Clinical death

Clinical death is the medical term for cessation of blood circulation and breathing, the two necessary criteria to sustain human and many other organisms' lives.[1] It occurs when the heart stops beating in a regular rhythm, a condition called cardiac arrest. The term is also sometimes used in resuscitation research.

Stopped blood circulation has historically proven irreversible in most cases. Prior to the invention of cardiopulmonary resuscitation (CPR), defibrillation, epinephrine injection, and other treatments in the 20th century, the absence of blood circulation (and vital functions related to blood circulation) was historically considered the official definition of death. With the advent of these strategies, cardiac arrest came to be called clinical death rather than simply death, to reflect the possibility of post-arrest resuscitation.

At the onset of clinical death, is very fast consciousness is lost within several seconds. Measurable brain activity stops within 20 to 40 seconds.[2] Irregular gasping may occur during this early time period, and is sometimes mistaken by rescuers as a sign that CPR is not necessary.[3] During clinical death, all tissues and organs in the body steadily accumulate a type of injury called ischemic injury.

Limits of reversal

Most tissues and organs of the body can survive clinical death for considerable periods. Blood circulation can be stopped in the entire body below the heart for at least 30 minutes, with injury to the spinal cord being a limiting factor.[4] Detached limbs may be successfully reattached after 6 hours of no blood circulation at warm temperatures. Bone, tendon, and skin can survive as long as 8 to 12 hours.[5]

The brain, however, appears to accumulate ischemic injury faster than any other organ. Without special treatment after circulation is restarted, full recovery of the brain after more than 3 minutes of clinical death at normal body temperature is rare.[6][7] Usually brain damage or later brain death results after longer intervals of clinical death even if the heart is restarted and blood circulation is successfully restored. Brain injury is therefore the chief limiting factor for recovery from clinical death.

Although loss of function is almost immediate, there is no specific duration of clinical death at which the non-functioning brain clearly dies. The most vulnerable cells in the brain, CA1 neurons of the hippocampus, are fatally injured by as little as 10 minutes without oxygen. However, the injured cells do not actually die until hours after resuscitation.[8] This delayed death can be prevented in vitro by a simple drug treatment even after 20 minutes without oxygen.[9] In other areas of the brain, viable human neurons have been recovered and grown in culture hours after clinical death.[10] Brain failure after clinical death is now known to be due to a complex series of processes called reperfusion injury that occur after blood circulation has been restored, especially processes that interfere with blood circulation during the recovery period.[11] Control of these processes is the subject of ongoing research.

In 1990, the laboratory of resuscitation pioneer Peter Safar discovered that reducing body temperature by three degrees Celsius after restarting blood circulation could double the time window of recovery from clinical death without brain damage from 5 minutes to 10 minutes. This induced hypothermia technique is beginning to be used in emergency medicine.[12][13] The combination of mildly reducing body temperature, reducing blood cell concentration, and increasing blood pressure after resuscitation was found especially effective—allowing for recovery of dogs after 12 minutes of clinical death at normal body temperature with practically no brain injury.[14][15] The addition of a drug treatment protocol has been reported to allow recovery of dogs after 16 minutes of clinical death at normal body temperature with no lasting brain injury.[16] Cooling treatment alone has permitted recovery after 17 minutes of clinical death at normal temperature, but with brain injury.[17]

Under laboratory conditions at normal body temperature, the longest period of clinical death of a cat (after complete circulatory arrest) survived with eventual return of brain function is one hour.[18][19]

Hypothermia during clinical death

Reduced body temperature, or therapeutic hypothermia, during clinical death slows the rate of injury accumulation, and extends the time period during which clinical death can be survived. The decrease in the rate of injury can be approximated by the Q10 rule, which states that the rate of biochemical reactions decreases by a factor of two for every 10 °C reduction in temperature. As a result, humans can sometimes survive periods of clinical death exceeding one hour at temperatures below 20 °C.[20] The prognosis is improved if clinical death is caused by hypothermia rather than occurring prior to it; in 1999, 29-year-old Swedish woman Anna Bågenholm spent 80 minutes trapped in ice and survived with a near full recovery from a 13.7 °C core body temperature. It is said in emergency medicine that "nobody is dead until they are warm and dead."[21] In animal studies, up to three hours of clinical death can be survived at temperatures near 0 °C.[22][23]

