# Code

In communications and information processing, code is a system of rules to convert information—such as a letter, word, sound, image, or gesture—into another form or representation, sometimes shortened or secret, for communication through a communication channel or storage in a storage medium. An early example is the invention of language, which enabled a person, through speech, to communicate what he or she saw, heard, felt, or thought to others. But speech limits the range of communication to the distance a voice can carry, and limits the audience to those present when the speech is uttered. The invention of writing, which converted spoken language into visual symbols, extended the range of communication across space and time.

The process of encoding converts information from a source into symbols for communication or storage. Decoding is the reverse process, converting code symbols back into a form that the recipient understands, such as English or Spanish.

One reason for coding is to enable communication in places where ordinary plain language, spoken or written, is difficult or impossible. For example, semaphore, where the configuration of flags held by a signaler or the arms of a semaphore tower encodes parts of the message, typically individual letters and numbers. Another person standing a great distance away can interpret the flags and reproduce the words sent.

Morse code, a famous type of code

## Theory

In information theory and computer science, a code is usually considered as an algorithm that uniquely represents symbols from some source alphabet, by encoded strings, which may be in some other target alphabet. An extension of the code for representing sequences of symbols over the source alphabet is obtained by concatenating the encoded strings.

Before giving a mathematically precise definition, this is a brief example. The mapping

${\displaystyle C=\{\,a\mapsto 0,b\mapsto 01,c\mapsto 011\,\}}$

is a code, whose source alphabet is the set ${\displaystyle \{a,b,c\}}$ and whose target alphabet is the set ${\displaystyle \{0,1\}}$. Using the extension of the code, the encoded string 0011001011 can be grouped into codewords as 0 011 0 01 011, and these in turn can be decoded to the sequence of source symbols acabc.

Using terms from formal language theory, the precise mathematical definition of this concept is as follows: let S and T be two finite sets, called the source and target alphabets, respectively. A code ${\displaystyle C:\,S\to T^{*}}$ is a total function mapping each symbol from S to a sequence of symbols over T, and the extension of ${\displaystyle C}$ to a homomorphism of ${\displaystyle S^{*}}$ into ${\displaystyle T^{*}}$, which naturally maps each sequence of source symbols to a sequence of target symbols, is referred to as its extension.

### Variable-length codes

Codes that encode each source (clear text) character by a code word from some dictionary, and concatenation of such code words give us an encoded string. Variable-length codes are especially useful when clear text characters have different probabilities; see also entropy encoding.

A prefix code is a code with the "prefix property": there is no valid code word in the system that is a prefix (start) of any other valid code word in the set. Huffman coding is the most known algorithm for deriving prefix codes. Prefix codes are widely referred to as "Huffman codes" even when the code was not produced by a Huffman algorithm. Other examples of prefix codes are country calling codes, the country and publisher parts of ISBNs, and the Secondary Synchronization Codes used in the UMTS WCDMA 3G Wireless Standard.

Kraft's inequality characterizes the sets of codeword lengths that are possible in a prefix code. Virtually any uniquely decodable one-to-many code, not necessary a prefix one, must satisfy Kraft's inequality.

### Error-correcting codes

Codes may also be used to represent data in a way more resistant to errors in transmission or storage. This so-called error-correcting code works by including carefully crafted redundancy with the stored (or transmitted) data. Examples include Hamming codes, Reed–Solomon, Reed–Muller, Walsh–Hadamard, Bose–Chaudhuri–Hochquenghem, Turbo, Golay, Goppa, low-density parity-check codes, and space–time codes. Error detecting codes can be optimised to detect burst errors, or random errors.

## Examples

### Codes in communication used for brevity

A cable code replaces words (e.g. ship or invoice) with shorter words, allowing the same information to be sent with fewer characters, more quickly, and less expensively.

Codes can be used for brevity. When telegraph messages were the state of the art in rapid long distance communication, elaborate systems of commercial codes that encoded complete phrases into single mouths (commonly five-minute groups) were developed, so that telegraphers became conversant with such "words" as BYOXO ("Are you trying to weasel out of our deal?"), LIOUY ("Why do you not answer my question?"), BMULD ("You're a skunk!"), or AYYLU ("Not clearly coded, repeat more clearly."). Code words were chosen for various reasons: length, pronounceability, etc. Meanings were chosen to fit perceived needs: commercial negotiations, military terms for military codes, diplomatic terms for diplomatic codes, any and all of the preceding for espionage codes. Codebooks and codebook publishers proliferated, including one run as a front for the American Black Chamber run by Herbert Yardley between the First and Second World Wars. The purpose of most of these codes was to save on cable costs. The use of data coding for data compression predates the computer era; an early example is the telegraph Morse code where more-frequently used characters have shorter representations. Techniques such as Huffman coding are now used by computer-based algorithms to compress large data files into a more compact form for storage or transmission.

