Cell death

Cell death is the event of a biological cell ceasing to carry out its functions. This may be the result of the natural process of old cells dying and being replaced by new ones, or may result from such factors as disease, localized injury, or the death of the organism of which the cells are part. Apoptosis or Type I cell-death, and autophagy or Type II cell-death are both forms of programmed cell death, while necrosis is a non-physiological process that occurs as a result of infection or injury.[1]

Signal transduction pathways
Overview of signal transduction pathways involved in apoptosis.

Programmed cell death

Programmed cell death (or PCD) is cell death mediated by an intracellular program.[2][3] PCD is carried out in a regulated process, which usually confers advantage during an organism's life-cycle. For example, the differentiation of fingers and toes in a developing human embryo occurs because cells between the fingers apoptose; the result is that the digits are separate. PCD serves fundamental functions during both plant and metazoa (multicellular animals) tissue development

Apoptosis

Morphological changes associated with apoptosis

Apoptosis is the process of programmed cell death (PCD) that may occur in multicellular organisms.[3] Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation. It is now thought that – in a developmental context – cells are induced to positively commit suicide whilst in a homeostatic context; the absence of certain survival factors may provide the impetus for suicide. There appears to be some variation in the morphology and indeed the biochemistry of these suicide pathways; some treading the path of "apoptosis", others following a more generalized pathway to deletion, but both usually being genetically and synthetically motivated. There is some evidence that certain symptoms of "apoptosis" such as endonuclease activation can be spuriously induced without engaging a genetic cascade, however, presumably true apoptosis and programmed cell death must be genetically mediated. It is also becoming clear that mitosis and apoptosis are toggled or linked in some way and that the balance achieved depends on signals received from appropriate growth or survival factors.[4]

Example events in autophagy

Autophagy

Autophagy is cytoplasmic, characterized by the formation of large vacuoles that eat away organelles in a specific sequence prior to the destruction of the nucleus.[5] Macroautophagy, often referred to as autophagy, is a catabolic process that results in the autophagosomic-lysosomal degradation of bulk cytoplasmic contents, abnormal protein aggregates, and excess or damaged organelles. Autophagy is generally activated by conditions of nutrient deprivation but has also been associated with physiological as well as pathological processes such as development, differentiation, neurodegenerative diseases, stress, infection and cancer.

Other variations of PCD

Other pathways of programmed cell death have been discovered.[6] Called "non-apoptotic programmed cell-death" (or "caspase-independent programmed cell-death"), these alternative routes to death are as efficient as apoptosis and can function as either backup mechanisms or the main type of PCD.

Some such forms of programmed cell death are anoikis, almost identical to apoptosis except in its induction; cornification, a form of cell death exclusive to the eyes; excitotoxicity; ferroptosis, an iron-dependent form of cell death[7] and Wallerian degeneration.

Plant cells undergo particular processes of PCD similar to autophagic cell death. However, some common features of PCD are highly conserved in both plants and metazoa.

Activation-induced cell death (AICD) is a programmed cell death caused by the interaction of Fas receptor (Fas, CD95)and Fas ligand (FasL, CD95 ligand).[8] It occurs as a result of repeated stimulation of specific T-cell receptors (TCR) and it helps to maintain the periphery immune tolerance.[9] Therefore, an alteration of the process may lead to autoimmune diseases.[8] In the other words AICD is the negative regulator of activated T-lymphocytes.

Ischemic cell death, or oncosis, is a form of accidental, or passive cell death that is often considered a lethal injury. The process is characterized by mitochondrial swelling, cytoplasm vacuolization, and swelling of the nucleus and cytoplasm.[10]

Mitotic catastrophe is a mode of cell death that is due to premature or inappropriate entry of cells into mitosis. It is the most common mode of cell death in cancer cells exposed to ionizing radiation and many other anti-cancer treatments.[11]

Immunogenic cell death or immunogenic apoptosis is a form of cell death caused by some cytostatic agents such as anthracyclines, oxaliplatin and bortezomib, or radiotherapy and photodynamic therapy (PDT).[12]

Pyroptosis is a highly inflammatory form of programmed cell death that occurs most frequently upon infection with intracellular pathogens and is likely to form part of the antimicrobial response in myeloid cells. [13]

Necrotic cell death

Necrosis is cell death where a cell has been badly damaged through external forces such as trauma or infection and occurs in several different forms. In necrosis, a cell undergoes swelling, followed by uncontrolled rupture of the cell membrane with cell contents being expelled. These cell contents often then go on to cause inflammation in nearby cells. [14] A form of programmed necrosis, called necroptosis, has been recognized as an alternative form of programmed cell death. It is hypothesized that necroptosis can serve as a cell-death backup to apoptosis when the apoptosis signaling is blocked by endogenous or exogenous factors such as viruses or mutations. Necroptotic pathways are associated with death receptors such as the tumor necrosis factor receptor 1. [14]

Field of study and etymology

The term "cell necrobiology" has been used to describe the life processes associated with morphological, biochemical, and molecular changes which predispose, precede, and accompany cell death, as well as the consequences and tissue response to cell death. The word is derived from the Greek νεκρό meaning "death", βìο meaning "life", and λόγος meaning "the study of". The term was initially coined to broadly define investigations of the changes that accompany cell death, detected and measured by multiparameter flow- and laser scanning- cytometry.[15] It has been used to describe the real-time changes during cell death, detected by flow cytometry [16]