Life support during clinical death

The purpose of cardiopulmonary resuscitation (CPR) during cardiac arrest is ideally reversal of the clinically dead state by restoration of blood circulation and breathing. However, there is great variation in the effectiveness of CPR for this purpose. Blood pressure is very low during manual CPR,[24] resulting in only a ten-minute average extension of survival.[25] Yet there are cases of patients regaining consciousness during CPR while still in full cardiac arrest.[26] In absence of cerebral function monitoring or frank return to consciousness, the neurological status of patients undergoing CPR is intrinsically uncertain. It is somewhere between the state of clinical death and a normal functioning state.

Patients supported by methods that certainly maintain enough blood circulation and oxygenation for sustaining life during stopped heartbeat and breathing, such as cardiopulmonary bypass, are not customarily considered clinically dead. All parts of the body except the heart and lungs continue to function normally. Clinical death occurs only if machines providing sole circulatory support are turned off, leaving the patient in a state of stopped blood circulation.

Controlled clinical death

Certain surgeries for cerebral aneurysms or aortic arch defects require that blood circulation be stopped while repairs are performed. This deliberate temporary induction of clinical death is called circulatory arrest. It is typically performed by lowering body temperature to between 18 °C and 20 °C (64 and 68 °F) and stopping the heart and lungs. This state is called deep hypothermic circulatory arrest. At such low temperatures most patients can tolerate the clinically dead state for up to 30 minutes without incurring significant brain injury.[27] Longer durations are possible at lower temperatures, but the usefulness of longer procedures has not been established yet.[28]

Controlled clinical death has also been proposed as a treatment for exsanguinating trauma to create time for surgical repair.[29]

Clinical death and the determination of death

Death was historically believed to be an event that coincided with the onset of clinical death. It is now understood that death is a series of physical events, not a single one, and determination of permanent death is dependent on other factors beyond simple cessation of breathing and heartbeat.[11]

Clinical death that occurs unexpectedly is treated as a medical emergency. CPR is initiated. In a United States hospital, a Code Blue is declared and Advanced Cardiac Life Support procedures used to attempt to restart a normal heartbeat. This effort continues until either the heart is restarted, or a physician determines that continued efforts are useless and recovery is impossible. If this determination is made, the physician pronounces legal death and resuscitation efforts stop.

If clinical death is expected due to terminal illness or withdrawal of supportive care, often a Do Not Resuscitate (DNR) or "no code" order is in place. This means that no resuscitation efforts are made, and a physician or nurse may pronounce legal death at the onset of clinical death.

A patient with working heart and lungs who is determined to be brain dead can be pronounced legally dead without clinical death occurring. However, some courts have been reluctant to impose such a determination over the religious objections of family members, such as in the Jesse Koochin case.[30] Similar issues were also raised by the case of Mordechai Dov Brody, but the child died before a court could resolve the matter.[31] Conversely, in the case of Marlise Muñoz, a hospital refused to remove a brain dead woman from life support machines for nearly two months, despite her husband's requests, because she was pregnant.[32]


Velma Thomas, 59, of West Virginia, USA holds the record time for recovering from clinical death. In May 2008, Thomas went into cardiac arrest at her home. Medics were able to establish a faint pulse after eight minutes of CPR. Her heart stopped twice after arriving at the hospital and she was placed on life support. She was declared clinically dead for 17 hours after doctors failed to detect any brain activity. Doctors attempted to lower her body temperature to stimulate brain activity. Her son, Tim Thomas, stated that "her skin had already started hardening, her hands and toes were curling up, they were already drawn". She was taken off life support and funeral arrangements were in progress. However, ten minutes after being taken off life support, she revived and recovered.[33][34]