### Character encodings

Character encodings are representations of textual data. A given character encoding may be associated with a specific character set (the collection of characters which it can represent), though some character sets have multiple character encodings and vice versa. Character encodings may be broadly grouped according to the number of bytes required to represent a single character: there are single byte encodings, multibyte (also called wide) encodings, and variable-width (also called variable-length) encodings. The earliest character encodings were single-byte, the best known example of which is ASCII. ASCII remains in use today, for example in HTTP headers. However, single-byte encodings cannot model character sets with more than 256 characters. Scripts which require large character sets such as Chinese, Japanese and Korean must be represented with multibyte encodings. Early multibyte encodings were fixed-length, meaning that although each character was represented by more than one byte, all characters used the same number of bytes ("word length"), making them suitable for decoding with a lookup table. The final group, variable-width encodings, is a subset of multibyte encodings. These use more complex encoding and decoding logic to efficiently represent large character sets while keeping the representations of more commonly used characters shorter or maintaining backwards compatibility properties. This group includes UTF-8, an encoding of the Unicode character set; UTF-8 is the most common encoding of text media on the Internet.

### Genetic code

Biological organisms contain genetic material that is used to control their function and development. This is DNA, which contains units named genes from which messenger RNA is derived. This in turn produces proteins through a genetic code in which a series of triplets (codons) of four possible nucleotides can be translated into one of twenty possible amino acids. A sequence of codons results in a corresponding sequence of amino acids that form a protein molecule; a type of codon called a stop codon signals the end of the sequence.

### Gödel code

In mathematics, a Gödel code was the basis for the proof of Gödel's incompleteness theorem. Here, the idea was to map mathematical notation to a natural number (using a Gödel numbering).

### Other

There are codes using colors, like traffic lights, the color code employed to mark the nominal value of the electrical resistors or that of the trashcans devoted to specific types of garbage (paper, glass, organic, etc.).

In marketing, coupon codes can be used for a financial discount or rebate when purchasing a product from a (usually internet) retailer.

In military environments, specific sounds with the cornet are used for different uses: to mark some moments of the day, to command the infantry on the battlefield, etc.

Communication systems for sensory impairments, such as sign language for deaf people and braille for blind people, are based on movement or tactile codes.

Musical scores are the most common way to encode music.

Specific games have their own code systems to record the matches, e.g. chess notation.

### Cryptography

In the history of cryptography, codes were once common for ensuring the confidentiality of communications, although ciphers are now used instead.

Secret codes intended to obscure the real messages, ranging from serious (mainly espionage in military, diplomacy, business, etc.) to trivial (romance, games) can be any kind of imaginative encoding: flowers, game cards, clothes, fans, hats, melodies, birds, etc., in which the sole requisite is the pre-agreement on the meaning by both the sender and the receiver.

## Other examples

Other examples of encoding include:

Other examples of decoding include:

## Codes and acronyms

Acronyms and abbreviations can be considered codes, and in a sense all languages and writing systems are codes for human thought.

International Air Transport Association airport codes are three-letter codes used to designate airports and used for bag tags. Station codes are similarly used on railways, but are usually national, so the same code can be used for different stations if they are in different countries.

Occasionally, a code word achieves an independent existence (and meaning) while the original equivalent phrase is forgotten or at least no longer has the precise meaning attributed to the code word. For example, '30' was widely used in journalism to mean "end of story", and has been used in other contexts to signify "the end".[1] [2]

## References

1. ^ Kogan, Hadass "So Why Not 29" Archived 2010-12-12 at the Wayback Machine American Journalism Review. Retrieved 2012-07-03.
2. ^ "WESTERN UNION "92 CODE" & WOOD'S "TELEGRAPHIC NUMERALS"". Signal Corps Association. 1996. Archived from the original on 2012-05-09. Retrieved 2012-07-03.
ASCII

ASCII ( (listen) ASS-kee), abbreviated from American Standard Code for Information Interchange, is a character encoding standard for electronic communication. ASCII codes represent text in computers, telecommunications equipment, and other devices. Most modern character-encoding schemes are based on ASCII, although they support many additional characters.

