a general solution to the Entscheidungsproblem is impossible, assuming that the intuitive notion of "effectively calculable" is captured by the functions computable by a Turing machine (or equivalently, by those expressible in the lambda calculus). This assumption is now known as the Church–Turing thesis.

Formal systemA formal system is used to infer theorems from axioms according to a set of rules. These rules used to carry out the inference of theorems from axioms are known as the logical calculus of the formal system. A formal system is essentially an "axiomatic system". In 1921, David Hilbert proposed to use such system as the foundation for the knowledge in mathematics . A formal system may represent a well-defined system of abstract thought. Spinoza's Ethics imitates the form of Euclid's Elements. Spinoza employed Euclidean elements such as "axioms" or "primitive truths", rules of inferences, etc., so that a calculus can be built using these.

Some theorists use the term formalism as a rough synonym for formal system, but the term is also used to refer to a particular style of notation, for example, Paul Dirac's bra–ket notation.

German Mathematical SocietyThe German Mathematical Society (German: Deutsche Mathematiker-Vereinigung, DMV) is the main professional society of German mathematicians and represents German mathematics within the European Mathematical Society (EMS) and the International Mathematical Union (IMU). It was founded in 1890 in Bremen with the set theorist Georg Cantor as first president. Founding members included

Georg Cantor,

Felix Klein,

Walther von Dyck,

David Hilbert,

Hermann Minkowski,

Carl Runge,

Rudolf Sturm,

Hermann Schubert, and

Heinrich Weber.The current president of the DMV is Friedrich Götze (2019-2020).

Hans ReichenbachHans Reichenbach (September 26, 1891 – April 9, 1953) was a leading philosopher of science, educator, and proponent of logical empiricism. He was influential in the areas of science, education, and of logical empiricism. He founded the Gesellschaft für empirische Philosophie (Society for Empirical Philosophy) in Berlin in 1928, also known as the “Berlin Circle”. Carl Gustav Hempel, Richard von Mises, David Hilbert and Kurt Grelling all became members of the Berlin Circle. He authored The Rise of Scientific Philosophy. In 1930, Reichenbach and Rudolf Carnap became editors of the journal Erkenntnis (Knowledge). He also made lasting contributions to the study of empiricism based on a theory of probability; the logic and the philosophy of mathematics; space, time, and relativity theory; analysis of probabilistic reasoning; and quantum mechanics.

Hilbert's axiomsHilbert's axioms are a set of 20 assumptions proposed by David Hilbert in 1899 in his book Grundlagen der Geometrie (tr. The Foundations of Geometry) as the foundation for a modern treatment of Euclidean geometry. Other well-known modern axiomatizations of Euclidean geometry are those of Alfred Tarski and of George Birkhoff.

Hilbert's basis theoremIn mathematics, specifically commutative algebra, Hilbert's basis theorem says that a polynomial ring over a Noetherian ring is Noetherian.

Hilbert's eighteenth problemHilbert's eighteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by mathematician David Hilbert. It asks three separate questions about lattices and sphere packing in Euclidean space.

Hilbert's irreducibility theoremIn number theory, Hilbert's irreducibility theorem, conceived by David Hilbert, states that every finite number of irreducible polynomials in a finite number of variables and having rational number coefficients admit a common specialization of a proper subset of the variables to rational numbers such that all the polynomials remain irreducible. This theorem is a prominent theorem in number theory.

Hilbert's paradox of the Grand HotelHilbert's paradox of the Grand Hotel (colloquial: Infinite Hotel Paradox or Hilbert's Hotel) is a thought experiment which illustrates a counterintuitive property of infinite sets. It is demonstrated that a fully occupied hotel with infinitely many rooms may still accommodate additional guests, even infinitely many of them, and this process may be repeated infinitely often. The idea was introduced by David Hilbert in a 1924 lecture "Über das Unendliche", reprinted in (Hilbert 2013, p.730), and was popularized through George Gamow's 1947 book One Two Three... Infinity.