See also


  1. ^ Kastenbaum, Robert (2006). "Definitions of Death". Encyclopedia of Death and Dying. Retrieved 27 January 2007.
  2. ^ Lind B, B; Snyder, J; Kampschulte, S; Safar, P; et al. (1975). "A review of total brain ischaemia models in dogs and original experiments on clamping the aorta". Resuscitation. Elsevier. 4 (1): 19–31. doi:10.1016/0300-9572(75)90061-1. PMID 1188189.
  3. ^ Eisenberg MS, MS (2006). "Incidence and significance of gasping or agonal respirations in cardiac arrest patients". Current Opinion in Critical Care. Elsevier. 12 (3): 189–192. doi:10.1097/01.ccx.0000224862.48087.66. PMID 16672777.
  4. ^ Hazim J, HJ; Winnerkvist, A; Miller Cc, 3rd; Iliopoulos, DC; Reardon, MJ; Espada, R; Baldwin, JC (1998). "Effect of extended cross-clamp time during thoracoabdominal aortic aneurysm repair". The Annals of Thoracic Surgery. The Society of Thoracic Surgeons. 66 (4): 1204–8. doi:10.1016/S0003-4975(98)00781-4. PMID 9800807.
  5. ^ Replantation at eMedicine
  6. ^ Safar P, P (1986). "Cerebral resuscitation after cardiac arrest: a review". Circulation. Lippincott Williams & Wilkins. 74 (6 Pt 2): IV138–153. PMID 3536160.
  7. ^ Safar P, P (1988). "Resuscitation from clinical death: pathophysiologic limits and therapeutic potentials". Critical Care Medicine. Lippincott Williams & Wilkins. 16 (10): 923–41. doi:10.1097/00003246-198810000-00003. PMID 3048894.
  8. ^ Kirino T, T (2000). "Delayed neuronal death". Neuropathology. 20: S95–7. doi:10.1046/j.1440-1789.2000.00306.x. PMID 11037198.
  9. ^ Popovic R, R; Liniger, R; Bickler, PE (2000). "Anesthetics and mild hypothermia similarly prevent hippocampal neuron death in an in vitro model of cerebral ischemia". Anesthesiology. Lippincott Williams & Wilkins. 92 (5): 1343–9. doi:10.1097/00000542-200005000-00024. PMID 10781280.
  10. ^ Kim SU, SU; Warren, KG; Kalia, M; et al. (1979). "Tissue culture of adult human neurons". Neuroscience Letters. Elsevier Scientific Publishers Ireland. 11 (2): 137–141. doi:10.1016/0304-3940(79)90116-2. PMID 313541.
  11. ^ a b Crippen, David. "Brain Failure and Brain Death: Introduction". ACS Surgery Online, Critical Care, April 2005. Archived from the original on 11 October 2007. Retrieved 9 January 2007.
  12. ^ Holzer M, Behringer W, M; Behringer, W (2005). "Therapeutic hypothermia after cardiac arrest". Current Opinion in Anesthesiology. Lippincott Williams & Wilkins. 18 (2): 163–8. doi:10.1097/ PMID 16534333.
  13. ^ Davis, Robert (11 December 2006). "To treat cardiac arrest, doctors cool the body". USA Today. Retrieved 7 January 2007.
  14. ^ Leonov Y, Y; Sterz, F; Safar, P; Radovsky, A; Oku, K; Tisherman, S; Stezoski, SW; et al. (1990). "Mild cerebral hypothermia during and after cardiac arrest improves neurologic outcome in dogs". Journal of Cerebral Blood Flow and Metabolism. Nature Pub. Group. 10 (1): 57–70. doi:10.1038/jcbfm.1990.8. PMID 2298837.
  15. ^ Safar P, P; Xiao, F; Radovsky, A; Tanigawa, K; Ebmeyer, U; Bircher, N; Alexander, H; Stezoski, SW; et al. (1996). "Improved cerebral resuscitation from cardiac arrest in dogs with mild hypothermia plus blood flow promotion". Stroke. Lippincott Williams & Wilkins. 27 (1): 105–113. doi:10.1161/01.STR.27.1.105. PMID 8553385.
  16. ^ Lemler J, J; Harris, SB; Platt, C; Huffman, TM; et al. (2004). "The arrest of biological time as a bridge to engineered negligible senescence". Annals of the New York Academy of Sciences. New York Academy of Sciences. 1019 (1): 559–63. Bibcode:2004NYASA1019..559L. doi:10.1196/annals.1297.104. PMID 15247086.
  17. ^ Leonov Y, Y; Sterz, F; Safar, P; Radovsky, A; et al. (1990). "Moderate hypothermia after cardiac arrest of 17 minutes in dogs. Effect on cerebral and cardiac outcome". Stroke. Lippincott Williams & Wilkins. 21 (11): 1600–6. doi:10.1161/01.STR.21.11.1600. PMID 2237954.
