Continuous wave

A continuous wave or continuous waveform (CW) is an electromagnetic wave of constant amplitude and frequency, almost always a sine wave, that for mathematical analysis is considered to be of infinite duration. Continuous wave is also the name given to an early method of radio transmission, in which a sinusoidal carrier wave is switched on and off. Information is carried in the varying duration of the on and off periods of the signal, for example by Morse code in early radio. In early wireless telegraphy radio transmission, CW waves were also known as "undamped waves", to distinguish this method from damped wave signals produced by earlier spark gap type transmitters.

Radio

Transmissions before CW

Very early radio transmitters used a spark gap to produce radio-frequency oscillations in the transmitting antenna. The signals produced by these spark-gap transmitters consisted of strings of brief pulses of sinusoidal radio frequency oscillations which died out rapidly to zero, called damped waves. The disadvantage of damped waves was that their energy was spread over an extremely wide band of frequencies; they had wide bandwidth. As a result, they produced electromagnetic interference (RFI) that spread over the transmissions of stations at other frequencies.

This motivated efforts to produce radio frequency oscillations that decayed more slowly; had less damping. There is an inverse relation between the rate of decay (the time constant) of a damped wave and its bandwidth; the longer the damped waves take to decay toward zero, the narrower the frequency band the radio signal occupies, so the less it interferes with other transmissions. As more transmitters began crowding the radio spectrum, reducing the frequency spacing between transmissions, government regulations began to limit the maximum damping or "decrement" a radio transmitter could have. Manufacturers produced spark transmitters which generated long "ringing" waves with minimal damping.

Transition to CW

It was realized that the ideal radio wave for radiotelegraphic communication would be a sine wave with zero damping, a continuous wave. An unbroken continuous sine wave theoretically has no bandwidth; all its energy is concentrated at a single frequency, so it doesn't interfere with transmissions on other frequencies. Continuous waves could not be produced with an electric spark, but were achieved with the vacuum tube electronic oscillator, invented around 1913 by Edwin Armstrong and Alexander Meissner. After World War I, transmitters capable of producing continuous wave, the Alexanderson alternator and vacuum tube oscillators, became widely available.

Damped wave spark transmitters were replaced by continuous wave vacuum tube transmitters around 1920, and damped wave transmissions were finally outlawed in 1934.

Key clicks

In order to transmit information, the continuous wave must be turned off and on with a telegraph key to produce the different length pulses, "dots" and "dashes", that spell out text messages in Morse code, so a "continuous wave" radiotelegraphy signal consists of pulses of sine waves with a constant amplitude interspersed with gaps of no signal.

In on-off carrier keying, if the carrier wave is turned on or off abruptly, communications theory can show that the bandwidth will be large; if the carrier turns on and off more gradually, the bandwidth will be smaller. The bandwidth of an on-off keyed signal is related to the data transmission rate as: where is the necessary bandwidth in hertz, is the keying rate in signal changes per second (baud rate), and is a constant related to the expected radio propagation conditions; K=1 is difficult for a human ear to decode, K=3 or K=5 is used when fading or multipath propagation is expected.[1]

The spurious noise emitted by a transmitter which abruptly switches a carrier on and off is called key clicks. The noise occurs in the part of the signal bandwidth further above and below the carrier than required for normal, less abrupt switching. The solution to the problem for CW is to make the transition between on and off to be more gradual, making the edges of pulses soft, appearing more rounded, or to use other modulation methods (e.g. phase modulation). Certain types of power amplifiers used in transmission may aggravate the effect of key clicks.

Persistence of radio telegraphy

Bencher paddle
A commercially manufactured paddle for use with electronic keyer to generate Morse code

Early radio transmitters could not be modulated to transmit speech, and so CW radio telegraphy was the only form of communication available. CW still remains a viable form of radio communication many years after voice transmission was perfected, because simple, robust transmitters can be used, and because its signals are the simplest of the forms of modulation able to penetrate interference. The low bandwidth of the code signal, due in part to low information transmission rate, allows very selective filters to be used in the receiver, which block out much of the radio noise that would otherwise reduce the intelligibility of the signal.

