Cognitive neuroscience

Cognitive neuroscience is the scientific field that is concerned with the study of the biological processes and aspects that underlie cognition,[1] with a specific focus on the neural connections in the brain which are involved in mental processes. It addresses the questions of how cognitive activities are affected or controlled by neural circuits in the brain. Cognitive neuroscience is a branch of both neuroscience and psychology, overlapping with disciplines such as behavioral neuroscience, cognitive psychology, physiological psychology and affective neuroscience.[2] Cognitive neuroscience relies upon theories in cognitive science coupled with evidence from neurobiology, and computational modeling.[2]

Parts of the brain play an important role in this field. Neurons play the most vital role, since the main point is to establish an understanding of cognition from a neural perspective, along with the different lobes of the cerebral cortex.

Methods employed in cognitive neuroscience include experimental procedures from psychophysics and cognitive psychology, functional neuroimaging, electrophysiology, cognitive genomics, and behavioral genetics.

Studies of patients with cognitive deficits due to brain lesions constitute an important aspect of cognitive neuroscience. The damages in lesioned brains provide a comparable basis with regards to healthy and fully functioning brains. These damages change the neural circuits in the brain and cause it to malfunction during basic cognitive processes, such as memory or learning. With the damage, we can compare how the healthy neural circuits are functioning, and possibly draw conclusions about the basis of the affected cognitive processes.

Also, cognitive abilities based on brain development are studied and examined under the subfield of developmental cognitive neuroscience. This shows brain development over time, analyzing differences and concocting possible reasons for those differences.

Theoretical approaches include computational neuroscience and cognitive psychology.

Historical origins

Timeline showing major developments in science that led to the emergence of the field cognitive neuroscience.

Cognitive neuroscience is an interdisciplinary area of study that has emerged from neuroscience and psychology.[3] There were several stages in these disciplines that changed the way researchers approached their investigations and that led to the field becoming fully established.

Although the task of cognitive neuroscience is to describe how the brain creates the mind, historically it has progressed by investigating how a certain area of the brain supports a given mental faculty. However, early efforts to subdivide the brain proved to be problematic. The phrenologist movement failed to supply a scientific basis for its theories and has since been rejected. The aggregate field view, meaning that all areas of the brain participated in all behavior,[4] was also rejected as a result of brain mapping, which began with Hitzig and Fritsch’s experiments[5] and eventually developed through methods such as positron emission tomography (PET) and functional magnetic resonance imaging (fMRI).[6] Gestalt theory, neuropsychology, and the cognitive revolution were major turning points in the creation of cognitive neuroscience as a field, bringing together ideas and techniques that enabled researchers to make more links between behavior and its neural substrates.

Origins in philosophy

Philosophers have always been interested in the mind: "the idea that explaining a phenomenon involves understanding the mechanism responsible for it has deep roots in the History of Philosophy from atomic theories in 5th century B.C. to its rebirth in the 17th and 18th century in the works of Galileo, Descartes, and Boyle. Among others, it’s Descartes’ idea that machines humans build could work as models of scientific explanation."[7] For example, Aristotle thought the brain was the body’s cooling system and the capacity for intelligence was located in the heart. It has been suggested that the first person to believe otherwise was the Roman physician Galen in the second century AD, who declared that the brain was the source of mental activity,[8] although this has also been accredited to Alcmaeon.[9] However, Galen believed that personality and emotion were not generated by the brain, but rather by other organs. Andreas Vesalius, an anatomist and physician, was the first to believe that the brain and the nervous system are the center of the mind and emotion.[10] Psychology, a major contributing field to cognitive neuroscience, emerged from philosophical reasoning about the mind.[11]

19th century


A page from the American Phrenological Journal

One of the predecessors to cognitive neuroscience was phrenology, a pseudoscientific approach that claimed that behavior could be determined by the shape of the scalp. In the early 19th century, Franz Joseph Gall and J. G. Spurzheim believed that the human brain was localized into approximately 35 different sections. In his book, The Anatomy and Physiology of the Nervous System in General, and of the Brain in Particular, Gall claimed that a larger bump in one of these areas meant that that area of the brain was used more frequently by that person. This theory gained significant public attention, leading to the publication of phrenology journals and the creation of phrenometers, which measured the bumps on a human subject's head. While phrenology remained a fixture at fairs and carnivals, it did not enjoy wide acceptance within the scientific community.[12] The major criticism of phrenology is that researchers were not able to test theories empirically.[3]