  18. ^ Hossmann KA, KA; Sato, K; et al. (1970). "Recovery of Neuronal Function after Prolonged Cerebral Ischemia". Science. American Association for the Advancement of Science. 168 (3929): 375–6. Bibcode:1970Sci...168..375H. doi:10.1126/science.168.3929.375. PMID 4908037.
  19. ^ Hossmann KA, KA; Schmidt-Kastner, R; Grosse Ophoff, B; et al. (1987). "Recovery of integrative central nervous function after one hour global cerebro-circulatory arrest in normothermic cat". Journal of the Neurological Sciences. Elsevier. 77 (2–3): 305–20. doi:10.1016/0022-510X(87)90130-4. PMID 3819770.
  20. ^ Walpoth BH, BH; Locher, T; Leupi, F; Schüpbach, P; Mühlemann, W; Althaus, U; et al. (1990). "Accidental deep hypothermia with cardiopulmonary arrest: extracorporeal blood rewarming in 11 patients". European Journal of Cardio-Thoracic Surgery. Elsevier Science. 4 (7): 390–3. doi:10.1016/1010-7940(90)90048-5. PMID 2397132.
  21. ^ "Skier revived from clinical death". BBC News. 18 January 2000. Retrieved 9 January 2007.
  22. ^ Haneda K, K; Thomas, R; Sands, MP; Breazeale, DG; Dillard, DH; et al. (1986). "Whole body protection during three hours of total circulatory arrest: an experimental study". Cryobiology. Academic Press. 23 (6): 483–94. doi:10.1016/0011-2240(86)90057-X. PMID 3802887.
  23. ^ Behringer W, Safar P, W; Safar, P; Wu, X; Kentner, R; Radovsky, A; Kochanek, PM; Dixon, CE; Tisherman, SA; et al. (2003). "Survival without brain damage after clinical death of 60–120 mins in dogs using suspended animation by profound hypothermia". Critical Care Medicine. Lippincott Williams & Wilkins. 31 (5): 1592–3. doi:10.1097/01.CCM.0000063450.73967.40. PMID 12771628.
  24. ^ Chandra NC, NC; Tsitlik, JE; Halperin, HR; Guerci, AD; Weisfeldt, ML; et al. (1990). "Observations of hemodynamics during human cardiopulmonary resuscitation". Critical Care Medicine. Lippincott Williams & Wilkins. 18 (9): 929–34. doi:10.1097/00003246-199009000-00005. PMID 2394116.
  25. ^ Cummins RO, RO; Eisenberg, MS; Hallstrom, AP; Litwin, PE; et al. (1985). "Survival of out-of-hospital cardiac arrest with early initiation of cardiopulmonary resuscitation". The American Journal of Emergency Medicine. W B Saunders. 3 (2): 114–9. doi:10.1016/0735-6757(85)90032-4. PMID 3970766.
  26. ^ Lewinter JR, JR; Carden, DL; Nowak, RM; Enriquez, E; Martin, GB; et al. (1989). "CPR-dependent consciousness: evidence for cardiac compression causing forward flow". Annals of Emergency Medicine. Mosby. 18 (10): 1111–5. doi:10.1016/S0196-0644(89)80942-4. PMID 2802288.
  27. ^ Conolly, S; Arrowsmith, JE; Klein, AA (2010). "Deep hypothermic circulatory arrest". Continuing Education in Anaesthesia, Critical Care & Pain. 10 (5): 138–142. doi:10.1093/bjaceaccp/mkq024.
  28. ^ Greenberg, Mark S (15 February 2010). Handbook of Neurosurgery. Thieme. p. 1063. ISBN 978-1-60406-326-4. Retrieved 18 November 2012.
  29. ^ Bellamy, R; Safar, P; Tisherman, S. A.; Basford, R; Bruttig, S. P.; Capone, A; Dubick, M. A.; Ernster, L; Hattler Jr, B. G.; Hochachka, P; Klain, M; Kochanek, P. M.; Kofke, W. A.; Lancaster, J. R.; McGowan Jr, F. X.; Oeltgen, P. R.; Severinghaus, J. W.; Taylor, M. J.; Zar, H (1996). "Suspended animation for delayed resuscitation". Critical Care Medicine. 24 (2 Suppl): S24–47. doi:10.1097/00003246-199602000-00046. PMID 8608704.
  30. ^ Appel, JM. Defining Death: When Physicians and Families Differ” Journal of Medical Ethics Fall 2005
  31. ^ "Brain-dead NYC boy at center of care controversy dies -". 16 November 2008. Retrieved November 17, 2008.
  32. ^ "Texas judge: Remove brain-dead woman from ventilator, other machines". CNN. January 24, 2014.
  33. ^ Elsworth, Catherine (26 May 2008). "Woman comes back to life after being dead for 17 hours". Retrieved 9 June 2019.
  34. ^ "Woman Came Back From the Dead After 17 Hours with No Measurable Brain Waves". Neatorama. 2008-05-27. Retrieved 9 June 2019.
Brain death