Continuous-wave radio was called radiotelegraphy because like the telegraph, it worked by means of a simple switch to transmit Morse code. However, instead of controlling the electricity in a cross-country wire, the switch controlled the power sent to a radio transmitter. This mode is still in common use by amateur radio operators.

In military communications and amateur radio the terms "CW" and "Morse code" are often used interchangeably, despite the distinctions between the two. Aside from radio signals, Morse code may be sent using direct current in wires, sound, or light, for example. For radio signals, a carrier wave is keyed on and off to represent the dots and dashes of the code elements. The carrier's amplitude and frequency remains constant during each code element. At the receiver, the received signal is mixed with a heterodyne signal from a BFO (beat frequency oscillator) to change the radio frequency impulses to sound. Though most commercial traffic has now ceased operation using Morse it is still popular with amateur radio operators. Non-directional beacons (NDB) and VHF omnidirectional radio range (VOR) used in air navigation use Morse to transmit their identifier.

Radar

Morse code is all but extinct outside the amateur service, so in non-amateur contexts the term CW usually refers to a continuous-wave radar system, as opposed to one transmitting short pulses. Some monostatic (single antenna) CW radars transmit and receive a single (nonswept) frequency, often using the transmitted signal as the local oscillator for the return; examples include police speed radars and microwave-type motion detectors and automatic door openers. This type of radar is effectively "blinded" by its own transmitted signal to stationary targets; they must move toward or away from the radar quickly enough to create a Doppler shift sufficient to allow the radar to isolate the outbound and return signal frequencies. This kind of CW radar can measure range rate but not range (distance).

Other CW radars linearly or pseudo-randomly "chirp" (frequency modulate) their transmitters rapidly enough to avoid self-interference with returns from objects beyond some minimum distance; this kind of radar can detect and range static targets. This approach is commonly used in radar altimeters, in meteorology and in oceanic and atmospheric research. The landing radar on the Apollo Lunar Module combined both CW radar types.

CW bistatic radars use physically separate transmit and receive antennas to lessen the self-interference problems inherent in monostatic CW radars.

Laser physics

In laser physics and engineering, "continuous wave" or "CW" refers to a laser that produces a continuous output beam, sometimes referred to as "free-running," as opposed to a q-switched, gain-switched or modelocked laser, which has a pulsed output beam.

The continuous wave semiconductor laser was invented by Japanese physicist Izuo Hayashi in 1970. It led directly to the light sources in fiber-optic communication, laser printers, barcode readers, and optical disc drives, commercialized by Japanese entrepreneurs,[2] and opened up the field of optical communication, playing an important role in future communication networks.[3] Optical communication in turn provided the hardware basis for internet technology, laying the foundations for the Digital Revolution and Information Age.[4]

See also

References

  1. ^ L. D. Wolfgang, C. L. Hutchinson (ed) The ARRL Handbook for Radio Amateurs, Sixty Eighth Edition, (ARRL, 1991) ISBN 0-87259-168-9, pages 9-8, 9-9
  2. ^ Johnstone, Bob (2000). We were burning : Japanese entrepreneurs and the forging of the electronic age. New York: BasicBooks. p. 252. ISBN 9780465091188.
  3. ^ S. Millman (1983), A History of Engineering and Science in the Bell System, page 10, AT&T Bell Laboratories
  4. ^ The Third Industrial Revolution Occurred in Sendai, Soh-VEHE International Patent Office, Japan Patent Attorneys Association
Autodyne

The autodyne circuit was an improvement to radio signal amplification using the De Forest Audion vacuum tube amplifier. By allowing the tube to oscillate at a frequency slightly different from the desired signal, the sensitivity over other receivers was greatly improved. The autodyne circuit was invented by Edwin Howard Armstrong of Columbia University, New York, NY. He inserted a tuned circuit in the output circuit of the Audion vacuum tube amplifier. By adjusting the tuning of this tuned circuit, Armstrong was able to dramatically increase the gain of the Audion amplifier. Further increase in tuning resulted in the Audion amplifier reaching self-oscillation.