Localizationist view

The localizationist view was concerned with mental abilities being localized to specific areas of the brain rather than on what the characteristics of the abilities were and how to measure them.[3] Studies performed in Europe, such as those of John Hughlings Jackson, supported this view. Jackson studied patients with brain damage, particularly those with epilepsy. He discovered that the epileptic patients often made the same clonic and tonic movements of muscle during their seizures, leading Jackson to believe that they must be occurring in the same place every time. Jackson proposed that specific functions were localized to specific areas of the brain,[13] which was critical to future understanding of the brain lobes.

Aggregate field view

According to the aggregate field view, all areas of the brain participate in every mental function.[4]

Pierre Flourens, a French experimental psychologist, challenged the localizationist view by using animal experiments.[3] He discovered that removing the cerebellum in rabbits and pigeons affected their sense of muscular coordination, and that all cognitive functions were disrupted in pigeons when the cerebral hemispheres were removed. From this he concluded that the cerebral cortex, cerebellum, and brainstem functioned together as a whole.[14] His approach has been criticised on the basis that the tests were not sensitive enough to notice selective deficits had they been present.[3]

Emergence of neuropsychology

Perhaps the first serious attempts to localize mental functions to specific locations in the brain was by Broca and Wernicke. This was mostly achieved by studying the effects of injuries to different parts of the brain on psychological functions.[15] In 1861, French neurologist Paul Broca came across a man who was able to understand language but unable to speak. The man could only produce the sound "tan". It was later discovered that the man had damage to an area of his left frontal lobe now known as Broca's area. Carl Wernicke, a German neurologist, found a patient who could speak fluently but non-sensibly. The patient had been the victim of a stroke, and could not understand spoken or written language. This patient had a lesion in the area where the left parietal and temporal lobes meet, now known as Wernicke's area. These cases, which suggested that lesions caused specific behavioral changes, strongly supported the localizationist view.

Mapping the brain

In 1870, German physicians Eduard Hitzig and Gustav Fritsch published their findings about the behavior of animals. Hitzig and Fritsch ran an electric current through the cerebral cortex of a dog, causing different muscles to contract depending on which areas of the brain were electrically stimulated. This led to the proposition that individual functions are localized to specific areas of the brain rather than the cerebrum as a whole, as the aggregate field view suggests.[5] Brodmann was also an important figure in brain mapping; his experiments based on Franz Nissl’s tissue staining techniques divided the brain into fifty-two areas.

20th century

Cognitive revolution

At the start of the 20th century, attitudes in America were characterised by pragmatism, which led to a preference for behaviorism as the primary approach in psychology. J.B. Watson was a key figure with his stimulus-response approach. By conducting experiments on animals he was aiming to be able to predict and control behaviour. Behaviourism eventually failed because it could not provide realistic psychology of human action and thought – it focused primarily on stimulus-response associations at the expense of explaining phenomena like thought and imagination. This led to what is often termed as the "cognitive revolution".[16]

Neuron doctrine

In the early 20th century, Santiago Ramón y Cajal and Camillo Golgi began working on the structure of the neuron. Golgi developed a silver staining method that could entirely stain several cells in a particular area, leading him to believe that neurons were directly connected with each other in one cytoplasm. Cajal challenged this view after staining areas of the brain that had less myelin and discovering that neurons were discrete cells. Cajal also discovered that cells transmit electrical signals down the neuron in one direction only. Both Golgi and Cajal were awarded a Nobel Prize in Physiology or Medicine in 1906 for this work on the neuron doctrine.[17]