ASCII is the traditional name for the encoding system; the Internet Assigned Numbers Authority (IANA) prefers the updated name US-ASCII, which clarifies that this system was developed in the US and based on the typographical symbols predominantly in use there.ASCII is one of the IEEE milestones.

Amino acid

Amino acids are organic compounds containing amine (-NH2) and carboxyl (-COOH) functional groups, along with a side chain (R group) specific to each amino acid. The key elements of an amino acid are carbon (C), hydrogen (H), oxygen (O), and nitrogen (N), although other elements are found in the side chains of certain amino acids. About 500 naturally occurring amino acids are known (though only 20 appear in the genetic code) and can be classified in many ways. They can be classified according to the core structural functional groups' locations as alpha- (α-), beta- (β-), gamma- (γ-) or delta- (δ-) amino acids; other categories relate to polarity, pH level, and side chain group type (aliphatic, acyclic, aromatic, containing hydroxyl or sulfur, etc.). In the form of proteins, amino acid residues form the second-largest component (water is the largest) of human muscles and other tissues. Beyond their role as residues in proteins, amino acids participate in a number of processes such as neurotransmitter transport and biosynthesis.

In biochemistry, amino acids having both the amine and the carboxylic acid groups attached to the first (alpha-) carbon atom have particular importance. They are known as 2-, alpha-, or α-amino acids (generic formula H2NCHRCOOH in most cases, where R is an organic substituent known as a "side chain"); often the term "amino acid" is used to refer specifically to these. They include the 22 proteinogenic ("protein-building") amino acids, which combine into peptide chains ("polypeptides") to form the building-blocks of a vast array of proteins. These are all L-stereoisomers ("left-handed" isomers), although a few D-amino acids ("right-handed") occur in bacterial envelopes, as a neuromodulator (D-serine), and in some antibiotics.Twenty of the proteinogenic amino acids are encoded directly by triplet codons in the genetic code and are known as "standard" amino acids. The other two ("non-standard" or "non-canonical") are selenocysteine (present in many prokaryotes as well as most eukaryotes, but not coded directly by DNA), and pyrrolysine (found only in some archea and one bacterium). Pyrrolysine and selenocysteine are encoded via variant codons; for example, selenocysteine is encoded by stop codon and SECIS element. N-formylmethionine (which is often the initial amino acid of proteins in bacteria, mitochondria, and chloroplasts) is generally considered as a form of methionine rather than as a separate proteinogenic amino acid. Codon–tRNA combinations not found in nature can also be used to "expand" the genetic code and form novel proteins known as alloproteins incorporating non-proteinogenic amino acids.Many important proteinogenic and non-proteinogenic amino acids have biological functions. For example, in the human brain, glutamate (standard glutamic acid) and gamma-amino-butyric acid ("GABA", non-standard gamma-amino acid) are, respectively, the main excitatory and inhibitory neurotransmitters. Hydroxyproline, a major component of the connective tissue collagen, is synthesised from proline. Glycine is a biosynthetic precursor to porphyrins used in red blood cells. Carnitine is used in lipid transport.

Nine proteinogenic amino acids are called "essential" for humans because they cannot be produced from other compounds by the human body and so must be taken in as food. Others may be conditionally essential for certain ages or medical conditions. Essential amino acids may also differ between species.Because of their biological significance, amino acids are important in nutrition and are commonly used in nutritional supplements, fertilizers, feed, and food technology. Industrial uses include the production of drugs, biodegradable plastics, and chiral catalysts.