Hilbert's sixteenth problemHilbert's 16th problem was posed by David Hilbert at the Paris conference of the International Congress of Mathematicians in 1900, as part of his list of 23 problems in mathematics.The original problem was posed as the Problem of the topology of algebraic curves and surfaces (Problem der Topologie algebraischer Kurven und Flächen).

Actually the problem consists of two similar problems in different branches of mathematics:

An investigation of the relative positions of the branches of real algebraic curves of degree n (and similarly for algebraic surfaces).

The determination of the upper bound for the number of limit cycles in two-dimensional polynomial vector fields of degree n and an investigation of their relative positions.The first problem is yet unsolved for n = 8. Therefore, this problem is what usually is meant when talking about Hilbert's sixteenth problem in real algebraic geometry. The second problem also remains unsolved: no upper bound for the number of limit cycles is known for any n > 1, and this is what usually is meant by Hilbert's sixteenth problem in the field of dynamical systems.

Hilbert's thirteenth problemHilbert's thirteenth problem is one of the 23 Hilbert problems set out in a celebrated list compiled in 1900 by David Hilbert. It entails proving whether a solution exists for all 7th-degree equations using algebraic (variant: continuous) functions of two arguments. It was first presented in the context of nomography, and in particular "nomographic construction" — a process whereby a function of several variables is constructed using functions of two variables. Hilbert's conjecture, that it is not always possible to find such a solution, was disproven in 1957.

Hilbert numberIn number theory, a branch of mathematics, a Hilbert number is a positive integer of the form 4n + 1 (Flannery & Flannery (2000, p. 35)). The Hilbert numbers were named after David Hilbert.

The sequence of Hilbert numbers begins 1, 5, 9, 13, 17, ... (sequence A016813 in the OEIS)). A Hilbert prime is a Hilbert number that is not divisible by a smaller Hilbert number (other than 1). The sequence of Hilbert primes begins

5, 9, 13, 17, 21, 29, 33, 37, 41, 49, ... (sequence A057948 in the OEIS).A Hilbert prime is not necessarily a prime number; for example, 21 is a composite number since 21 = 3 ⋅ 7. However, 21 is a Hilbert prime since neither 3 nor 7 (the only factors of 21 other than 1 and itself) are Hilbert numbers. It follows from multiplication modulo 4 that a Hilbert prime is either a prime number of the form 4n + 1 (called a Pythagorean prime), or a semiprime of the form (4a + 3) ⋅ (4b + 3).

Hilbert symbolIn mathematics, the Hilbert symbol or norm-residue symbol is a function (–, –) from K× × K× to the group of nth roots of unity in a local field K such as the fields of reals or p-adic numbers . It is related to reciprocity laws, and can be defined in terms of the Artin symbol of local class field theory. The Hilbert symbol was introduced by David Hilbert (1897, sections 64, 131, 1998, English translation) in his Zahlbericht, with the slight difference that he defined it for elements of global fields rather than for the larger local fields.

The Hilbert symbol has been generalized to higher local fields.

List of things named after David HilbertDavid Hilbert (1862–1943), a mathematician, is the eponym of all of the things (and topics) listed below.

Mathematische AnnalenMathematische Annalen (abbreviated as Math. Ann. or, formerly, Math. Annal.) is a German mathematical research journal founded in 1868 by Alfred Clebsch and Carl Neumann. Subsequent managing editors were Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück, and Nigel Hitchin. Currently, the managing editor of Mathematische Annalen is Thomas Schick.

Volumes 1–80 (1869–1919) were published by Teubner. Since 1920 (vol. 81), the journal has been published by Springer. In the late 1920s, under the editorship of Hilbert, the journal became embroiled in controversy over the participation of L. E. J. Brouwer on its editorial board, a spillover from the foundational Brouwer–Hilbert controversy. Between 1945 and 1947 the journal briefly ceased publication.

This page is based on a Wikipedia article written by authors
(here).

Text is available under the CC BY-SA 3.0 license; additional terms may apply.

Images, videos and audio are available under their respective licenses.