Mid-late 20th century

Several findings in the 20th century continued to advance the field, such as the discovery of ocular dominance columns, recording of single nerve cells in animals, and coordination of eye and head movements. Experimental psychology was also significant in the foundation of cognitive neuroscience. Some particularly important results were the demonstration that some tasks are accomplished via discrete processing stages, the study of attention[18][19], and the notion that behavioural data do not provide enough information by themselves to explain mental processes. As a result, some experimental psychologists began to investigate neural bases of behaviour. Wilder Penfield created maps of primary sensory and motor areas of the brain by stimulating cortices of patients during surgery. The work of Sperry and Michael Gazzaniga on split brain patients in the 1950s was also instrumental in the progress of the field.[8] The term cognitive neuroscience itself was coined by Gazzaniga and cognitive psychologist George Armitage Miller while sharing a taxi in 1976.[20]

Brain mapping

New brain mapping technology, particularly fMRI and PET, allowed researchers to investigate experimental strategies of cognitive psychology by observing brain function. Although this is often thought of as a new method (most of the technology is relatively recent), the underlying principle goes back as far as 1878 when blood flow was first associated with brain function.[6] Angelo Mosso, an Italian psychologist of the 19th century, had monitored the pulsations of the adult brain through neurosurgically created bony defects in the skulls of patients. He noted that when the subjects engaged in tasks such as mathematical calculations the pulsations of the brain increased locally. Such observations led Mosso to conclude that blood flow of the brain followed function.[6]

Emergence of a new discipline

Birth of cognitive science

On September 11, 1956, a large-scale meeting of cognitivists took place at the Massachusetts Institute of Technology. George A. Miller presented his "The Magical Number Seven, Plus or Minus Two" paper[21] while Noam Chomsky and Newell & Simon presented their findings on computer science. Ulric Neisser commented on many of the findings at this meeting in his 1967 book Cognitive Psychology. The term "psychology" had been waning in the 1950s and 1960s, causing the field to be referred to as "cognitive science". Behaviorists such as Miller began to focus on the representation of language rather than general behavior. David Marr concluded that one should understand any cognitive process at three levels of analysis. These levels include computational, algorithmic/representational, and physical levels of analysis.[22]

Combining neuroscience and cognitive science

Before the 1980s, interaction between neuroscience and cognitive science was scarce.[23] Cognitive neuroscience began to integrate the newly laid theoretical ground in cognitive science, that emerged between the 1950s and 1960s, with approaches in experimental psychology, neuropsychology and neuroscience. (Neuroscience was not established as a unified discipline until 1971[24]). In the very late 20th century new technologies evolved that are now the mainstay of the methodology of cognitive neuroscience, including TMS (1985) and fMRI (1991). Earlier methods used in cognitive neuroscience include EEG (human EEG 1920) and MEG (1968). Occasionally cognitive neuroscientists utilize other brain imaging methods such as PET and SPECT. An upcoming technique in neuroscience is NIRS which uses light absorption to calculate changes in oxy- and deoxyhemoglobin in cortical areas. In some animals Single-unit recording can be used. Other methods include microneurography, facial EMG, and eye tracking. Integrative neuroscience attempts to consolidate data in databases, and form unified descriptive models from various fields and scales: biology, psychology, anatomy, and clinical practice.[25] In 2014, Stanislas Dehaene, Giacomo Rizzolatti and Trevor Robbins, were awarded the Brain Prize "for their pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behaviour and social cognition, and for their efforts to understand cognitive and behavioural disorders".[26] Brenda Milner, Marcus Raichle and John O'Keefe received the Kavli Prize in Neuroscience “for the discovery of specialized brain networks for memory and cognition"[27] and O'Keefe shared the Nobel Prize in Physiology or Medicine in the same year with May-Britt Moser and Edvard Moser "for their discoveries of cells that constitute a positioning system in the brain".[28] In 2017, Wolfram Schultz, Peter Dayan and Ray Dolan were awarded the Brain Prize "for their multidisciplinary analysis of brain mechanisms that link learning to reward, which has far-reaching implications for the understanding of human behaviour, including disorders of decision-making in conditions such as gambling, drug addiction, compulsive behaviour and schizophrenia".,[29]

Major contributors to the field

Hubel and Wiesel – 1960s

David H. Hubel and Torsten Wiesel, both neurophysiologists, studied the visual system in cats to better understand sensory processing. They performed experiments which demonstrated the specificity of the responding of neurons.[30] Their experiments showed that neurons fired rapidly at some angles, and not so much at others. A difference was also found in light and dark settings.[31] Their studies gave rise to the idea of complex visual representations being formed from relatively simple stimuli.

