Chemical composition

Chemical composition refers to the identity and relative number of the chemical elements that make up any particular compound.

Composition of a substance

The chemical composition of a pure substance corresponds to the relative amounts of the elements that constitute the substance itself. It can be expressed with a chemical formula, such as an empirical or molecular formula.

For example, the chemical formula for water is H2O: this means that each molecule of water is constituted by 2 atoms of hydrogen (H) and 1 atom of oxygen (O). Thus the chemical composition of water may be interpreted as a 2:1 ratio of hydrogen atoms to oxygen atoms.

Composition of a mixture

The chemical composition of a mixture can be defined as the distribution of the individual substances that constitute the mixture, called "components". In other words, it is equivalent to quantifying the concentration of each component. Because there are different ways to define the concentration of a component, there are also different ways to define the composition of a mixture. It may be expressed as molar fraction, volume fraction, mass fraction, molality, molarity or normality or mixing ratio.

Chemical composition of a mixture can be represented graphically in plots like ternary plot and quaternary plot.

Acapulcoite

Acapulcoites are a group of the primitive achondrite class of stony meteorites.

Albrecht Kossel

Ludwig Karl Martin Leonhard Albrecht Kossel (16 September 1853 – 5 July 1927) was a German biochemist and pioneer in the study of genetics. He was awarded the Nobel Prize for Physiology or Medicine in 1910 for his work in determining the chemical composition of nucleic acids, the genetic substance of biological cells.

Kossel isolated and described the five organic compounds that are present in nucleic acid: adenine, cytosine, guanine, thymine, and uracil. These compounds were later shown to be nucleobases, and are key in the formation of DNA and RNA, the genetic material found in all living cells.

Kossel was an important influence on and collaborator with other important researchers in biochemistry, including Henry Drysdale Dakin, Friedrich Miescher, Edwin B. Hart, and his professor and mentor, Felix Hoppe-Seyler. Kossel was editor of the Zeitschrift für Physiologische Chemie (Journal of Physiological Chemistry) from 1895 until his death. Kossel also conducted important research into the composition of protein, and his research predicted the discovery of the polypeptide nature of the protein molecule.

The Albrecht Kossel Institute for Neuroregeneration at the University of Rostock is named in his honor.

Biochemistry

Biochemistry, sometimes called biological chemistry, is the study of chemical processes within and relating to living organisms. Biochemical processes give rise to the complexity of life.

A sub-discipline of both biology and chemistry, biochemistry can be divided in three fields; molecular genetics, protein science and metabolism. Over the last decades of the 20th century, biochemistry has through these three disciplines become successful at explaining living processes. Almost all areas of the life sciences are being uncovered and developed by biochemical methodology and research. Biochemistry focuses on understanding how biological molecules give rise to the processes that occur within living cells and between cells, which in turn relates greatly to the study and understanding of tissues, organs, and organism structure and function.Biochemistry is closely related to molecular biology, the study of the molecular mechanisms by which genetic information encoded in DNA is able to result in the processes of life.Much of biochemistry deals with the structures, functions and interactions of biological macromolecules, such as proteins, nucleic acids, carbohydrates and lipids, which provide the structure of cells and perform many of the functions associated with life. The chemistry of the cell also depends on the reactions of smaller molecules and ions. These can be inorganic, for example water and metal ions, or organic, for example the amino acids, which are used to synthesize proteins. The mechanisms by which cells harness energy from their environment via chemical reactions are known as metabolism. The findings of biochemistry are applied primarily in medicine, nutrition, and agriculture. In medicine, biochemists investigate the causes and cures of diseases. In nutrition, they study how to maintain health wellness and study the effects of nutritional deficiencies. In agriculture, biochemists investigate soil and fertilizers, and try to discover ways to improve crop cultivation, crop storage and pest control.

CI chondrite

CI chondrites, sometimes C1 chondrites, are a group of rare stony meteorites belonging to the carbonaceous chondrites. Samples have been discovered in France, Canada, India, and Tanzania. Compared to all the meteorites found so far, their chemical composition most closely resembles the elemental distribution in the sun's photosphere.

Chemical compound

A chemical compound is a chemical substance composed of many identical molecules (or molecular entities) composed of atoms from more than one element held together by chemical bonds. A chemical element bonded to an identical chemical element is not a chemical compound since only one element, not two different elements, is involved.

There are four types of compounds, depending on how the constituent atoms are held together:

molecules held together by covalent bonds

ionic compounds held together by ionic bonds

intermetallic compounds held together by metallic bonds

certain complexes held together by coordinate covalent bonds.A chemical formula is a way of expressing information about the proportions of atoms that constitute a particular chemical compound, using the standard abbreviations for the chemical elements, and subscripts to indicate the number of atoms involved. For example, water is composed of two hydrogen atoms bonded to one oxygen atom: the chemical formula is H2O. Many chemical compounds have a unique numerical identifier assigned by the Chemical Abstracts Service (CAS): its CAS number.

A compound can be converted to a different chemical composition by interaction with a second chemical compound via a chemical reaction. In this process, bonds between atoms are broken in both of the interacting compounds, and then bonds are reformed so that new associations are made between atoms.