Cocaine

Cocaine, also known as coke, is a strong stimulant mostly used as a recreational drug. It is commonly snorted, inhaled as smoke, or dissolved and injected into a vein. Mental effects may include loss of contact with reality, an intense feeling of happiness, or agitation. Physical symptoms may include a fast heart rate, sweating, and large pupils. High doses can result in very high blood pressure or body temperature. Effects begin within seconds to minutes of use and last between five and ninety minutes. Cocaine has a small number of accepted medical uses such as numbing and decreasing bleeding during nasal surgery.Cocaine is addictive due to its effect on the reward pathway in the brain. After a short period of use, there is a high risk that dependence will occur. Its use also increases the risk of stroke, myocardial infarction, lung problems in those who smoke it, blood infections, and sudden cardiac death. Cocaine sold on the street is commonly mixed with local anesthetics, cornstarch, quinine, or sugar, which can result in additional toxicity. Following repeated doses a person may have decreased ability to feel pleasure and be very physically tired.Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This results in greater concentrations of these three neurotransmitters in the brain. It can easily cross the blood–brain barrier and may lead to the breakdown of the barrier. Cocaine is a naturally occurring substance found in the coca plant which is mostly grown in South America. In 2013, 419 kilograms were produced legally. It is estimated that the illegal market for cocaine is 100 to US\$500 billion each year. With further processing crack cocaine can be produced from cocaine.Cocaine is the second most frequently used illegal drug globally, after cannabis. Between 14 and 21 million people use the drug each year. Use is highest in North America followed by Europe and South America. Between one and three percent of people in the developed world have used cocaine at some point in their life. In 2013, cocaine use directly resulted in 4,300 deaths, up from 2,400 in 1990. The leaves of the coca plant have been used by Peruvians since ancient times. Cocaine was first isolated from the leaves in 1860. Since 1961, the international Single Convention on Narcotic Drugs has required countries to make recreational use of cocaine a crime.

Code Geass

Code Geass: Lelouch of the Rebellion (コードギアス 反逆のルルーシュ, Kōdo Giasu: Hangyaku no Rurūshu), often referred to as simply Code Geass, is a Japanese anime series created by Sunrise, directed by Gorō Taniguchi, and written by Ichirō Ōkouchi, with original character designs by manga artist group Clamp. Set in an alternate timeline, the series focuses on how the former prince Lelouch vi Britannia obtains a power known as Geass and decides to use it to obliterate the Holy Britannian Empire, a superpower that has been conquering various countries.

Code Geass first ran in Japan on MBS from October 6, 2006, to July 29, 2007. Its sequel series, Code Geass: Lelouch of the Rebellion R2 (コードギアス 反逆のルルーシュR2, Kōdo Giasu Hangyaku no Rurūshu Āru Tsū), ran as a simulcast on JNN stations (like MBS and TBS) from April 6, 2008 to September 28, 2008. The series has also been adapted into various manga and light novels with the former showing various alternate scenarios from the TV series. Bandai Entertainment also licensed most parts from the franchise for English release in December 2007, airing the two TV series on Adult Swim. Most manga and light novels have also been published in North America by Bandai. A compilation film trilogy that recapped the events from both seasons of the anime series, with altered storylines for various characters, was released in 2017 and 2018. A new film, titled Code Geass: Lelouch of the Re;surrection (コードギアス 復活のルルーシュ, Kōdo Giasu: Fukkatsu no Rurūshu), taking place after the Zero Requiem of the recap films' universe, was released in theaters on February 9, 2019.The anime television series has been well received in Japan, selling over a million DVD and Blu-ray Disc volumes. Both seasons have won several awards at the Tokyo International Anime Fair, Animage Anime Grand Prix, and Animation Kobe event. Critics have praised the series for its large audience appeal as well as the cross conflicts shown among the main characters and the moral questions presented.

Computer program

A computer program is a collection of instructions that performs a specific task when executed by a computer. A computer requires programs to function.

A computer program is usually written by a computer programmer in a programming language. From the program in its human-readable form of source code, a compiler can derive machine code—a form consisting of instructions that the computer can directly execute. Alternatively, a computer program may be executed with the aid of an interpreter.

A collection of computer programs, libraries, and related data are referred to as software. Computer programs may be categorized along functional lines, such as application software and system software. The underlying method used for some calculation or manipulation is known as an algorithm.

In software engineering, code refers to computer instructions and data definitions expressed in a programming language or in a form output by an assembler, compiler, or other translator to express a computer program in a programming language.

Cortisol

Cortisol is a steroid hormone, in the glucocorticoid class of hormones. When used as a medication, it is known as hydrocortisone.

It is produced in humans by the zona fasciculata of the adrenal cortex within the adrenal gland. It is released in response to stress and low blood-glucose concentration. It functions to increase blood sugar through gluconeogenesis, to suppress the immune system, and to aid in the metabolism of fat, protein, and carbohydrates. It also decreases bone formation.

Ethanol

Ethanol (also called ethyl alcohol, grain alcohol, drinking alcohol, or simply alcohol) is a chemical compound, a simple alcohol with the chemical formula C2H6O. Its formula can be also written as CH3−CH2−OH or C2H5−OH (an ethyl group linked to a hydroxyl group), and is often abbreviated as EtOH. Ethanol is a volatile, flammable, colorless liquid with a slight characteristic odor. It is a psychoactive substance and is the principal type of alcohol found in alcoholic drinks.