This oscillating receiver circuit meant that the then latest technology continuous wave (CW) transmissions could be demodulated. Previously only spark, interrupted continuous wave (ICW, signals which were produced by a motor chopping or turning the signal on and off at an audio rate), or modulated continuous wave (MCW), could produce intelligible output from a receiver.

When the autodyne oscillator was advanced to self-oscillation, continuous wave Morse code dots and dashes would be clearly heard from the headphones as short or long periods of sound of a particular tone, instead of an all but impossible to decode series of thumps. Spark and chopped CW (ICW) were amplitude modulated signals which didn't require an oscillating detector.

Such a regenerative circuit is capable of receiving weak signals, if carefully coupled to an antenna. Antenna coupling interacts with tuning, making optimum adjustments difficult.

CAPE-1

CAPE-1 (Cajun Advanced Picosatellite Experiment) is an amateur miniaturized satellite developed by students at the University of Louisiana at Lafayette. The CubeSat was launched successfully into orbit at the Baikonur Cosmodrome in Kazakhstan in April 2007 after a delay of several weeks.An amateur radio frequency in the 70-centimeter band was used during the satellite's operation. Intermittent continuous wave and AX.25 telemetry beacons were sent at one watt with the call sign K5USL. CAPE-1 has ceased operation, and is succeeded by the CAPE-2 picosatellite, a 1U Cubesat operating on the 2-meter and 70-centimeter bands.

Carbon dioxide laser

The carbon dioxide laser (CO2 laser) was one of the earliest gas lasers to be developed. It was invented by Kumar Patel of Bell Labs in 1964, and is still one of the most useful. Carbon dioxide lasers are the highest-power continuous wave lasers that are currently available. They are also quite efficient: the ratio of output power to pump power can be as large as 20%.

The CO2 laser produces a beam of infrared light with the principal wavelength bands centering on 9.4 and 10.6 micrometers (μm).

Chemical laser

A chemical laser is a laser that obtains its energy from a chemical reaction. Chemical lasers can reach continuous wave output with power reaching to megawatt levels. They are used in industry for cutting and drilling.

Common examples of chemical lasers are the chemical oxygen iodine laser (COIL), all gas-phase iodine laser (AGIL), and the hydrogen fluoride (HF) and deuterium fluoride (DF) lasers, all operating in the mid-infrared region. There is also a DF–CO2 laser (deuterium fluoride–carbon dioxide), which, like COIL, is a "transfer laser." The HF and DF lasers are unusual, in that there are several molecular energy transitions with sufficient energy to cross the threshold required for lasing. Since the molecules do not collide frequently enough to re-distribute the energy, several of these laser modes operate either simultaneously, or in extremely rapid succession, so that an HF or DF laser appears to operate simultaneously on several wavelengths unless a wavelength selection device is incorporated into the resonator.

Continuous-wave radar

Continuous-wave radar is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. Continuous-wave (CW) radar uses Doppler, which renders the radar immune to interference from large stationary objects and slow moving clutter.

CW radar systems are used at both ends of the range spectrum.

Inexpensive radio-altimeters, proximity sensors and sport accessories that operate from a few dozen feet to several kilometers

Costly early-warning CW angle track (CWAT) radar operating beyond 100 km for use with surface-to-air missile systems

Doppler ultrasonography

Doppler ultrasonography is medical ultrasonography that employs the Doppler effect to generate imaging of the movement of tissues and body fluids (usually blood), and their relative velocity to the probe. By calculating the frequency shift of a particular sample volume, for example flow in an artery or a jet of blood flow over a heart valve, its speed and direction can be determined and visualized. Color Doppler or color flow Doppler is the presentation of the velocity by color scale. Color Doppler images are generally combined with grayscale (B-mode) images to display duplex ultrasonography images, allowing for simultaneous visualization of the anatomy of the area.