They also discovered the simple cell and complex cell. These exist in the primary visual cortex and respond differentially to differently oriented presentations of light.

Recent trends

Recently the foci of research have expanded from the localization of brain area(s) for specific functions in the adult brain using a single technology, studies have been diverging in several different directions: exploring the interactions between different brain areas, using multiple technologies and approaches to understand brain functions, and using computational approaches[32]. Advances in non-invasive functional neuroimaging and associated data analysis methods have also made it possible to use highly naturalistic stimuli and tasks such as feature films depicting social interactions in cognitive neuroscience studies.[33]



Experimental methods of specific psychology fields include:

See also


  1. ^ Gazzaniga, Ivry and Mangun 2002, cf. title
  2. ^ a b Gazzaniga 2002, p. xv
  3. ^ a b c d e Kosslyn, S, M. & Andersen, R, A. (1992). Frontiers in cognitive neuroscience. Cambridge, MA: MIT press.
  4. ^ a b Cordelia Erickson-Davis. "Neurofeedback Training for Parkinsonian Tremor and Bradykinesia" (PDF). Retrieved 2013-05-23.
  5. ^ a b G. Fritsch, E. Hitzig, Electric excitability of the cerebrum (Über die elektrische Erregbarkeit des Grosshirns), Epilepsy & Behavior, Volume 15, Issue 2, June 2009, Pages 123-130, ISSN 1525-5050, 10.1016/j.yebeh.2009.03.001.
  6. ^ a b c Raichle, Marcus E. (2009). "A brief history of human brain mapping". Trends in Neurosciences. 32 (2): 118–126. doi:10.1016/j.tins.2008.11.001. PMID 19110322.
  7. ^ Sirgiovanni, Elisabetta (2009). "The Mechanistic Approach to Psychiatric Classification" (PDF). Dialogues in Philosophy, Mental and Neuro Sciences. 2 (2): 45–49.
  8. ^ a b Uttal, W, R. (2011). Mind and brain: A critical appraisal of cognitive neuroscience. Cambridge, MA: MIT Press
  9. ^ Gross, C, G. (1995) Aristotle on the Brain. The Neuroscientist(1) 4.
  10. ^ Smith, C (2013). "Cardiocentric neurophysiology. the persistence of a delusion". Journal of the History of the Neurosciences. 22 (1): 6–13. doi:10.1080/0964704x.2011.650899. PMID 23323528.
  11. ^ Hatfield, G. (2002). Psychology, Philosophy, and Cognitive Science: Reflections on the History and Philosophy of Experimental Psychology. Mind and Language. 17(3) 207-232.
  12. ^ Bear et al. 2007, pp. 10-11
  13. ^ Enersen, O. D. 2009
  14. ^ Boring, E.G. (1957). A history of experimental psychology. New York.
  15. ^ Uttal, W, R. (2011). Mind and brain: A critical appraisal of cognitive neuroscience. Cambridge, MA: MIT PressUttal, W, R. (2011). Mind and brain: A critical appraisal of cognitive neuroscience. Cambridge, MA: MIT Press
  16. ^ Mandler, G. (2002) Origins of the cognitive (r)evolution. J. Hist. Behav. Sci. Fall 38(4)339-53.
  17. ^ "The Nobel Prize in Physiology or Medicine 1906".
  18. ^ Carrasco, Marisa (2011). "Visual attention: The past 25 years". Vision Research. 51 (13): 1484–1525. doi:10.1016/j.visres.2011.04.012. PMC 3390154. PMID 21549742.
  19. ^ Kastner, Sabine; Ungerleider, Leslie G. (2000). "Mechanisms of visual attention in the human cortex". Annual Review of Neuroscience. 23: 315–41. doi:10.1146/annurev.neuro.23.1.315. PMID 10845067.
  20. ^ Gazzaniga, Michael (1984). "Preface". Handbook of Cognitive Neuroscience. pp. vii.
  21. ^ Miller (1956). "The magical number seven plus or minus two: Some limits on our capacity for processing information". Psychological Review. 63 (2): 81–97. CiteSeerX doi:10.1037/h0043158. PMID 13310704.
  22. ^ Approaches in Cognitive Psychology
  23. ^ not available, not available
  24. ^ Society for Neuroscience. Date of the first meeting of the Sociefy for Neuroscience
  25. ^
  26. ^ "The Brain Prize".
  27. ^ "2014 Kavli Prize Laureates in Neuroscience". 2014-05-30.
  28. ^
  29. ^ Gallager, James (6 March 2017). "Scientists win prize for brain research". BBC. Retrieved 6 March 2017.
  30. ^ Hubel, D. H.; Wiesel, T. N. (1959-10-01). "Receptive fields of single neurones in the cat's striate cortex". The Journal of Physiology. 148 (3): 574–591. doi:10.1113/jphysiol.1959.sp006308. ISSN 0022-3751. PMC 1363130. PMID 14403679.
  31. ^ Hubel, D. H.; Wiesel, T. N. (1962-01-01). "Receptive fields, binocular interaction and functional architecture in the cat's visual cortex". The Journal of Physiology. 160 (1): 106–154.2. doi:10.1113/jphysiol.1962.sp006837. ISSN 0022-3751. PMC 1359523. PMID 14449617.
  32. ^ Takeo, Watanabe. "Cognitive neuroscience Editorial overview" (PDF). Archived from the original (PDF) on 2012-12-24. Retrieved 2011-12-01.
  33. ^ Hasson, Uri; et al. (2004). "Intersubject Synchronization of Cortical Activity During Natural Vision". Science. 303 (5664): 1634–1640. Bibcode:2004Sci...303.1634H. doi:10.1126/science.1089506. PMID 15016991.