Ethanol is naturally produced by the fermentation of sugars by yeasts or via petrochemical processes, and is most commonly consumed as a popular recreational drug. It also has medical applications as an antiseptic and disinfectant. The compound is widely used as a chemical solvent, either for scientific chemical testing or in synthesis of other organic compounds, and is a vital substance used across many different kinds of manufacturing industries. Ethanol is also used as a clean-burning fuel source.

HTML

Hypertext Markup Language (HTML) is the standard markup language for creating web pages and web applications. With Cascading Style Sheets (CSS) and JavaScript, it forms a triad of cornerstone technologies for the World Wide Web.Web browsers receive HTML documents from a web server or from local storage and render the documents into multimedia web pages. HTML describes the structure of a web page semantically and originally included cues for the appearance of the document.

HTML elements are the building blocks of HTML pages. With HTML constructs, images and other objects such as interactive forms may be embedded into the rendered page. HTML provides a means to create structured documents by denoting structural semantics for text such as headings, paragraphs, lists, links, quotes and other items. HTML elements are delineated by tags, written using angle brackets. Tags such as and directly introduce content into the page. Other tags such as

surround and provide information about document text and may include other tags as sub-elements. Browsers do not display the HTML tags, but use them to interpret the content of the page.

HTML can embed programs written in a scripting language such as JavaScript, which affects the behavior and content of web pages. Inclusion of CSS defines the look and layout of content. The World Wide Web Consortium (W3C), maintainer of both the HTML and the CSS standards, has encouraged the use of CSS over explicit presentational HTML since 1997.

International Standard Book Number

The International Standard Book Number (ISBN) is a numeric commercial book identifier which is intended to be unique. Publishers purchase ISBNs from an affiliate of the International ISBN Agency.An ISBN is assigned to each edition and variation (except reprintings) of a book. For example, an e-book, a paperback and a hardcover edition of the same book would each have a different ISBN. The ISBN is 13 digits long if assigned on or after 1 January 2007, and 10 digits long if assigned before 2007. The method of assigning an ISBN is nation-based and varies from country to country, often depending on how large the publishing industry is within a country.

The initial ISBN identification format was devised in 1967, based upon the 9-digit Standard Book Numbering (SBN) created in 1966. The 10-digit ISBN format was developed by the International Organization for Standardization (ISO) and was published in 1970 as international standard ISO 2108 (the SBN code can be converted to a ten-digit ISBN by prefixing it with a zero digit "0").

Privately published books sometimes appear without an ISBN. The International ISBN agency sometimes assigns such books ISBNs on its own initiative.Another identifier, the International Standard Serial Number (ISSN), identifies periodical publications such as magazines and newspapers. The International Standard Music Number (ISMN) covers musical scores.

JavaScript

JavaScript (), often abbreviated as JS, is a high-level, interpreted programming language that conforms to the ECMAScript specification. It is a programming language that is characterized as dynamic, weakly typed, prototype-based and multi-paradigm.

Alongside HTML and CSS, JavaScript is one of the core technologies of the World Wide Web. JavaScript enables interactive web pages and is an essential part of web applications. The vast majority of websites use it, and major web browsers have a dedicated JavaScript engine to execute it.

As a multi-paradigm language, JavaScript supports event-driven, functional, and imperative (including object-oriented and prototype-based) programming styles. It has APIs for working with text, arrays, dates, regular expressions, and the DOM, but the language itself does not include any I/O, such as networking, storage, or graphics facilities. It relies upon the host environment in which it is embedded to provide these features.

Initially only implemented client-side in web browsers, JavaScript engines are now embedded in many other types of host software, including server-side in web servers and databases, and in non-web programs such as word processors and PDF software, and in runtime environments that make JavaScript available for writing mobile and desktop applications, including desktop widgets.

The terms Vanilla JavaScript and Vanilla JS refer to JavaScript not extended by any frameworks or additional libraries. Scripts written in Vanilla JS are plain JavaScript code.Although there are similarities between JavaScript and Java, including language name, syntax, and respective standard libraries, the two languages are distinct and differ greatly in design. JavaScript was influenced by programming languages such as Self and Scheme.