Composition of the human body

Body composition may be analyzed in various ways. This can be done in terms of the chemical elements present, or by molecular type e.g., water, protein, fats (or lipids), hydroxylapatite (in bones), carbohydrates (such as glycogen and glucose) and DNA. In terms of tissue type, the body may be analyzed into water, fat, connective tissue, muscle, bone, etc. In terms of cell type, the body contains hundreds of different types of cells, but notably, the largest number of cells contained in a human body (though not the largest mass of cells) are not human cells, but bacteria residing in the normal human gastrointestinal tract.

Ecological stoichiometry

Ecological stoichiometry (more broadly referred to as Biological stoichiometry) considers how the balance of energy and elements influences living systems. Similar to chemical stoichiometry, ecological stoichiometry is founded on constraints of mass balance as they apply to organisms and their interactions in ecosystems. Specifically, how does the balance of energy and elements affect and how is this balance affected by organisms and their interactions. Concepts of ecological stoichiometry have a long history in ecology with early references to the constraints of mass balance made by Liebig, Lotka, and Redfield. These earlier concepts have been extended to explicitly link the elemental physiology of organisms to their food web interactions and ecosystem function.

Most work in ecological stoichiometry focuses on the interface between an organism and its resources. This interface, whether it is between plants and their nutrient resources or large herbivores and grasses, is often characterized by dramatic differences in the elemental composition of each part. The difference, or mismatch, between the elemental demands of organisms and the elemental composition of resources leads to an elemental imbalance. Consider termites, which have a tissue carbon:nitrogen ratio (C:N) of about 5 yet consume wood with a C:N ratio of 300-1000. Ecological stoichiometry primarily asks:

why do elemental imbalances arise in nature?

how is consumer physiology and life-history affected by elemental imbalances? and

what are the subsequent effects on ecosystem processes?Elemental imbalances arise for a number of physiological and evolutionary reasons related to the differences in the biological make up of organisms, such as differences in types and amounts of macromolecules, organelles, and tissues. Organisms differ in the flexibility of their biological make up and therefore in the degree to which organisms can maintain a constant chemical composition in the face of variations in their resources. Variations in resources can be related to the types of needed resources, their relative availability in time and space, and how they are acquired. The ability to maintain internal chemical composition despite changes in the chemical composition and availability of resources is referred to as "stoichiometric homeostasis". Like the general biological notion of homeostasis, elemental homeostasis refers to the maintenance of elemental composition within some biologically ordered range. Photoautotrophic organisms, such as algae and vascular plants, can exhibit a very wide range of physiological plasticity in elemental composition and thus have relatively weak stoichiometric homeostasis. In contrast, other organisms, such as multicellular animals, have close to strict homeostasis and they can be thought of as having distinct chemical composition. For example, carbon to phosphorus ratios in the suspended organic matter in lakes (i.e., algae, bacteria, and detritus) can vary between 100 and 1000 whereas C:P ratios of Daphnia, a crustacean zooplankton, remain nearly constant at 80:1. The general differences in stoichiometric homeostasis between plants and animals can lead to large and variable elemental imbalances between consumers and resources.

Ecological stoichiometry seeks to discover how the chemical content of organisms shapes their ecology. Ecological stoichiometry has been applied to studies of nutrient recycling, resource competition, animal growth, and nutrient limitation patterns in whole ecosystems. The Redfield ratio of the world's oceans is one very famous application of stoichiometric principles to ecology. Ecological stoichiometry also considers phenomena at the sub-cellular level, such as the P-content of a ribosome, as well as phenomena at the whole biosphere level, such as the oxygen content of Earth's atmosphere.

To date the research framework of ecological stoichiometry stimulated research in various fields of biology, ecology, biochemistry and human health, including human microbiome research, cancer research, food web interactions, population dynamics, ecosystem services, productivity of agricultural crops and honeybee nutrition.

Eye liner

Eye liner or eyeliner is a cosmetic used to define the eyes. It is applied around the contours of the eye(s) to create a variety of aesthetic effects.

Fire clay

Fire clay is a range of refractory clays used in the manufacture of ceramics, especially fire brick. The United States Environmental Protection Agency defines fire clay very generally as a "mineral aggregate composed of hydrous silicates of aluminium (Al2O3·2SiO2·2H2O) with or without free silica."

ISO 1629

ISO 1629, Rubber and latices – Nomenclature is an ISO standard that helps in classification and designation of basic or crude rubber in both dry and latex forms under a series of symbols or signs, based on the chemical composition of the polymer chain. This standardization becomes useful across industry and commerce thereby avoiding conflict in existing trademarks and names.

This standard was originally published in 1976, and was updated in 1987, 1995 (with amendments in 2007 and 2009) and 2013.

Igneous petrology

Igneous petrology is the study of igneous rocks—those that are formed from magma. As a branch of geology, igneous petrology is closely related to volcanology, tectonophysics, and petrology in general. The modern study of igneous rocks utilizes a number of techniques, some of them developed in the fields of chemistry, physics, or other earth sciences. Petrography, crystallography, and isotopic studies are common methods used in igneous petrology.