Further reading

External links

Related Wikibooks


Biomusicology is the study of music from a biological point of view. The term was coined by Nils L. Wallin in 1991 to encompass several branches of music psychology and musicology, including evolutionary musicology, neuromusicology, and comparative musicology.Evolutionary musicology studies the "origins of music, the question of animal song, selection pressures underlying music evolution", and "music evolution and human evolution". Neuromusicology studies the "brain areas involved in music processing, neural and cognitive processes of musical processing", and "ontogeny of musical capacity and musical skill". Comparative musicology studies the "functions and uses of music, advantages and costs of music making", and "universal features of musical systems and musical behavior".Applied biomusicology "attempts to provide biological insight into such things as the therapeutic uses of music in medical and psychological treatment; widespread use of music in the audiovisual media such as film and television; the ubiquitous presence of music in public places and its role in influencing mass behavior; and the potential use of music to function as a general enhancer of learning."Whereas biomusicology refers to music among humans, zoomusicology extends the field to other species.

Cognitive neuroscience of dreams

Scholarly interest in the process and functions of dreaming has been present since Sigmund Freud's interpretations in the 1900s. The neurology of dreaming has remained misunderstood until recent distinctions, however. The information available via modern techniques of brain imaging has provided new bases for the study of the dreaming brain. The bounds that such technology has afforded has created an understanding of dreaming that seems ever-changing; even now questions still remain as to the function and content of dreams.

Preliminary observations into the neurology of dreaming were reported in 1951 by George Humphrey and Oliver Zangwill. Their report noted two cases of brain injury that resulted in the complete or almost complete cessation of dreaming. Both patients had undergone damage to posterior parietal regions, one of which involved predominately the left side of the parieto-occipital areas. Additional effects involved hemianopia, reduced visualization (in waking state), and disturbances in visual memory. Patients reported that their visual images were dim and hard to evoke. Although they reported only two cases, Humphrey and Zangwill offered preliminary ideas about neurological components of dreaming, specifically the association of forebrain areas and the link between visual imaging and the ability to dream.

