Colored dissolved organic matter

Colored dissolved organic matter (CDOM) is the optically measurable component of dissolved organic matter in water. Also known as chromophoric dissolved organic matter,[1] yellow substance, and gelbstoff, CDOM occurs naturally in aquatic environments and is a complex mixture of many hundreds to thousands of individual, unique organic matter molecules, which are primarily leached from decaying detritus and organic matter.[2] CDOM most strongly absorbs short wavelength light ranging from blue to ultraviolet, whereas pure water absorbs longer wavelength red light. Therefore, water with little or no CDOM, such as the open ocean, appears blue.[3] Waters containing high amounts of CDOM can range from brown, as in many rivers, to yellow and yellow-brown in coastal waters. In general, CDOM concentrations are much higher in fresh waters and estuaries than in the open ocean, though concentrations are highly variable, as is the estimated contribution of CDOM to the total dissolved organic matter pool.


Sediment off the Carolinas on October 9, 2016
Variations in the concentration of colored dissolved organic matter can even be seen from space. The dark brown water in the inland waterways contains high concentrations of CDOM. As this dark, CDOM-rich water moves offshore, it mixes with the low CDOM, blue ocean water from offshore.

The concentration of CDOM can have a significant effect on biological activity in aquatic systems. CDOM diminishes light intensity as it penetrates water. Very high concentrations of CDOM can have a limiting effect on photosynthesis and inhibit the growth of phytoplankton,[4] which form the basis of oceanic food chains and are a primary source of atmospheric oxygen. CDOM also absorbs harmful UVA/B radiation, protecting organisms from DNA damage.

Absorption of UV radiation causes CDOM to "bleach", reducing its optical density and absorptive capacity. This bleaching (photodegradation) of CDOM produces low-molecular-weight organic compounds which may be utilized by microbes, release nutrients that may be used by phytoplankton as a nutrient source for growth,[5] and generates reactive oxygen species, which may damage tissues and alter the bioavailability of limiting trace metals.

CDOM can be detected and measured from space using satellite remote sensing and often interferes with the use of satellite spectrometers to remotely estimate phytoplankton populations. As a pigment necessary for photosynthesis, chlorophyll is a key indicator of the phytoplankton abundance. However, CDOM and chlorophyll both absorb light in the same spectral range so it is often difficult to differentiate between the two.

Although variations in CDOM are primarily the result of natural processes including changes in the amount and frequency of precipitation, human activities such as logging, agriculture, effluent discharge, and wetland drainage can affect CDOM levels in fresh water and estuarine systems.


Traditional methods of measuring CDOM include UV-visible spectroscopy (absorbance) and fluorometry (fluorescence). Optical proxies have been developed to characterize sources and properties of CDOM, including specific ultraviolet absorbance at 254 nm (SUVA254) and spectral slopes for absorbance, and the fluorescence index (FI), biological index (BIX), and humification index (HIX) for fluorescence. Excitation emission matrices (EEMs) can be resolved into components in a technique called parallel factor analysis (PARAFAC), where each component is often labelled as "humic-like", "protein-like", etc. As mentioned above, remote sensing is the newest technique to detect CDOM from space.

See also


  1. ^ Hoge, FE; Vodacek, A; Swift, RN; Yungel, JK; Blough, NV (October 1995). "Inherent optical properties of the ocean: retrieval of the absorption coefficient of chromophoric dissolved organic matter from airborne laser spectral fluorescence measurements". Applied Optics. 34 (30): 7032–8. Bibcode:1995ApOpt..34.7032H. doi:10.1364/ao.34.007032. PMID 21060564.,
  2. ^ Coble, Paula (2007). "Marine Optical Biogeochemistry: The Chemistry of Ocean Color". Chemical Reviews. 107 (2): 402–418. doi:10.1021/cr050350+. PMID 17256912.
  3. ^ "Ocean Color". NASA Science. Retrieved 26 November 2018.
  4. ^ Stedmon, C.A.; Markager, S.; Kaas, H. (2000). "Optical properties and signatures of chromophoric dissolved organic matter (CDOM) in Danish coastal waters". Estuarine, Coastal and Shelf Science. 51 (2): 267–278. doi:10.1006/ecss.2000.0645.
  5. ^ Helms, John R.; Stubbins, Aaron; Perdue, E. Micheal; Green, Nelson W.; Chen, Hongmei; Mopper, Kenneth (2013). "Photochemical bleaching of oceanic dissolved organic matter and its effect on absorption spectral slope and fluorescence". Marine Chemistry. 155: 81–91. doi:10.1016/j.marchem.2013.05.015.