List of HTTP status codes

This is a list of Hypertext Transfer Protocol (HTTP) response status codes. Status codes are issued by a server in response to a client's request made to the server. It includes codes from IETF Request for Comments (RFCs), other specifications, and some additional codes used in some common applications of the Hypertext Transfer Protocol (HTTP). The first digit of the status code specifies one of five standard classes of responses. The message phrases shown are typical, but any human-readable alternative may be provided. Unless otherwise stated, the status code is part of the HTTP/1.1 standard (RFC 7231).The Internet Assigned Numbers Authority (IANA) maintains the official registry of HTTP status codes.Microsoft Internet Information Services (IIS) sometimes uses additional decimal sub-codes for more specific information, however these sub-codes only appear in the response payload and in documentation, not in the place of an actual HTTP status code.

All HTTP response status codes are separated into five classes (or categories). The first digit of the status code defines the class of response. The last two digits do not have any class or categorization role. There are five values for the first digit:

1xx (Informational): The request was received, continuing process

2xx (Successful): The request was successfully received, understood, and accepted

3xx (Redirection): Further action needs to be taken in order to complete the request

4xx (Client Error): The request contains bad syntax or cannot be fulfilled

5xx (Server Error): The server failed to fulfill an apparently valid request

List of country calling codes

Country calling codes or country dial in codes are telephone dialing prefixes for the member countries or regions of the International Telecommunication Union (ITU). They are defined by the ITU-T in standards E.123 and E.164. The prefixes enable international direct dialing (IDD), and are also referred to as international subscriber dialing (ISD) codes.

Country codes are a component of the international telephone numbering plan, and are necessary only when dialing a telephone number to establish a call to another country. Country codes are dialed before the national telephone number. By convention, international telephone numbers are represented by prefixing the country code with a plus sign (+), which also indicates to the subscriber that the local international call prefix must first be dialed. For example, the international call prefix in all countries belonging to the North American Numbering Plan is 011, while it is 00 in most European, Asian and African countries. On GSM (cellular) networks, the prefix may automatically be inserted when the user prefixes a dialed number with the plus sign.

Morse code

Morse code is a character encoding scheme used in telecommunication that encodes text characters as standardized sequences of two different signal durations called dots and dashes or dits and dahs. Morse code is named for Samuel F. B. Morse, an inventor of the telegraph.

The International Morse Code encodes the 26 English letters A through Z, some non-English letters, the Arabic numerals and a small set of punctuation and procedural signals (prosigns). There is no distinction between upper and lower case letters. Each Morse code symbol is formed by a sequence of dots and dashes. The dot duration is the basic unit of time measurement in Morse code transmission. The duration of a dash is three times the duration of a dot. Each dot or dash within a character is followed by period of signal absence, called a space, equal to the dot duration. The letters of a word are separated by a space of duration equal to three dots, and the words are separated by a space equal to seven dots. To increase the efficiency of encoding, Morse code was designed so that the length of each symbol is approximately inverse to the frequency of occurrence in text of the English language character that it represents. Thus the most common letter in English, the letter "E", has the shortest code: a single dot. Because the Morse code elements are specified by proportion rather than specific time durations, the code is usually transmitted at the highest rate that the receiver is capable of decoding. The Morse code transmission rate (speed) is specified in groups per minute, commonly referred to as words per minute.Morse code is usually transmitted by on-off keying of an information carrying medium such as electric current, radio waves, visible light or sound waves. The current or wave is present during time period of the dot or dash and absent during the time between dots and dashes.Morse code can be memorized, and Morse code signalling in a form perceptible to the human senses, such as sound waves or visible light, can be directly interpreted by persons trained in the skill.Because many non-English natural languages use other than the 26 Roman letters, Morse alphabets have been developed for those languages.

In an emergency, Morse code can be generated by improvised methods such as turning a light on and off, tapping on an object or sounding a horn or whistle, making it one of the simplest and most versatile methods of telecommunication. The most common distress signal is SOS – three dots, three dashes, and three dots – internationally recognized by treaty.

NATO phonetic alphabet

The NATO phonetic alphabet, officially denoted as the International Radiotelephony Spelling Alphabet, and also commonly known as the ICAO phonetic alphabet, and in a variation also known officially as the ITU phonetic alphabet and figure code, is the most widely used radiotelephone spelling alphabet. Although often called "phonetic alphabets", spelling alphabets are unrelated to phonetic transcription systems such as the International Phonetic Alphabet. Instead, the International Civil Aviation Organization (ICAO) alphabet assigned codewords acrophonically to the letters of the English alphabet, so that critical combinations of letters and numbers are most likely to be pronounced and understood by those who exchange voice messages by radio or telephone, regardless of language differences or the quality of the communication channel.The 26 code words in the NATO phonetic alphabet are assigned to the 26 letters of the English alphabet in alphabetical order as follows: Alfa, Bravo, Charlie, Delta, Echo, Foxtrot, Golf, Hotel, India, Juliett, Kilo, Lima, Mike, November, Oscar, Papa, Quebec, Romeo, Sierra, Tango, Uniform, Victor, Whiskey, X-ray, Yankee, Zulu.Strict adherence to the prescribed spelling words is required in order to avoid the problems of confusion that the spelling alphabet is designed to overcome. As noted in a 1955 NATO memo:

