Cytotoxicity is the quality of being toxic to cells. Examples of toxic agents are an immune cell or some types of venom, e.g. from the puff adder (Bitis arietans) or brown recluse spider (Loxosceles reclusa).

Cell physiology

Treating cells with the cytotoxic compound can result in a variety of cell fates. The cells may undergo necrosis, in which they lose membrane integrity and die rapidly as a result of cell lysis. The cells can stop actively growing and dividing (a decrease in cell viability), or the cells can activate a genetic program of controlled cell death (apoptosis).

Cells undergoing necrosis typically exhibit rapid swelling, lose membrane integrity, shut down metabolism and release their contents into the environment. Cells that undergo rapid necrosis in vitro do not have sufficient time or energy to activate apoptotic machinery and will not express apoptotic markers. Apoptosis is characterized by well defined cytological and molecular events including a change in the refractive index of the cell, cytoplasmic shrinkage, nuclear condensation and cleavage of DNA into regularly sized fragments. Cells in culture that are undergoing apoptosis eventually undergo secondary necrosis. They will shut down metabolism, lose membrane integrity and lyse.[1]


Cytotoxicity assays are widely used by the pharmaceutical industry to screen for cytotoxicity in compound libraries. Researchers can either look for cytotoxic compounds, if they are interested in developing a therapeutic that targets rapidly dividing cancer cells, for instance; or they can screen "hits" from initial high-throughput drug screens for unwanted cytotoxic effects before investing in their development as a pharmaceutical.

Assessing cell membrane integrity is one of the most common ways to measure cell viability and cytotoxic effects. Compounds that have cytotoxic effects often compromise cell membrane integrity. Vital dyes, such as trypan blue or propidium iodide are normally excluded from the inside of healthy cells; however, if the cell membrane has been compromised, they freely cross the membrane and stain intracellular components.[1] Alternatively, membrane integrity can be assessed by monitoring the passage of substances that are normally sequestered inside cells to the outside. One molecule, lactate dehydrogenase (LDH), is commonly measured using LDH assay. LDH reduces NAD to NADH which elicits a colour change by interaction with a specific probe.[2] Protease biomarkers have been identified that allow researchers to measure relative numbers of live and dead cells within the same cell population. The live-cell protease is only active in cells that have a healthy cell membrane, and loses activity once the cell is compromised and the protease is exposed to the external environment. The dead-cell protease cannot cross the cell membrane, and can only be measured in culture media after cells have lost their membrane integrity.[3]

Cytotoxicity can also be monitored using the 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2H-tetrazolium bromide (MTT) or with 2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT), which yields a water-soluble product, or the MTS assay. This assay measures the reducing potential of the cell using a colorimetric reaction. Viable cells will reduce the MTS reagent to a colored formazan product. A similar redox-based assay has also been developed using the fluorescent dye, resazurin. In addition to using dyes to indicate the redox potential of cells in order to monitor their viability, researchers have developed assays that use ATP content as a marker of viability.[1] Such ATP-based assays include bioluminescent assays in which ATP is the limiting reagent for the luciferase reaction.[4]

Cytotoxicity can also be measured by the sulforhodamine B (SRB) assay, WST assay and clonogenic assay.

Suitable assays can be combined and performed sequentially on the same cells in order to reduce assay-specific false positive or false negative results. A possible combination is LDH-XTT-NR (Neutral red assay)-SRB which is also available in a kit format.

A label-free approach to follow the cytotoxic response of adherent animal cells in real-time is based on electric impedance measurements when the cells are grown on gold-film electrodes. This technology is referred to as electric cell-substrate impedance sensing (ECIS). Label-free real-time techniques provide the kinetics of the cytotoxic response rather than just a snapshot like many colorimetric endpoint assays.


A highly important topic is the prediction of cytotoxicity of chemical compounds based on previous measurements, i.e. in-silico testing.[5] For this purpose many QSAR and virtual screening methods have been suggested. An independent comparison of these methods has been done within the "Toxicology in the 21st century" project.[6]

In cancer

Chemotherapy as a treatment of cancer often relies on the ability of cytotoxic agents to kill or damage cells which are reproducing; this preferentially targets rapidly dividing cancer cells.[7][8]

Immune system

Antibody-dependent cell-mediated cytotoxicity (ADCC) describes the cell-killing ability of certain lymphocytes, which requires the target cell being marked by an antibody. Lymphocyte-mediated cytotoxicity, on the other hand, does not have to be mediated by antibodies; nor does complement-dependent cytotoxicity (CDC), which is mediated by the complement system.