External links

Aquatic ecosystem

An aquatic ecosystem is an ecosystem in a body of water. Communities of organisms that are dependent on each other and on their environment live in aquatic ecosystems. The two main types of aquatic ecosystems are marine ecosystems and freshwater ecosystems.


Benthos is the community of organisms that live on, in, or near the seabed, river, lake, or stream bottom, also known as the benthic zone. This community lives in or near marine or freshwater sedimentary environments, from tidal pools along the foreshore, out to the continental shelf, and then down to the abyssal depths.

Many organisms adapted to deep-water pressure cannot survive in the upperparts of the water column. The pressure difference can be very significant (approximately one atmosphere for each 10 metres of water depth).Because light is absorbed before it can reach deep ocean-water, the energy source for deep benthic ecosystems is often organic matter from higher up in the water column that drifts down to the depths. This dead and decaying matter sustains the benthic food chain; most organisms in the benthic zone are scavengers or detritivores.

The term benthos, coined by Haeckel in 1891, comes from the Greek noun βένθος "depth of the sea". Benthos is used in freshwater biology to refer to organisms at the bottom of freshwater bodies of water, such as lakes, rivers, and streams. There is also a redundant synonym, benthon.

Blackwater river

A blackwater river is a type of river with a slow-moving channel flowing through forested swamps or wetlands. As vegetation decays, tannins leach into the water, making a transparent, acidic water that is darkly stained, resembling tea. Most major blackwater rivers are in the Amazon Basin and the Southern United States. The term is used in fluvial studies, geology, geography, ecology, and biology. Not all dark rivers are blackwater in that technical sense. Some rivers in temperate regions, which drain or flow through areas of dark black loam, are simply black due to the color of the soil; these rivers are black mud rivers. There are also black mud estuaries.

Blackwater rivers are lower in nutrients than whitewater rivers and have ionic concentrations higher than rainwater. The unique conditions lead to flora and fauna that differ from both whitewater and clearwater rivers. The classification of Amazonian rivers into black, clear, and whitewater was first proposed by Alfred Russel Wallace in 1853 based on water colour, but the types were more clearly defined by chemistry and physics by Harald Sioli (de) from the 1950s to the 1980s. Although many Amazonian rivers fall clearly into one of these categories, others show a mix of characteristics and may vary depending on season and flood levels.

Color of water

The color of water varies with the ambient conditions in which that water is present. While relatively small quantities of water appear to be colorless, pure water has a slight blue color that becomes a deeper blue as the thickness of the observed sample increases. The blue hue of water is an intrinsic property and is caused by selective absorption and scattering of white light. Dissolved elements or suspended impurities may give water a different color.


In biology, detritus () is dead particulate organic material (as opposed to dissolved organic material). It typically includes the bodies or fragments of dead organisms as well as fecal material. Detritus is typically colonized by communities of microorganisms which act to decompose (or remineralize) the material. In terrestrial ecosystems, it is encountered as leaf litter and other organic matter intermixed with soil, which is denominated "soil organic matter". Detritus of aquatic ecosystems is organic material suspended in water and piling up on seabed floors, which is referred to as marine snow.

Dissolved organic carbon

Dissolved organic carbon (DOC) is the fraction of total organic carbon operationally defined as that which can pass through a filter size that typically ranges in size from 0.22 and 0.7 micrometers. The fraction remaining on the filter is called particulate organic carbon (POC).DOC is abundant in marine and freshwater systems and is one of the greatest cycled reservoirs of organic matter on Earth, accounting for the same amount of carbon as the atmosphere and up to 20% of all organic carbon. In general, organic carbon compounds are the result of decomposition processes from dead organic matter including plants and animals. DOC can originate from within or external to the body of water. DOC originating from within the body of water is known as autochthonous DOC and typically comes from aquatic plants or algae, while DOC originating external to the body of water is known as allochthonous DOC and typically comes from soils or terrestrial plants. When water originates from land areas with a high proportion of organic soils, these components can drain into rivers and lakes as DOC.

Fishing light attractor

A fishing light attractor is a fishing aid which uses lights attached to structure above water or suspended underwater to attract both fish and members of their food chain to specific areas in order to harvest them.

Floodplain restoration

Floodplain restoration is the process of fully or partially restoring a river's floodplain to its original conditions before having been affected by the construction of levees (dikes) and the draining of wetlands and marshes.

The objectives of restoring floodplains include the reduction of the incidence of floods, the provision of habitats for aquatic species, the improvement of water quality and the increased recharge of groundwater.