It is known that [the ICAO spelling alphabet] has been prepared only after the most exhaustive tests on a scientific basis by several nations. One of the firmest conclusions reached was that it was not practical to make an isolated change to clear confusion between one pair of letters. To change one word involves reconsideration of the whole alphabet to ensure that the change proposed to clear one confusion does not itself introduce others.

The same memo notes a potential confusion between ZERO and SIERRA is overcome when following the procedures in ACP 125, which specify the use of the procedure word FIGURES in many instances in which digits need to be read.

Python (programming language)

Python is an interpreted, high-level, general-purpose programming language. Created by Guido van Rossum and first released in 1991, Python has a design philosophy that emphasizes code readability, notably using significant whitespace. It provides constructs that enable clear programming on both small and large scales. Van Rossum led the language community until stepping down as leader in July 2018.Python features a dynamic type system and automatic memory management. It supports multiple programming paradigms, including object-oriented, imperative, functional and procedural. It also has a comprehensive standard library.Python interpreters are available for many operating systems. CPython, the reference implementation of Python, is open source software and has a community-based development model, as do nearly all of Python's other implementations. Python and CPython are managed by the non-profit Python Software Foundation.

QR code

QR code (abbreviated from Quick Response Code) is the trademark for a type of matrix barcode (or two-dimensional barcode) first designed in 1994 for the automotive industry in Japan. A barcode is a machine-readable optical label that contains information about the item to which it is attached. In practice, QR codes often contain data for a locator, identifier, or tracker that points to a website or application. A QR code uses four standardized encoding modes (numeric, alphanumeric, byte/binary, and kanji) to store data efficiently; extensions may also be used.The Quick Response system became popular outside the automotive industry due to its fast readability and greater storage capacity compared to standard UPC barcodes. Applications include product tracking, item identification, time tracking, document management, and general marketing.A QR code consists of black squares arranged in a square grid on a white background, which can be read by an imaging device such as a camera, and processed using Reed–Solomon error correction until the image can be appropriately interpreted. The required data is then extracted from patterns that are present in both horizontal and vertical components of the image.

Telephone numbering plan

A telephone numbering plan is a type of numbering scheme used in telecommunication to assign telephone numbers to subscriber telephones or other telephony endpoints. Telephone numbers are the addresses of participants in a telephone network, reachable by a system of destination code routing. Telephone numbering plans are defined in each of administrative regions of the public switched telephone network (PSTN) and they are also present in private telephone networks. For public number systems, geographic location plays a role in the sequence of numbers assigned to each telephone subscriber.

Numbering plans may follow a variety of design strategies which have often arisen from the historical evolution of individual telephone networks and local requirements. A broad division is commonly recognized, distinguishing open numbering plans and closed numbering plans. Many numbering plans subdivide their territory of service into geographic regions designated by a prefix, often called an area code or city code, which is a set of digits forming the most-significant part of the dialing sequence to reach a telephone subscriber.

The International Telecommunication Union (ITU) has established a comprehensive numbering plan, designated E.164, for uniform interoperability of the networks of its member state or regional administrations. It is an open numbering plan, however, imposing a maximum length of 15 digits to telephone numbers. The standard defines a country calling code (country code) for each state or region which is prefixed to each national numbering plan telephone number for international destination routing.

Private numbering plans exist in telephone networks that are privately operated in an enterprise or organizational campus. Such systems may be supported by a private branch exchange (PBX), which provides a central access point to the PSTN and also controls internal calls between telephone extensions.

In contrast to numbering plans, which determine telephone numbers assigned to subscriber stations, dialing plans establish the customer dialing procedures, i.e. the sequence of digits required to reach a destination. Even in closed numbering plans, it is not always necessary to dial all digits of a number. For example, an area code may often be omitted when the destination is in the same area as the calling station.