Three groups of cytotoxic lymphocytes are distinguished:

See also


  1. ^ a b c Riss TL, Moravec RA; Moravec (February 2004). "Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin, and plating density in cell-based cytotoxicity assays". Assay Drug Dev Technol. 2 (1): 51–62. doi:10.1089/154065804322966315. PMID 15090210.
  2. ^ Decker T, Lohmann-Matthes ML; Lohmann-Matthes (November 1988). "A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity". J. Immunol. Methods. 115 (1): 61–9. doi:10.1016/0022-1759(88)90310-9. PMID 3192948.
  3. ^ Niles AL, Moravec RA, Eric Hesselberth P, Scurria MA, Daily WJ, Riss TL (July 2007). "A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers". Anal. Biochem. 366 (2): 197–206. doi:10.1016/j.ab.2007.04.007. PMID 17512890.
  4. ^ Fan F, Wood KV; Wood (February 2007). "Bioluminescent assays for high-throughput screening". Assay Drug Dev Technol. 5 (1): 127–36. doi:10.1089/adt.2006.053. PMID 17355205.
  5. ^ Dearden, J. C. (2003). "In silico prediction of drug toxicity". Journal of computer-aided molecular design. 17 (2–4): 119–27. doi:10.1023/A:1025361621494. PMID 13677480.
  6. ^ "Toxicology in the 21st century Data Challenge"
  7. ^ Ramin Zibaseresht, Photoactivated Cytotoxins, University of Canterbury, 2006.
  8. ^ "Chemotherapy Principles" (PDF). American Cancer Society. Retrieved 20 August 2014.

External links


Adecatumumab (MT201) is a recombinant human IgG1 monoclonal antibody which is used to target tumor cells. It binds to the epithelial cell adhesion molecule (EpCAM - CD326), with the intent to trigger antibody-dependent cellular cytotoxicity. It was developed by Micromet Inc, which was acquired by Amgen.Adecatumumab has been used in clinical studies of treatment in colorectal, prostate and breast cancers. Phase II results were published in 2010.

Antibody-dependent cellular cytotoxicity

The antibody-dependent cellular cytotoxicity (ADCC), also referred to as antibody-dependent cell-mediated cytotoxicity, is a mechanism of cell-mediated immune defense whereby an effector cell of the immune system actively lyses a target cell, whose membrane-surface antigens have been bound by specific antibodies. It is one of the mechanisms through which antibodies, as part of the humoral immune response, can act to limit and contain infection.ADCC is independent of the immune complement system that also lyses targets but does not require any other cell. ADCC requires an effector cell which classically is known to be natural killer (NK) cells that typically interact with IgG antibodies. However, macrophages, neutrophils and eosinophils can also mediate ADCC, such as eosinophils killing certain parasitic worms known as helminths via IgE antibodies.ADCC is part of the adaptive immune response due to its dependence on a prior antibody response. The coating of target cells with antibodies is sometimes referred to as opsonization.


CD155 (cluster of differentiation 155) also known as the poliovirus receptor is a protein that in humans is encoded by the PVR gene.


CD16, also known as FcγRIII, is a cluster of differentiation molecule found on the surface of natural killer cells, neutrophil polymorphonuclear leukocytes, monocytes and macrophages. CD16 has been identified as Fc receptors FcγRIIIa (CD16a) and FcγRIIIb (CD16b), which participate in signal transduction. The most well-researched membrane receptor implicated in triggering lysis by NK cells, CD16 is a molecule of the immunoglobulin superfamily (IgSF) involved in antibody-dependent cellular cytotoxicity (ADCC). It can be used to isolate populations of specific immune cells through fluorescent-activated cell sorting (FACS) or magnetic-activated cell sorting, using antibodies directed towards CD16.