This is particularly useful in cardiovascular studies (sonography of the vascular system and heart) and essential in many areas such as determining reverse blood flow in the liver vasculature in portal hypertension.

Fourier-transform spectroscopy

Fourier-transform spectroscopy is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the electromagnetic radiation or other type of radiation. It can be applied to a variety of types of spectroscopy including optical spectroscopy, infrared spectroscopy (FTIR, FT-NIRS), nuclear magnetic resonance (NMR) and magnetic resonance spectroscopic imaging (MRSI), mass spectrometry and electron spin resonance spectroscopy. There are several methods for measuring the temporal coherence of the light (see: field-autocorrelation), including the continuous wave Michelson or Fourier-transform spectrometer and the pulsed Fourier-transform spectrograph (which is more sensitive and has a much shorter sampling time than conventional spectroscopic techniques, but is only applicable in a laboratory environment).

The term Fourier-transform spectroscopy reflects the fact that in all these techniques, a Fourier transform is required to turn the raw data into the actual spectrum, and in many of the cases in optics involving interferometers, is based on the Wiener–Khinchin theorem.

Laser

A laser is a device that emits light through a process of optical amplification based on the stimulated emission of electromagnetic radiation. The term "laser" originated as an acronym for "Light Amplification by Stimulated Emission of Radiation". The first laser was built in 1960 by Theodore H. Maiman at Hughes Research Laboratories, based on theoretical work by Charles Hard Townes and Arthur Leonard Schawlow.

A laser differs from other sources of light in that it emits light coherently. Spatial coherence allows a laser to be focused to a tight spot, enabling applications such as laser cutting and lithography. Spatial coherence also allows a laser beam to stay narrow over great distances (collimation), enabling applications such as laser pointers and lidar. Lasers can also have high temporal coherence, which allows them to emit light with a very narrow spectrum, i.e., they can emit a single color of light. Alternatively, temporal coherence can be used to produce pulses of light with a broad spectrum but durations as short as a femtosecond ("ultrashort pulses").

Lasers are used in optical disk drives, laser printers, barcode scanners, DNA sequencing instruments, fiber-optic and free-space optical communication, laser surgery and skin treatments, cutting and welding materials, military and law enforcement devices for marking targets and measuring range and speed, and in laser lighting displays for entertainment. They have been used for car headlamps on luxury cars, by using a blue laser and a phosphor to produce highly directional white light.

Luna 18

Luna 18, part of the Ye-8-5 series, was an unmanned space mission of the Luna program.

Luna 18 was placed in an Earth parking orbit after it was launched and was then sent towards the Moon. On 7 September 1971, it entered lunar orbit. The spacecraft completed 85 communications sessions and 54 lunar orbits before it was sent towards the lunar surface by use of braking rockets. It impacted the Moon on 11 September 1971, at 3 degrees 34 minutes N, 56 degrees 30 minutes E (selenographic coordinates) in a rugged mountainous terrain. Signals ceased at the moment of impact.

This mission was the seventh Soviet attempt to recover soil samples from the surface of the Moon and the first after the success of Luna 16. After two mid-course corrections on 4 September and 6 September 1971, Luna 18 entered a circular orbit around the Moon on 7 September at 100 kilometers altitude with an inclination of 35°. After several more orbital corrections, on 11 September, the vehicle began its descent to the lunar surface. Contact with the spacecraft was lost at 07:48 UT at the previously determined point of lunar landing. Impact coordinates were 3°34' north latitude and 56°30' east longitude, near the edge of the Mare Fecunditatis ("Sea of Fertility"). Officially, the Soviets announced that "the lunar landing in the complex mountainous conditions proved to be unfavorable." Later, in 1975, the Soviets published data from Luna 18's continuous-wave radio altimeter that determined the mean density of the lunar topsoil.

MIM-23 Hawk

The Raytheon MIM-23 Hawk is an American medium-range surface-to-air missile. It was designed to be a much more mobile counterpart to the MIM-14 Nike Hercules, trading off range and altitude capability for a much smaller size and weight. Its low-level performance was greatly improved over Nike through the adoption of new radars and a continuous wave semi-active radar homing guidance system.