Brain death is the complete loss of brain function (including involuntary activity necessary to sustain life). It differs from persistent vegetative state, in which the person is alive and some autonomic functions remain. It is also distinct from an ordinary coma, whether induced medically or caused by injury and/or illness, even if it is very deep, as long as some brain and bodily activity and function remains; and it is also not the same as the condition known as locked-in syndrome. A differential diagnosis can medically distinguish these differing conditions.

Brain death is used as an indicator of legal death in many jurisdictions, but it is defined inconsistently and often confused by the lay public. Various parts of the brain may keep functioning when others do not anymore, and the term "brain death" has been used to refer to various combinations. For example, although one major medical dictionary considers "brain death" to be synonymous with "cerebral death" (death of the cerebrum), the US National Library of Medicine Medical Subject Headings (MeSH) system defines brain death as including the brainstem. The distinctions are medically significant because, for example, in someone with a dead cerebrum but a living brainstem, the heartbeat and ventilation can continue unaided, whereas in whole-brain death (which includes brainstem death), only life support equipment would keep those functions going. Patients classified as brain-dead can have their organs surgically removed for organ donation.


Cryonics (from Greek κρύος kryos meaning 'cold') is the low-temperature freezing (usually at −196 °C or −320.8 °F or 77.1 K) of a human corpse, with the hope that resuscitation may be possible in the future. It is regarded with skepticism within the mainstream scientific community and has been characterized as quackery.Cryonics procedures can begin only after clinical death, and cryonics "patients" are legally dead. Cryonics procedures ideally begin within minutes of death, and use cryoprotectants to prevent ice formation during cryopreservation. It is unlikely that a corpse could be reanimated after undergoing vitrification, which causes damage to the brain including its neural networks. The first corpse to be frozen was that of Dr. James Bedford in 1967. As of 2014, about 250 bodies were cryopreserved in the United States, and 1,500 people had made arrangements for cryopreservation after their legal death.

Dead on arrival

Dead on arrival (DOA), also dead in the field and brought in dead (BID), indicates that a patient was found to be already clinically dead upon the arrival of professional medical assistance, often in the form of first responders such as emergency medical technicians, paramedics, or police.