Cancer immunotherapy

Cancer immunotherapy (sometimes called immuno-oncology) is the artificial stimulation of the immune system to treat cancer, improving on the system's natural ability to fight cancer. It is an application of the fundamental research of cancer immunology and a growing subspecialty of oncology. It exploits the fact that cancer cells often have tumor antigens, molecules on their surface that can be detected by the antibody proteins of the immune system, binding to them. The tumor antigens are often proteins or other macromolecules (e.g. carbohydrates). Normal antibodies bind to external pathogens, but the modified immunotherapy antibodies bind to the tumor antigens marking and identifying the cancer cells for the immune system to inhibit or kill.

Complement-dependent cytotoxicity

Complement-dependent cytotoxicity (CDC) is an effector function of IgG and IgM antibodies. When they are bound to surface antigen, the classical complement pathway is triggered, resulting in formation of a membrane attack complex (MAC) and target cell lysis.

It is one mechanism of action by which therapeutic antibodies or antibody fragments can achieve an antitumor effect.

Eosinophil cationic protein

Eosinophil cationic protein (ECP) also known as ribonuclease 3 is a basic protein located in the eosinophil primary matrix. In humans, the eosinophil cationic protein is encoded by the RNASE3 gene.ECP is released during degranulation of eosinophils. This protein is related to inflammation and asthma because in these cases, there are increased levels of ECP in the body.

There are three glycosolated forms of ECP and consequently ECP has a range of molecular weights from 18-22 kDa.


Excitotoxicity is the pathological process by which nerve cells are damaged or killed by excessive stimulation by neurotransmitters such as glutamate and similar substances. This occurs when receptors for the excitatory neurotransmitter glutamate (glutamate receptors) such as the NMDA receptor and AMPA receptor are overactivated by glutamatergic storm. Excitotoxins like NMDA and kainic acid which bind to these receptors, as well as pathologically high levels of glutamate, can cause excitotoxicity by allowing high levels of calcium ions (Ca2+) to enter the cell. Ca2+ influx into cells activates a number of enzymes, including phospholipases, endonucleases, and proteases such as calpain. These enzymes go on to damage cell structures such as components of the cytoskeleton, membrane, and DNA.

Excitotoxicity may be involved in spinal cord injury, stroke, traumatic brain injury, hearing loss (through noise overexposure or ototoxicity), and in neurodegenerative diseases of the central nervous system (CNS) such as multiple sclerosis, Alzheimer's disease, amyotrophic lateral sclerosis (ALS), Parkinson's disease, alcoholism or alcohol withdrawal and especially over-rapid benzodiazepine withdrawal, and also Huntington's disease. Other common conditions that cause excessive glutamate concentrations around neurons are hypoglycemia. Blood sugars are the primary glutamate removal method from inter-synaptic spaces at the NMDA and AMPA receptor site. Persons in excitotoxic shock must never fall into hypoglycemia. Patients should be given 5% glucose (dextrose) IV drip during excitotoxic shock to avoid a dangerous build up of glutamate around NMDA and AMPA neurons. When 5% glucose (dextrose) IV drip is not available high levels of fructose are given orally. Treatment is administered during the acute stages of excitotoxic shock along with glutamate antagonists. Dehydration should be avoided as this also contributes to the concentrations of glutamate in the inter-synaptic cleft and "status epilepticus can also be triggered by a build up of glutamate around inter-synaptic neurons."

In vitro toxicology

In vitro toxicity testing is the scientific analysis of the effects of toxic chemical substances on cultured bacteria or mammalian cells. In vitro (literally 'in glass') testing methods are employed primarily to identify potentially hazardous chemicals and/or to confirm the lack of certain toxic properties in the early stages of the development of potentially useful new substances such as therapeutic drugs, agricultural chemicals and food additives.

In vitro assays for xenobiotic toxicity are recently carefully considered by key government agencies (e.g. EPA; NIEHS/NTP; FDA), to better assess human risks. There are substantial activities in using in vitro systems to advance mechanistic understanding of toxicant activities, and the use of human cells and tissue to define human-specific toxic effects.