Intracellular

In cell biology, molecular biology and related fields, the word intracellular means "inside the cell".It is used in contrast to extracellular (outside the cell). The cell membrane (and, in many organisms, the cell wall) is the barrier between the two, and chemical composition of intra- and extracellular milieu (Milieu intérieur) can be radically different. In most organisms, for example, a Na+/K+ ATPase maintains a high potassium level inside cells while keeping sodium low, leading to chemical excitability.

LL chondrite

The LL chondrites are a group of stony meteorites, the least abundant group of the ordinary chondrites, accounting for about 10–11% of observed ordinary-chondrite falls and 8–9% of all meteorite falls (see meteorite fall statistics). The ordinary chondrites are thought to have originated from three parent asteroids, with the fragments making up the H chondrite, L chondrite and LL chondrite groups respectively. The composition of the Chelyabinsk meteor is that of a LL chondrite meteorite. The material makeup of Itokawa, the asteroid visited by the Hayabusa spacecraft which landed on it and brought particles back to Earth also proved to be type LL chondrite.

Nickel–Strunz classification

Nickel–Strunz classification is a scheme for categorizing minerals based upon their chemical composition, introduced by German mineralogist Karl Hugo Strunz (24 February 1910 – 19 April 2006) in his Mineralogische Tabellen (1941). The 4th and the 5th edition was also edited by Christel Tennyson (1966). It was followed by A.S. Povarennykh with a modified classification (1966 in Russian, 1972 in English).

As curator of the Mineralogical Museum of Friedrich-Wilhelms-Universität (now known as the Humboldt University of Berlin), Strunz had been tasked with sorting the museum's geological collection according to crystal-chemical properties. His book Mineralogical Tables, has been through a number of modifications; the most recent edition, published in 2001, is the ninth (Mineralogical Tables by Hugo Strunz and Ernest H. Nickel (31 August 1925 – 18 July 2009)). James A. Ferraiolo was responsible for it at Mindat.org. The IMA/CNMNC supports the Nickel–Strunz database.

Ordinary chondrite

The ordinary chondrites (sometimes called the O chondrites) are a class of stony chondritic meteorites. They are by far the most numerous group and comprise about 87% of all finds. Hence, they have been dubbed "ordinary". The ordinary chondrites are thought to have originated from three parent asteroids, with the fragments making up the H chondrite, L chondrite and LL chondrite groups respectively.

Physical change

Physical changes are changes affecting the form of a chemical substance, but not its chemical composition. Physical changes are used to separate mixtures into their component compounds, but can not usually be used to separate compounds into chemical elements or simpler compounds.Physical changes occur when objects or substances undergo a change that does not change their chemical composition. This contrasts with the concept of chemical change in which the composition of a substance changes or one or more substances combine or break up to form new substances. In general a physical change is reversible using physical means. For example, salt dissolved in water can be recovered by allowing the water to evaporate.

A physical change involves a change in physical properties. Examples of physical properties include melting, transition to a gas, change of strength, change of durability, changes to crystal form, textural change, shape, size, color, volume and density.

An example of a physical change is the process of tempering steel to form a knife blade. A steel blank is repeatedly heated and hammered which changes the hardness of the steel, its flexibility and its ability to maintain a sharp edge.

Many physical changes also involve the rearrangement of atoms most noticeably in the formation of crystals. Many chemical changes are irreversible, and many physical changes are reversible, but reversibility is not a certain criterion for classification. Although chemical changes may be recognized by an indication such as odor, color change, or production of a gas, every one of these indicators can result from physical change.

Spectrometer

A spectrometer () is a scientific instrument used to separate and measure spectral components of a physical phenomenon. Spectrometer is a broad term often used to describe instruments that measure a continuous variable of a phenomenon where the spectral components are somehow mixed. In visible light a spectrometer can for instance separate white light and measure individual narrow bands of color, called a spectrum, while a mass spectrometer measures the spectrum of the masses of the atoms or molecules present in a gas. The first spectrometers were used to split light into an array of separate colors. Spectrometers were developed in early studies of physics, astronomy, and chemistry. The capability of spectroscopy to determine chemical composition drove its advancement and continues to be one of its primary uses. Spectrometers are used in astronomy to analyze the chemical composition of stars and planets, and spectrometers gather data on the origin of the universe.

Examples of spectrometers are devices that separate particles, atoms, and molecules by their mass, momentum, or energy. These types of spectrometers are used in chemical analysis and particle physics.

Stellar association

A stellar association is a very loose star cluster, looser than both open clusters and globular clusters. Stellar associations will normally contain from 10 to 100 or more stars. The stars share a common origin, but have become gravitationally unbound and are still moving together through space. Associations are primarily identified by their common movement vectors and ages. Identification by chemical composition is also used to factor in association memberships.

Stellar associations were first discovered by the Armenian astronomer Victor Ambartsumian in 1947. The conventional name for an association uses the names or abbreviations of the constellation (or constellations) in which they are located; the association type, and, sometimes, a numerical identifier.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.