Cognitive neuroscience of visual object recognition

Object recognition is the ability to perceive an object's physical properties (such as shape, colour and texture) and apply semantic attributes to it (such as identifying the object as an apple). This process includes the understanding of its use, previous experience with the object, and how it relates to others. Regardless of an object's position or illumination, humans possess the ability to effectively identify and label an object. Humans are one of the few species that possess the ability of invariant visual object recognition. Both "front end" (knowledge/goal driven) and "back end" (sensory driven) processing are required for a species to be able to recognize objects at varying distances, angles, lighting, etc....

Cognitive science of religion

Cognitive science of religion is the study of religious thought and behavior from the perspective of the cognitive and evolutionary sciences. The field employs methods and theories from a very broad range of disciplines, including: cognitive psychology, evolutionary psychology, cognitive anthropology, artificial intelligence, neurotheology, developmental psychology, and archaeology. Scholars in this field seek to explain how human minds acquire, generate, and transmit religious thoughts, practices, and schemas by means of ordinary cognitive capacities.


Confusion is the state of being bewildered or unclear. The term "acute mental confusion" is often used interchangeably with delirium in the International Statistical Classification of Diseases and Related Health Problems and the Medical Subject Headings publications to describe the pathology. These refer to the loss of orientation, or the ability to place oneself correctly in the world by time, location and personal identity. Mental confusion is sometimes accompanied by disordered consciousness (the loss of linear thinking) and memory loss (the ability to correctly recall previous events or learn new material). The term is from Latin confusĭo, -ōnis, from confundere: "to pour together;" "to mingle together;" "to confuse".

Developmental cognitive neuroscience

Developmental cognitive neuroscience is an interdisciplinary scientific field devoted to understanding psychological processes and their neurological bases in the developing organism. It examines how the mind changes as children grow up, interrelations between that and how the brain is changing, and environmental and biological influences on the developing mind and brain.

Developmental cognitive neuroscience is at the boundaries of neuroscience (behavioral, systems, & cognitive neuroscience), psychology (developmental, cognitive, & biobehavioral/ physiological psychology), developmental science (which includes sociology, anthropology, & biology in addition to psychology & neuroscience), cognitive science (which includes computer science, philosophy, dynamical systems, & linguistics in addition to psychology), and even includes socio-emotional development and developmental aspects of social neuroscience and affective neuroscience.

The scientific interface between cognitive neuroscience and human development has evoked considerable interest in recent years, as technological advances make it possible to map in detail the changes in brain structure that take place during development. Developmental cognitive neuroscience overlaps somewhat with fields such as developmental psychology, developmental neuropsychology, developmental psychopathology, and developmental neuroscience, but is distinct from each of them as well. Developmental cognitive neuroscience is concerned with the brain bases of the phenomena that developmental psychologists study. Developmental neuropsychology and developmental psychopathology are both devoted primarily to studying patients, whereas developmental cognitive neuroscience is concerned with studying both typical and atypical development. Developmental neuroscience is devoted entirely to the study of developmental processes in the brain, and primarily during the prenatal period. Developmental cognitive neuroscience, on the other hand, is concerned with interrelations between psychological and biological development. Developmental cognitive neuroscientists study brain development and cognitive, social, and emotional development from the prenatal period through adulthood.More recently, developmental cognitive neuroscience is interested in the role of genes in development and cognition. Thus, developmental cognitive neuroscience may shed light on nature versus nurture debates as well as constructivism and neuroconstructivism theories. Developmental cognitive neuroscience research provides data that alternately blends together, clarifies, challenges, and causes revisions in developmental, cognitive, and neuroscientific theories.


Disgust is an emotional response of rejection or revulsion to something potentially contagious or something considered offensive, distasteful, or unpleasant. In The Expression of the Emotions in Man and Animals, Charles Darwin wrote that disgust is a sensation that refers to something revolting. Disgust is experienced primarily in relation to the sense of taste (either perceived or imagined), and secondarily to anything which causes a similar feeling by sense of smell, touch, or vision. Musically sensitive people may even be disgusted by the cacophony of inharmonious sounds. Research continually has proven a relationship between disgust and anxiety disorders such as arachnophobia, blood-injection-injury type phobias, and contamination fear related obsessive–compulsive disorder (also known as OCD).Disgust is one of the basic emotions of Robert Plutchik's theory of emotions and has been studied extensively by Paul Rozin. It invokes a characteristic facial expression, one of Paul Ekman's six universal facial expressions of emotion. Unlike the emotions of fear, anger, and sadness, disgust is associated with a decrease in heart rate.