Integrin alpha M

Integrin alpha M (ITGAM) is one protein subunit that forms heterodimeric integrin alpha-M beta-2 (αMβ2) molecule, also known as macrophage-1 antigen (Mac-1) or complement receptor 3 (CR3). ITGAM is also known as CR3A, and cluster of differentiation molecule 11B (CD11B). The second chain of αMβ2 is the common integrin β2 subunit known as CD18, and integrin αMβ2 thus belongs to the β2 subfamily (or leukocyte) integrins.αMβ2 is expressed on the surface of many leukocytes involved in the innate immune system, including monocytes, granulocytes, macrophages, and natural killer cells. It mediates inflammation by regulating leukocyte adhesion and migration and has been implicated in several immune processes such as phagocytosis, cell-mediated cytotoxicity, chemotaxis and cellular activation. It is involved in the complement system due to its capacity to bind inactivated complement component 3b (iC3b). The ITGAM (alpha) subunit of integrin αMβ2 is directly involved in causing the adhesion and spreading of cells but cannot mediate cellular migration without the presence of the β2 (CD18) subunit.In genomewide association studies, single nucleotide polymorphisms in ITGAM had the strongest association with systemic lupus erythematosus, with an odds ratio of 1.65 for the T allele of rs9888739 and lupus.In histopathology, immunohistochemistry with antibodies against CD11B is frequently used to identify macrophages and microglia.


Leukocyte immunoglobulin-like receptor subfamily B member 3 is a protein that in humans is encoded by the LILRB3 gene.This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). The receptor is expressed on immune cells where it binds to MHC class I molecules on antigen-presenting cells and transduces a negative signal that inhibits stimulation of an immune response. It is thought to control inflammatory responses and cytotoxicity to help focus the immune response and limit autoreactivity. Multiple transcript variants encoding different isoforms have been found for this gene.


Natural cytotoxicity triggering receptor 1 is a protein that in humans is encoded by the NCR1 gene. NCR1 has also been designated as CD335 (cluster of differentiation 335).


Natural cytotoxicity triggering receptor 2 is a protein that in humans is encoded by the NCR2 gene. NCR2 has also been designated as CD336 (cluster of differentiation 336).


Natural cytotoxicity triggering receptor 3 is a protein that in humans is encoded by the NCR3 gene. NCR3 has also been designated as CD337 (cluster of differentiation 337) and as NKp30.

Natural killer cell

Natural killer cells, or NK cells, are a type of cytotoxic lymphocyte critical to the innate immune system. The role NK cells play is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to virus-infected cells, acting at around 3 days after infection, and respond to tumor formation. Typically, immune cells detect major histocompatibility complex (MHC) presented on infected cell surfaces, triggering cytokine release, causing lysis or apoptosis. NK cells are unique, however, as they have the ability to recognize stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the initial notion that they do not require activation to kill cells that are missing "self" markers of MHC class 1. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.

NK cells (belonging to the group of innate lymphoid cells) are defined as large granular lymphocytes (LGL) and constitute the third kind of cells differentiated from the common lymphoid progenitor-generating B and T lymphocytes. NK cells are known to differentiate and mature in the bone marrow, lymph nodes, spleen, tonsils, and thymus, where they then enter into the circulation. NK cells differ from natural killer T cells (NKTs) phenotypically, by origin and by respective effector functions; often, NKT cell activity promotes NK cell activity by secreting interferon gamma. In contrast to NKT cells, NK cells do not express T-cell antigen receptors (TCR) or pan T marker CD3 or surface immunoglobulins (Ig) B cell receptors, but they usually express the surface markers CD16 (FcγRIII) and CD56 in humans, NK1.1 or NK1.2 in C57BL/6 mice. The NKp46 cell surface marker constitutes, at the moment, another NK cell marker of preference being expressed in both humans, several strains of mice (including BALB/c mice) and in three common monkey species.In addition to the knowledge that natural killer cells are effectors of innate immunity, recent research has uncovered information on both activating and inhibitory NK cell receptors which play important functional roles, including self tolerance and the sustaining of NK cell activity. NK cells also play a role in the adaptive immune response: numerous experiments have demonstrated their ability to readily adjust to the immediate environment and formulate antigen-specific immunological memory, fundamental for responding to secondary infections with the same antigen. The role of NK cells in both the innate and adaptive immune responses is becoming increasingly important in research using NK cell activity as a potential cancer therapy.


Nelarabine is a chemotherapy drug used in T-cell acute lymphoblastic leukemia. It was previously known as 506U78.