GIS and aquatic science

Geographic Information Systems (GIS) has become an integral part of aquatic science and limnology. Water by its very nature is dynamic. Features associated with water are thus ever-changing. To be able to keep up with these changes, technological advancements have given scientists methods to enhance all aspects of scientific investigation, from satellite tracking of wildlife to computer mapping of habitats. Agencies like the US Geological Survey, US Fish and Wildlife Service as well as other federal and state agencies are utilizing GIS to aid in their conservation efforts.

GIS is being used in multiple fields of aquatic science from limnology, hydrology, aquatic botany, stream ecology, oceanography and marine biology. Applications include using satellite imagery to identify, monitor and mitigate habitat loss. Imagery can also show the condition of inaccessible areas. Scientists can track movements and develop a strategy to locate locations of concern. GIS can be used to track invasive species, endangered species, and population changes.

One of the advantages of the system is the availability for the information to be shared and updated at any time through the use of web-based data collection.


Limnology ( lim-NOL-ə-jee; from Greek λίμνη, limne, "lake" and λόγος, logos, "knowledge"), is the study of inland aquatic ecosystems.

The study of limnology includes aspects of the biological, chemical, physical, and geological characteristics and functions of inland waters (running and standing waters, fresh and saline, natural or man-made). This includes the study of lakes, reservoirs, ponds, rivers, springs, streams, wetlands, and groundwater. A more recent sub-discipline of limnology, termed landscape limnology, studies, manages, and seeks to conserve these ecosystems using a landscape perspective, by explicitly examining connections between an aquatic ecosystem and its watershed. Recently, the need to understand global inland waters as part of the Earth System created a sub-discipline called global limnology. This approach considers processes in inland waters on a global scale, like the role of inland aquatic ecosystems in global biogeochemical cycles.Limnology is closely related to aquatic ecology and hydrobiology, which study aquatic organisms and their interactions with the abiotic (non-living) environment. While limnology has substantial overlap with freshwater-focused disciplines (e.g., freshwater biology), it also includes the study of inland salt lakes.

List of watershed topics

This list embraces topographical watersheds and drainage basins and other topics focused on them.

Ocean color

The "color" of the ocean is determined by the interactions of incident light with substances or particles present in the water. White light from the sun is made up of a combination of colors that are broken apart by water droplets in a "rainbow" spectrum. Large quantities of water, even in a swimming pool, would appear blue as well. When light hits the water surface, the different colors are absorbed, transmitted, scattered, or reflected in differing intensities by water molecules and other so-called optically-active constituents in suspension in the upper layer of the ocean. The reason that open ocean waters often appear blue is due to the absorption and scattering of light. The blue wavelengths of light are scattered, similar to the scattering of blue light in the sky but absorption is a much larger factor than scattering for the clear ocean water. In water, absorption is strong in the red and weak in the blue and so red light is absorbed quickly in the ocean leaving blue. Almost all sunlight that enters the ocean is absorbed, except very close to the coast. The red, yellow, and green wavelengths of sunlight are absorbed by water molecules in the ocean. When sunlight hits the ocean, some of the light is reflected back directly, but most of it penetrates the ocean surface and interacts with the water molecules that it encounters. The red, orange, yellow, and green wavelengths of light are absorbed and so the remaining light we see is composed of the shorter wavelength blues and violets.

If there are any particles suspended in the water, they will increase the scattering of light. In coastal areas, runoff from rivers, resuspension of sand and silt from the bottom by tides, waves, and storms and a number of other substances can change the color of the near-shore waters. Some types of particles can also contain substances that absorb certain wavelengths of light, which alters its characteristics. For example, microscopic marine algae, called phytoplankton, have the capacity to absorb light in the blue and red region of the spectrum owing to specific pigments like chlorophyll. Accordingly, as the concentration of phytoplankton increases in the water, the color of the water shifts toward the green part of the spectrum. Fine mineral particles like sediment absorb light in the blue part of the spectrum, causing the water to turn brownish if there is a massive sediment load.

The most important light-absorbing substance in the oceans is chlorophyll, which phytoplankton use to produce carbon by photosynthesis. Chlorophyll, a green pigment, makes phytoplankton preferentially absorb the red and blue portions of the light spectrum and reflect green light. Ocean regions with high concentrations of phytoplankton have shades of blue-green depending upon the type and density of the phytoplankton population there. The basic principle behind the remote sensing of ocean color from space is that the more phytoplankton is in the water, the greener it is.

There are other substances that may be found dissolved in the water that can also absorb light. Since the substances are usually composed of organic carbon, researchers generally refer to them as colored dissolved organic matter.