Hawk was originally intended to attack aircraft, especially those flying at medium and low altitudes. It entered service with the Army in this role in 1959. In 1971 it underwent a major improvement program as the Improved Hawk, or I-Hawk, which made several improvements to the missile and replaced all of the radar systems with new models. Improvements continued throughout the next twenty years, adding improved ECCM, a potential home-on-jam feature, and in 1995, a new warhead that made it capable against short-range tactical missiles. Jane's reported that the original system's single shot kill probability was 0.56; I-Hawk improved this to 0.85.Hawk was superseded by the MIM-104 Patriot in US Army service by 1994. The last US user was the US Marine Corps, who used theirs until 2002 when they were replaced with the man-portable short-range FIM-92 Stinger. The missile was also produced outside the US in Western Europe, Japan and Iran. The US never used the Hawk in combat, but it has been employed numerous times by other nations. Approximately 40,000 of the missiles were produced.

Modulated continuous wave

Modulated continuous wave is defined by the Federal Communications Commission in 47 CFR §97.3(c)(4) as "Tone-modulated international Morse code telegraphy emissions having designators with A, C, D, F, G, H or R as the first symbol; 2 as the second symbol; A or B as the third symbol." See Types of radio emissions for a general explanation of these symbols.

Simply put, MCW uses a fixed audio tone to modulate a carrier wave. This is an older method of sending Morse code, with continuous wave being the more common method used today.

Unlike A1A CW transmissions, A2A MCW morse can clearly be heard on a normal AM radio receiver. It was commonly used by many RDF beacons to send a morse station identifier on a regular basis.

MCW can be transmitted from any common amateur radio transceiver in AM or FM mode with audio input from an audio tone oscillator or equivalent audio source. MCW is not allowed in the United States on amateur radio frequencies lower than 50.1 MHz, between 144.0 and 144.1 MHz, or between 219 and 220 MHz, as it is a very inefficient use of radio spectrum. When the amateur radio transceiver is in SSB mode, the resulting modulation is J2A or J2B and therefore not MCW by definition.

F2A MCW morse can be heard on a normal FM radio receiver, and it is commonly used by both commercial and amateur repeater stations for identification. Also, F2A is sometimes used by other types of stations operating under automatic control, such as a telemetry transmitter or a remote base station.

On-off keying

On-off keying (OOK) denotes the simplest form of amplitude-shift keying (ASK) modulation that represents digital data at the presence or absence of a carrier wave. In its simplest form, the presence of a carrier for a specific duration represents a binary one, while its absence for the same duration represents a binary zero. Some more sophisticated schemes vary these durations to convey additional information. It is analogous to unipolar encoding line code.

On-off keying is most commonly used to transmit Morse code over radio frequencies (referred to as CW (continuous wave) operation), although in principle any digital encoding scheme may be used. OOK has been used in the ISM bands to transfer data between computers, for example.

OOK is more spectrally efficient than frequency-shift keying, but more sensitive to noise when using a regenerative receiver or a poorly implemented superheterodyne receiver.

For a given data rate, the bandwidth of a BPSK (Binary Phase Shift keying) signal and the bandwidth of OOK signal are equal.

In addition to RF carrier waves, OOK is also used in optical communication systems (e.g. IrDA).

In aviation, some possibly unmanned airports have equipment that let pilots key their VHF radio a number of times in order to request an Automatic Terminal Information Service broadcast, or turn on runway lights.

Radar altimeter

A radar altimeter, electronic altimeter, reflection altimeter, radio altimeter (RADALT), low range radio altimeter (LRRA) or simply RA, used on aircraft, measures altitude above the terrain presently beneath an aircraft or spacecraft by timing how long it takes a beam of radio waves to reflect from the ground and return to the plane. This type of altimeter provides the distance between the antenna and the ground directly below it, in contrast to a barometric altimeter which provides the distance above a defined datum, usually mean sea level.