Nelarabine is a prodrug of arabinosylguanine nucleotide triphosphate (araGTP), a type of purine nucleoside analog, which causes inhibition of DNA synthesis and cytotoxicity. Pre-clinical studies suggest that T-cells are particularly sensitive to nelarabine. In October 2005, it was approved by the FDA for acute lymphoblastic leukemia and T-cell lymphoblastic lymphoma that has not responded to or has relapsed following treatment with at least two chemotherapy regimens. It was later approved in the European Union in October 2005. Complete responses have been achieved with this medication.

It is marketed in the US as Arranon and as Atriance in the EU by Novartis.

Pancreatic ribonuclease

Pancreatic ribonucleases (EC, RNase, RNase I, RNase A, pancreatic RNase, ribonuclease I, endoribonuclease I, ribonucleic phosphatase, alkaline ribonuclease, ribonuclease, gene S glycoproteins, Ceratitis capitata alkaline ribonuclease, SLSG glycoproteins, gene S locus-specific glycoproteins, S-genotype-assocd. glycoproteins, ribonucleate 3'-pyrimidino-oligonucleotidohydrolase) are pyrimidine-specific endonucleases found in high quantity in the pancreas of certain mammals and of some reptiles.Specifically, the enzymes are involved in endonucleolytic cleavage of 3'-phosphomononucleotides and 3'-phosphooligonucleotides ending in C-P or U-P with 2',3'-cyclic phosphate intermediates. Ribonuclease can unwind the RNA helix by complexing with single-stranded RNA; the complex arises by an extended multi-site cation-anion interaction between lysine and arginine residues of the enzyme and phosphate groups of the nucleotides.


Tivantinib (ARQ197; by Arqule, Inc.) is an experimental small molecule anti-cancer drug. It is a bisindolylmaleimide that binds to the dephosphorylated MET kinase in vitro. (MET is a growth factor receptor.) Tivantinib is being tested clinically as a highly selective MET inhibitor. However, the mechanism of action of tivantinib is still unclear.Tivantinib displays cytotoxic activity via molecular mechanisms that are independent from its ability to bind MET, notably tubulin binding, which likely underlies tivantinib cytotoxicity.Possible applications include non-small-cell lung carcinoma, hepatocellular carcinoma, and oesophageal cancer.In 2017, it was announced that a phase III clinical trial for advanced hepatocellular carcinoma had failed to meet the primary endpoint.

Type II hypersensitivity

In type II hypersensitivity (also tissue-specific, or cytotoxic hypersensitivity) the antibodies produced by the immune response bind to antigens on the patient's own cell surfaces. The antigens recognized in this way may either be intrinsic ("self" antigen, innately part of the patient's cells) or extrinsic (adsorbed onto the cells during exposure to some foreign antigen, possibly as part of infection with a pathogen). These cells are usually macrophages or dendritic cells, which act as antigen-presenting cells. This causes a B cell response, in which the antibodies are produced against the foreign antigen.

An example of type II hypersensitivity is the ABO blood incompatibility where the red blood cells have different antigens, causing them to be recognized as different; B cell proliferation will take place and antibodies to the foreign blood type are produced. IgG and IgM antibodies bind to these antigens to form complexes that activate the classical pathway of complement activation to eliminate cells presenting foreign antigens. That is, mediators of acute inflammation (e.g. C3a, C3b, C9) are generated at the site and membrane attack complexes cause cell lysis and death. The reaction takes hours to a day.

Type II reactions can affect healthy cells. Examples include red blood cells in autoimmune hemolytic anemia and acetylcholine receptors in myasthenia gravis.

Another example of type II hypersensitivity reaction is Goodpasture's syndrome where the basement membrane (containing collagen type IV) in the lung and kidney is attacked by one's own antibodies.Another form of type II hypersensitivity results from misdirected antibody-dependent cell-mediated cytotoxicity (ADCC). Here, native cells exhibiting the foreign antigen are tagged with antibodies (IgG or IgM). These tagged cells are then recognised by natural killer cells (NK) and macrophages (recognised via IgG bound (via the Fc region) to the effector cell surface receptor, CD16 (FcγRIII)), which in turn kill these tagged cells.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.