In some jurisdictions, first responders must consult verbally with a physician before officially pronouncing a patient deceased, but once cardiopulmonary resuscitation is initiated, it must be continued until a physician can pronounce the patient dead.


Death is the permanent cessation of all biological functions that sustain a living organism. Phenomena which commonly bring about death include aging, predation, malnutrition, disease, suicide, homicide, starvation, dehydration, and accidents or major trauma resulting in terminal injury. In most cases, bodies of living organisms begin to decompose shortly after death.Death – particularly the death of humans – has commonly been considered a sad or unpleasant occasion, due to the affection for the being that has died and the termination of social and familial bonds with the deceased. Other concerns include fear of death, necrophobia, anxiety, sorrow, grief, emotional pain, depression, sympathy, compassion, solitude, or saudade. Many cultures and religions have the idea of an afterlife, and also hold the idea of reward or judgement and punishment for past sin.

Death messenger

Death messengers, in former times, were those who were dispatched to spread the news that an inhabitant of their city or village had died. They were to wear unadorned black and go door to door with the message, "You are asked to attend the funeral of the departed __________ at (time, date, and place)." This was all they were allowed to say, and were to move on to the next house immediately after uttering the announcement. This tradition persisted in some areas to as late as the mid-19th century.

Death rattle

Terminal respiratory secretions (or simply terminal secretions), known colloquially as a death rattle, are sounds often produced by someone who is near death as a result of fluids such as saliva and bronchial secretions accumulating in the throat and upper chest. Those who are dying may lose their ability to swallow and may have increased production of bronchial secretions, resulting in such an accumulation. Usually, two or three days earlier, the symptoms of approaching death can be observed as saliva accumulates in the throat, making it very difficult to take even a spoonful of water. Related symptoms can include shortness of breath and rapid chest movement. While death rattle is a strong indication that someone is near death, it can also be produced by other problems that cause interference with the swallowing reflex, such as brain injuries.It is sometimes misinterpreted as the sound of the person choking to death, or alternatively, that they are gargling.

Dignified death

Dignified death is a somewhat elusive concept often related to suicide. One factor that has been cited as a core component of dignified death is maintaining a sense of control. Another view is that a truly dignified death is an extension of a dignified life. There is some concern that assisted suicide does not guarantee a dignified death, since some patients may experience complications such as nausea and vomiting. There is some concern that age discrimination denies the elderly a dignified death.

Fan death

Fan death is a well-known superstition in Korean culture, where it is thought that running an electric fan in a closed room with unopened or no windows will prove fatal. Despite no concrete evidence to support the concept, belief in fan death persists to this day in Korea, and also to a lesser extent in Japan.

Funeral director

A funeral director, also known as an undertaker (British English) or mortician (American English), is a professional involved in the business of funeral rites. These tasks often entail the embalming and burial or cremation of the dead, as well as the arrangements for the funeral ceremony (although not the directing and conducting of the funeral itself unless clergy are not present). Funeral directors may at times be asked to perform tasks such as dressing (in garments usually suitable for daily wear), casketing (placing the human body in the coffin), and cossetting (applying any sort of cosmetic or substance to the best viewable areas of the corpse for the purpose of enhancing its appearance). A funeral director may work at a funeral home or be an independent employee.

Lazarus sign

The Lazarus sign or Lazarus reflex is a reflex movement in brain-dead or brainstem failure patients, which causes them to briefly raise their arms and drop them crossed on their chests (in a position similar to some Egyptian mummies). The phenomenon is named after the Biblical figure Lazarus of Bethany, whom Jesus Christ raised from the dead in the Gospel of John.