Organic matter

Organic matter, organic material, or natural organic matter (NOM) refers to the large pool of carbon-based compounds found within natural and engineered, terrestrial and aquatic environments. It is matter composed of organic compounds that have come from the remains of organisms such as plants and animals and their waste products in the environment. Organic molecules can also be made by chemical reactions that don't involve life. Basic structures are created from cellulose, tannin, cutin, and lignin, along with other various proteins, lipids, and carbohydrates. Organic matter is very important in the movement of nutrients in the environment and plays a role in water retention on the surface of the planet.

Particle (ecology)

In marine and freshwater ecology, a particle is a small object. Particles can remain in suspension in the ocean or freshwater. However, they eventually settle (rate determined by Stokes' law) and accumulate as sediment. Some can enter the atmosphere through wave action where they can act as cloud condensation nuclei (CCN). Many organisms filter particles out of the water with unique filtration mechanisms (filter feeders). Particles are often associated with high loads of toxins which attach to the surface. As these toxins are passed up the food chain they accumulate in fatty tissue and become increasingly concentrated in predators (see bioaccumulation). Very little is known about the dynamics of particles, especially when they are re-suspended by dredging. They can remain floating in the water and drift over long distances. The decomposition of some particles by bacteria consumes a lot of oxygen and can cause the water to become hypoxic.

Photic zone

The photic zone, euphotic zone (Greek for "well lit": εὖ "well" + φῶς "light"), or sunlight (or sunlit) zone is the uppermost layer of water in a lake or ocean that is exposed to intense sunlight. It corresponds roughly to the layer above the compensation point, i.e. depth where the rate of carbon dioxide uptake, or equivalently, the rate of photosynthetic oxygen production, is equal to the rate of carbon dioxide production, equivalent to the rate of respiratory oxygen consumption, i.e. the depth where net carbon dioxide assimilation is zero.

It extends from the surface down to a depth where light intensity falls to one percent of that at the surface, called the euphotic depth. Accordingly, its thickness depends on the extent of light attenuation in the water column. Typical euphotic depths vary from only a few centimetres in highly turbid eutrophic lakes, to around 200 meters in the open ocean. It also varies with seasonal changes in turbidity.

Since the photic zone is where almost all of the photosynthesis occurs, the depth of the photic zone is generally proportional to the level of primary production that occurs in that area of the ocean. About 90% of all marine life lives in the photic zone. A small amount of primary production is generated deep in the abyssal zone around the hydrothermal vents which exist along some mid-oceanic ridges.

The zone which extends from the base of the euphotic zone to about 200 metres is sometimes called the disphotic zone. While there is some light, it is insufficient for photosynthesis, or at least insufficient for photosynthesis at a rate greater than respiration. The euphotic zone together with the disphotic zone coincides with the epipelagic zone. The bottommost zone, below the euphotic zone, is called the aphotic zone. Most deep ocean waters belong to this zone.

The transparency of the water, which determines the depth of the photic zone, is measured simply with a Secchi disk. It may also be measured with a photometer lowered into the water.

Ramsar site

A Ramsar site is a wetland site designated to be of international importance under the Ramsar Convention.The Convention on Wetlands, known as the Ramsar Convention, is an intergovernmental environmental treaty established in 1971 by UNESCO, which came into force in 1975. It provides for national action and international cooperation regarding the conservation of wetlands, and wise sustainable use of their resources.Ramsar identifies wetlands of international importance, especially those providing waterfowl habitat.

As of 2016, there were 2,231 Ramsar sites, protecting 214,936,005 hectares (531,118,440 acres), and 169 national governments are currently participating.


SeaWIFS (Sea-Viewing Wide Field-of-View Sensor) was a satellite-borne sensor designed to collect global ocean biological data. Active from September 1997 to December 2010, its primary mission was to quantify chlorophyll produced by marine phytoplankton (microscopic plants).

Sustainable gardening

Sustainable gardening includes the more specific sustainable landscapes, sustainable landscape design, sustainable landscaping, sustainable landscape architecture, resulting in sustainable sites. It comprises a disparate group of horticultural interests that can share the aims and objectives associated with the international post-1980s sustainable development and sustainability programs developed to address the fact that humans are now using natural biophysical resources faster than they can be replenished by nature.Included within this compass are those home gardeners, and members of the landscape and nursery industries, and municipal authorities, that integrate environmental, social, and economic factors to create a more sustainable future.

Organic gardening and the use of native plants are integral to sustainable gardening.

Water remote sensing

Water Remote Sensing studies the color of water through the observation of the spectrum of water leaving radiation. From the study of this spectrum, the concentration of optically active components of the upper layer of the water body can be concluded via specific algorithms.Water quality monitoring by remote sensing and close-range instruments has obtained considerable attention since the founding of EU Water Framework Directive.

Aquatic ecosystems

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.