Radar warning receiver

Radar warning receiver (RWR) systems detect the radio emissions of radar systems. Their primary purpose is to issue a warning when a radar signal that might be a threat (such as a police speed detection radar or a fighter jet's fire control radar) is detected. The warning can then be used, manually or automatically, to evade the detected threat. RWR systems can be installed in all kind of airborne, sea-based, and ground-based assets (such as aircraft, ships, automobiles, military bases). This article is focused mainly on airborne military RWR systems; for commercial police RWR systems, see radar detector.

Depending on the market the RWR system is designed for, it can be as simple as detecting the presence of energy in a specific radar band (such as police radar detectors). For more critical situations, such as military combat, RWR systems are often capable of classifying the source of the radar by the signal's strength, phase and waveform type, such as pulsed power wave or continuous wave with amplitude modulation or frequency modulation (chirped). The information about the signal's strength and waveform can then be used to estimate the most probable type of threat the detected radar poses. Simpler systems are typically installed in less expensive assets like

automobiles, while more sophisticated systems are installed in mission critical assets such as military aircraft.

Reginald Fessenden

Reginald Aubrey Fessenden (October 6, 1866 – July 22, 1932) was a Canadian-born inventor, who did a majority of his work in the United States and also claimed U.S. citizenship through his American-born father. During his life he received hundreds of patents in various fields, most notably ones related to radio and sonar.

Fessenden is best known for his pioneering work developing radio technology, including the foundations of amplitude modulation (AM) radio. His achievements included the first transmission of speech by radio (1900), and the first two-way radiotelegraphic communication across the Atlantic Ocean (1906). In 1932 he reported that, in late 1906, he also made the first radio broadcast of entertainment and music, although a lack of verifiable details has led to some doubts about this claim.

Semi-active radar homing

Semi-active radar homing (SARH) is a common type of missile guidance system, perhaps the most common type for longer-range air-to-air and surface-to-air missile systems. The name refers to the fact that the missile itself is only a passive detector of a radar signal – provided by an external (“offboard”) source — as it reflects off the target(in contrast to active radar homing, which uses an active radar: transceiver). Semi-active missile systems use bistatic continuous-wave radar.

The NATO brevity code for a semi-active radar homing missile launch is Fox One.

Sine wave

A sine wave or sinusoid is a mathematical curve that describes a smooth periodic oscillation. A sine wave is a continuous wave. It is named after the function sine, of which it is the graph. It occurs often in pure and applied mathematics, as well as physics, engineering, signal processing and many other fields. Its most basic form as a function of time (t) is:

where:

The sine wave is important in physics because it retains its wave shape when added to another sine wave of the same frequency and arbitrary phase and magnitude. It is the only periodic waveform that has this property. This property leads to its importance in Fourier analysis and makes it acoustically unique.

Ti-sapphire laser

Ti:sapphire lasers (also known as Ti:Al2O3 lasers, titanium-sapphire lasers, or Ti:sapphs) are tunable lasers which emit red and near-infrared light in the range from 650 to 1100 nanometers. These lasers are mainly used in scientific research because of their tunability and their ability to generate ultrashort pulses. Lasers based on Ti:sapphire were first constructed and invented in June 1982 by Peter Moulton at the MIT Lincoln Laboratory.Titanium-sapphire refers to the lasing medium, a crystal of sapphire (Al2O3) that is doped with titanium ions. A Ti:sapphire laser is usually pumped with another laser with a wavelength of 514 to 532 nm, for which argon-ion lasers (514.5 nm) and frequency-doubled Nd:YAG, Nd:YLF, and Nd:YVO lasers (527-532 nm) are used. Ti:sapphire lasers operate most efficiently at wavelengths near 800 nm.

Tonewheel

A tonewheel or tone wheel is a simple electromechanical apparatus for generating electric musical notes in electromechanical organ instruments such as the Hammond Organ. It was invented around 1910 by Rudolph Goldschmidt and was first used in pre vacuum tube radio receivers as a beat frequency oscillator (BFO) to make continuous wave radiotelegraphy (Morse code) signals audible.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.