Lazarus syndrome

Lazarus syndrome, (the Lazarus heart) also known as autoresuscitation after failed cardiopulmonary resuscitation, is the spontaneous return of circulation after failed attempts at resuscitation. Its occurrence has been noted in medical literature at least 38 times since 1982. It takes its name from Lazarus who, as described in the New Testament, was raised from the dead by Jesus.Occurrences of the syndrome are extremely rare, and the causes are not well understood. One hypothesis for the phenomenon is that a chief factor (though not the only one) is the buildup of pressure in the chest as a result of cardiopulmonary resuscitation (CPR). The relaxation of pressure after resuscitation efforts have ended is thought to allow the heart to expand, triggering the heart's electrical impulses and restarting the heartbeat. Other possible factors are hyperkalemia or high doses of epinephrine.


Megadeath (or megacorpse) is one million human deaths, usually caused by a nuclear explosion. The term was used by scientists and thinkers who strategized likely outcomes of all-out nuclear warfare.


A morgue or mortuary (in a hospital or elsewhere) is used for the storage of human corpses awaiting identification or removal for autopsy or respectful burial, cremation or other method. In modern times corpses have customarily been refrigerated to delay decomposition.


A necronym (from the Greek words νεκρός, nekros, "dead" and ὄνομα ónoma, "name") is a reference to, or name of, a person who has died. Many cultures have taboos and traditions associated with referring to such a person. These vary from the extreme of never again speaking the person's real name, often using some circumlocution instead, to the opposite extreme of commemorating it incessantly by naming other things or people after the deceased.

For instance, in some cultures it is common for a newborn child to receive the name (a necronym) of a relative who has recently died, while in others to reuse such a name would be considered extremely inappropriate or even forbidden. While this varies from culture to culture, the use of necronyms is quite common.


An obituary (obit for short) is a news article that reports the recent death of a person, typically along with an account of the person's life and information about the upcoming funeral. In large cities and larger newspapers, obituaries are written only for people considered significant. In local newspapers, an obituary may be published for any local resident upon death. A necrology is a register or list of records of the deaths of people related to a particular organization, group or field, which may only contain the sparsest details, or small obituaries. Historical necrologies can be important sources of information.

Two types of paid advertisements are related to obituaries. One, known as a death notice, omits most biographical details and may be a legally required public notice under some circumstances. The other type, a paid memorial advertisement, is usually written by family members or friends, perhaps with assistance from a funeral home. Both types of paid advertisements are usually run as classified advertisements.

Pallor mortis

Pallor mortis (Latin: pallor "paleness", mortis "of death"), the first stage of death, is an after-death paleness that occurs in those with light/white skin.

Passage (Willis novel)

Passage is a science fiction novel by Connie Willis, published in 2001. The novel won the Locus Award for Best Novel in 2002, was shortlisted for the Nebula Award in 2001, and received nominations for the Hugo, Campbell, and Clarke Awards in 2002.Passage follows the efforts of Joanna Lander, a research psychologist, to understand the phenomenon of near-death experiences (or NDEs) by interviewing hospital patients after they are revived following clinical death. Her work with Dr. Richard Wright, a neurologist who has discovered a way to chemically induce an artificial NDE and conduct an "RIPT" brain scan during the experience, leads her to the discovery of the biological purpose of NDEs.

Science fiction scholar Gary K. Wolfe writes, "Willis tries something truly astonishing: without resorting to supernaturalism on the one hand or clinical reportage on the other, without forgoing her central metaphor, she seeks to lift the veil on what actually happens inside a dying mind." Through Lander's work, Dr. Wright is able to develop a medicine that brings patients back from clinical death.

The novel contains enlightening discussions of various disasters, including the RMS Titanic, the Hartford circus fire, the Hindenburg disaster, the Eruption of Mount Vesuvius in 79, the 1883 eruption of Krakatoa, the Boston Molasses Disaster, and, almost as prominently as the Titanic, the sinking of the USS Yorktown. (Willis has written extensively in several novels about events in World War II.)

Rigor mortis

Rigor mortis (Latin: rigor "stiffness", mortis "of death"), or postmortem rigidity, is the third stage of death. It is one of the recognizable signs of death, characterized by stiffening of the limbs of the corpse caused by chemical changes in the muscles postmortem. In humans, rigor mortis can occur as soon as four hours after death.

In medicine
After death

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.