Functional neuroimaging

Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions. It is primarily used as a research tool in cognitive neuroscience, cognitive psychology, neuropsychology, and social neuroscience.

Journal of Cognitive Neuroscience

The Journal of Cognitive Neuroscience is a monthly peer-reviewed academic journal covering cognitive neuroscience]. It aims for a cross-discipline approach, covering research in neuroscience, neuropsychology, cognitive psychology, neurobiology, linguistics, computer science, and philosophy. The journal is published by the MIT Press and the Cognitive Neuroscience Institute and the editor-in-chief is Mark D'Esposito (University of California, Berkeley).


Neurocognitive functions are cognitive functions closely linked to the function of particular areas, neural pathways, or cortical networks in the brain substrate layers of neurological matrix at the cellular molecular level. Therefore, their understanding is closely linked to the practice of neuropsychology and cognitive neuroscience, two disciplines that broadly seek to understand how the structure and function of the brain relate to cognition and behaviour.

A neurocognitive deficit is a reduction or impairment of cognitive function in one of these areas, but particularly when physical changes can be seen to have occurred in the brain, such as after neurological illness, mental illness, drug use, or brain injury.A clinical neuropsychologist may specialise in using neuropsychological tests to detect and understand such deficits, and may be involved in the rehabilitation of an affected person. The discipline that studies neurocognitive deficits to infer normal psychological function is called cognitive neuropsychology.


Neuromanagement uses cognitive neuroscience, among other life science fields, and technology to analyze economic and managerial issues. It focuses on exploring human brain activities and mental processes when people are faced with typical problems of economics and management. This research provides insight into human decision-making and other general social behavior. The main research areas include decision neuroscience, neuroeconomics, neuromarketing, neuro-industrial engineering, and neuro-information systems. Neuromanagement was first proposed in 2006 by Professor Qingguo Ma, the director of Neuromanagement Laboratory of Zhejiang University.


Neuropolitics investigates the interplay between the brain and politics. It combines work from a variety of scientific fields including neuroscience, political science, psychology, behavioral genetics, primatology, and ethology. Often, neuropolitics research borrow methods from cognitive neuroscience to investigate classic questions from political science such as how people make political decisions, form political / ideological attitudes, evaluate political candidates, and interact in political coalitions. However, another line of research considers the role that evolving political competition has had on the development of the brain in humans and other species. The research in neuropolitics often intersects with work in genopolitics, political psychology, political physiology, sociobiology, neuroeconomics, and neurolaw.

Neuroscience of music

The neuroscience of music is the scientific study of brain-based mechanisms involved in the cognitive processes underlying music. These behaviours include music listening, performing, composing, reading, writing, and ancillary activities. It also is increasingly concerned with the brain basis for musical aesthetics and musical emotion. Scientists working in this field may have training in cognitive neuroscience, neurology, neuroanatomy, psychology, music theory, computer science, and other relevant fields.

The cognitive neuroscience of music represents a significant branch of music psychology, and is distinguished from related fields such as cognitive musicology in its reliance on direct observations of the brain and use of such techniques as functional magnetic resonance imaging (fMRI), transcranial magnetic stimulation (TMS), magnetoencephalography (MEG), electroencephalography (EEG), and positron emission tomography (PET).

Outline of neuroscience

The following outline is provided as an overview of and topical guide to neuroscience:

Neuroscience is the scientific study of the nervous system. It is the branch of biology that deals with the anatomy, biochemistry, molecular biology, and physiology of neurons and neural circuits.