Unicode

Unicode is a computing industry standard for the consistent encoding, representation, and handling of text expressed in most of the world's writing systems. The standard is maintained by the Unicode Consortium, and as of March 2019 the most recent version, Unicode 12.0, contains a repertoire of 137,993 characters covering 150 modern and historic scripts, as well as multiple symbol sets and emoji. The character repertoire of the Unicode Standard is synchronized with ISO/IEC 10646, and both are code-for-code identical.

The Unicode Standard consists of a set of code charts for visual reference, an encoding method and set of standard character encodings, a set of reference data files, and a number of related items, such as character properties, rules for normalization, decomposition, collation, rendering, and bidirectional display order (for the correct display of text containing both right-to-left scripts, such as Arabic and Hebrew, and left-to-right scripts).Unicode's success at unifying character sets has led to its widespread and predominant use in the internationalization and localization of computer software. The standard has been implemented in many recent technologies, including modern operating systems, XML, Java (and other programming languages), and the .NET Framework.

Unicode can be implemented by different character encodings. The Unicode standard defines UTF-8, UTF-16, and UTF-32, and several other encodings are in use. The most commonly used encodings are UTF-8, UTF-16, and UCS-2, a precursor of UTF-16.

UTF-8, the dominant encoding on the World Wide Web (used in over 92% of websites), uses one byte for the first 128 code points, and up to 4 bytes for other characters. The first 128 Unicode code points are the ASCII characters, which means that any ASCII text is also a UTF-8 text.

UCS-2 uses two bytes (16 bits) for each character but can only encode the first 65,536 code points, the so-called Basic Multilingual Plane (BMP). With 1,114,112 code points on 17 planes being possible, and with over 137,000 code points defined so far, UCS-2 is only able to represent less than half of all encoded Unicode characters. Therefore, UCS-2 is outdated, though still widely used in software. UTF-16 extends UCS-2, by using the same 16-bit encoding as UCS-2 for the Basic Multilingual Plane, and a 4-byte encoding for the other planes. As long as it contains no code points in the reserved range U+D800–U+DFFF, a UCS-2 text is a valid UTF-16 text.

UTF-32 (also referred to as UCS-4) uses four bytes for each character. Like UCS-2, the number of bytes per character is fixed, facilitating character indexing; but unlike UCS-2, UTF-32 is able to encode all Unicode code points. However, because each character uses four bytes, UTF-32 takes significantly more space than other encodings, and is not widely used.

Wiki

A wiki ( (listen) WIK-ee) is a website on which users collaboratively modify content and structure directly from the web browser. In a typical wiki, text is written using a simplified markup language and often edited with the help of a rich-text editor.A wiki is run using wiki software, otherwise known as a wiki engine. A wiki engine is a type of content management system, but it differs from most other such systems, including blog software, in that the content is created without any defined owner or leader, and wikis have little inherent structure, allowing structure to emerge according to the needs of the users. There are dozens of different wiki engines in use, both standalone and part of other software, such as bug tracking systems. Some wiki engines are open source, whereas others are proprietary. Some permit control over different functions (levels of access); for example, editing rights may permit changing, adding, or removing material. Others may permit access without enforcing access control. Other rules may be imposed to organize content.

The online encyclopedia project Wikipedia is the most popular wiki-based website, and is one of the most widely viewed sites in the world, having been ranked in the top ten since 2007. Wikipedia is not a single wiki but rather a collection of hundreds of wikis, with each one pertaining to a specific language. In addition to Wikipedia, there are tens of thousands of other wikis in use, both public and private, including wikis functioning as knowledge management resources, notetaking tools, community websites, and intranets. The English-language Wikipedia has the largest collection of articles; as of September 2016, it had over five million articles. Ward Cunningham, the developer of the first wiki software, WikiWikiWeb, originally described wiki as "the simplest online database that could possibly work". "Wiki" (pronounced [ˈwiki]) is a Hawaiian word meaning "quick".

ZIP Code

A ZIP Code is a postal code used by the United States Postal Service (USPS) in a system it introduced in 1963. The term ZIP is an acronym for Zone Improvement Plan; it was chosen to suggest that the mail travels more efficiently and quickly (zipping along) when senders use the code in the postal address. The basic format consists of five digits. An extended ZIP+4 code was introduced in 1983 which includes the five digits of the ZIP Code, followed by a hyphen and four additional digits that reference a more specific location.

The term ZIP Code was originally registered as a servicemark by the U.S. Postal Service, but its registration has since expired.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.