Social cognition

Social cognition is "a sub-topic of social psychology that focuses on how people process, store, and apply information about other people and social situations. It focuses on the role that cognitive processes play in social interactions."More technically, social cognition refers to how people deal with conspecifics (members of the same species) or even across species (such as pet) information, include four stages: encoding, storage, retrieval, and processing. In the area of social psychology, social cognition refers to a specific approach in which these processes are studied according to the methods of cognitive psychology and information processing theory. According to this view, social cognition is a level of analysis that aims to understand social psychological phenomena by investigating the cognitive processes that underlie them. The major concerns of the approach are the processes involved in the perception, judgment, and memory of social stimuli; the effects of social and affective factors on information processing; and the behavioral and interpersonal consequences of cognitive processes. This level of analysis may be applied to any content area within social psychology, including research on intrapersonal, interpersonal, intragroup, and intergroup processes.

The term social cognition has been used in multiple areas in psychology and cognitive neuroscience, most often to refer to various social abilities disrupted in autism, schizophrenia and other disorders. In cognitive neuroscience the biological basis of social cognition is investigated. Developmental psychologists study the development of social cognition abilities.

Social cognitive neuroscience

Social cognitive neuroscience is the scientific study of the biological processes underpinning social cognition. Specifically, it uses the tools of neuroscience to study "the mental mechanisms that create, frame, regulate, and respond to our experience of the social world". Social cognitive neuroscience uses the epistemological foundations of cognitive neuroscience, and is closely related to social neuroscience. Social cognitive neuroscience employs human neuroimaging, typically using functional magnetic resonance imaging (fMRI). Human brain stimulation techniques such as transcranial magnetic stimulation and transcranial direct-current stimulation are also used. In nonhuman animals, direct electrophysiological recordings and electrical stimulation of single cells and neuronal populations are utilized for investigating lower-level social cognitive processes.

Social neuroscience

Social neuroscience is an interdisciplinary field devoted to understanding how biological systems implement social processes and behavior, and to using biological concepts and methods to inform and refine theories of social processes and behavior. Humans are fundamentally a social species, rather than individualists. As such, Homo sapiens create emergent organizations beyond the individual—structures that range from dyads, families, and groups to cities, civilizations, and cultures. These emergent structures evolved hand in hand with neural and hormonal mechanisms to support them because the consequent social behaviors helped these organisms survive, reproduce, and care for offspring sufficiently long that they too survived to reproduce. The term "social neuroscience" can be traced to a publication entitled "Social Neuroscience Bulletin" that was published quarterly between 1988 and 1994. The term was subsequently popularized in an article by John Cacioppo and Gary Berntson, published in the American Psychologist in 1992. Cacioppo and Berntson are considered as the legitimate fathers of social neuroscience. Still a young field, social neuroscience is closely related to affective neuroscience and cognitive neuroscience, focusing on how the brain mediates social interactions. The biological underpinnings of social cognition are investigated in social cognitive neuroscience

The NeuroGenderings Network

The NeuroGenderings Network is an international group of researchers in neuroscience and gender studies. Members of the network study how the complexities of social norms, varied life experiences, details of laboratory conditions and biology all interact to affect the results of neuroscientific research. Working under the label of "neurofeminism", they aim to critically analyze how the field of neuroscience operates, and to build an understanding of brain and gender that goes beyond gender essentialism while still treating the brain as fundamentally material. Its founding was part of a period of increased interest and activity in interdisciplinary research connecting neuroscience and the social sciences.

UCL Neuroscience

UCL Neuroscience is a research domain that encompasses the breadth of neuroscience research activity across University College London's (UCL) School of Life and Medical Sciences. The domain was established in January 2008, to coordinate neuroscience activity across the many UCL departments and institutes in which neuroscience research takes place. In 2014, the Nobel Prize in Physiology or Medicine was awarded to the UCL neuroscientist John O'Keefe. In two consecutive years 2017 and 2018, the Brain Prize, the world's most valuable prize for brain research at €1m, was awarded to UCL neuroscientists Peter Dayan, Ray Dolan, John Hardy, and Bart De Strooper.

UCL Neuroscience comprises over 450 senior principal investigators and includes 26 Fellows of the Royal Society and 60 Fellows of the Academy of Medical Sciences. It is currently ranked second in the world for neuroscience and behaviour by Thomson ISI Essential Science Indicators.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.