See also

References

  1. ^ Kierszenbaum, Abraham (2012). Histology and Cell Biology - An Introduction to Pathology. Philadelphia: ELSEVIER SAUNDERS.
  2. ^ Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, Hazan R (2006). "Bacterial Programmed Cell Death and Multicellular Behavior in Bacteria". PLoS Genetics. 2 (10): e135. doi:10.1371/journal.pgen.0020135. PMC 1626106. PMID 17069462.
  3. ^ a b Green, Douglas (2011). Means To An End. New York: Cold Spring Harbor Laboratory Press. ISBN 978-0-87969-887-4.
  4. ^ D. Bowen, Ivor (1993). "Cell Biology International 17". Cell Biology International. 17 (4): 365–380. doi:10.1006/cbir.1993.1075. PMID 8318948.
  5. ^ Schwartz LM, Smith SW, Jones ME, Osborne BA (1993). "Do all programmed cell deaths occur via apoptosis?". PNAS. 90 (3): 980–4. doi:10.1073/pnas.90.3.980. PMC 45794. PMID 8430112.;and, for a more recent view, see Bursch W, Ellinger A, Gerner C, Fröhwein U, Schulte-Hermann R (2000). "Programmed cell death (PCD). Apoptosis, autophagic PCD, or others?". Annals of the New York Academy of Sciences. 926: 1–12. doi:10.1111/j.1749-6632.2000.tb05594.x. PMID 11193023.
  6. ^ Kroemer G, Martin SJ (2005). "Caspase-independent cell death". Nature Medicine. 11 (7): 725–30. doi:10.1038/nm1263. PMID 16015365.
  7. ^ Dixon Scott J.; Lemberg Kathryn M.; Lamprecht Michael R.; Skouta Rachid; Zaitsev Eleina M.; Gleason Caroline E.; Patel Darpan N.; Bauer Andras J.; Cantley Alexandra M.; et al. (2012-05-25). "Ferroptosis: An Iron-Dependent Form of Nonapoptotic Cell Death". Cell. 149 (5): 1060–1072. doi:10.1016/j.cell.2012.03.042. PMC 3367386. PMID 22632970.
  8. ^ a b Zhang J, Xu X, Liu Y. (2004), Activation-Induced Cell Death in T Cells and Autoimmunity. Cell Mol Immunol. 1(3):186-92
  9. ^ Kabelitz D, Janssen O. (1997), Antigen-induced death of T-lymphocytes. Front Biosci. 2:d61-77
  10. ^ "Oncosis". Retrieved 10 August 2010.
  11. ^ Ianzini, Fiorenza; Mackey, Michael A (2007). Mitotic Catastrophe in Apoptosis, Senescence, and Cancer. Humana Press. pp. 73–91. doi:10.1007/978-1-59745-221-2. ISBN 978-1-58829-527-9.
  12. ^ Garg AD, Nowis D, Golab J, Vandenabeele P, Krysko DV, Agostinis P (2010). "Immunogenic cell death, DAMPs and anticancer therapeutics: an emerging amalgamation". Biochim Biophys Acta. 1805 (1): 53–71. doi:10.1016/j.bbcan.2009.08.003. PMID 19720113.
  13. ^ Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F. (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). 1997;27(1):1-20. PMID 9000580
  14. ^ a b D'Arcy, MarkSean. "Cell Death. A review of the major forms of Apoptosis, Necrosis and Autophagy". Cell Biology International. 0 (ja). doi:10.1002/cbin.11137. ISSN 1095-8355.
  15. ^ Darzynkiewicz Z, Juan G, Li X, Gorczyca W, Murakami T, Traganos F. (1997) Cytometry in cell necrobiology: analysis of apoptosis and accidental cell death (necrosis). 1997;27(1):1-20. PMID 9000580
  16. ^ Warnes G, Martins S. (2011)Real-time flow cytometry for the kinetic analysis of oncosis. Cytometry A. 79:181-91.PMID 21254392 doi:10.1002/cyto.a.21022.
Activation-induced cell death

AICD (activation-induced cell death) is programmed cell death caused by the interaction of Fas receptors (Fas, CD95) and Fas ligands (FasL, CD95 ligand). AICD is a negative regulator of activated T lymphocytes that results from repeated stimulation of their T-cell receptors (TCR) and helps to maintain peripheral immune tolerance. Alteration of the process may lead to autoimmune diseases.The AICD effector cell is one that expresses FasL, and apoptosis is induced in the cell expressing the Fas receptor. Both activated T cells and B cells express Fas and undergo clonal deletion by the AICD mechanism. Activated T cells that express both Fas and FasL may be killed by themselves or by each other.

Apoptosis

Apoptosis (from Ancient Greek ἀπόπτωσις "falling off") is a form of programmed cell death that occurs in multicellular organisms. Biochemical events lead to characteristic cell changes (morphology) and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, chromosomal DNA fragmentation, and global mRNA decay. The average adult human loses between 50 and 70 billion cells each day due to apoptosis. For an average human child between the ages of 8 to 14 year old approximately 20 to 30 billion cells die per day.In contrast to necrosis, which is a form of traumatic cell death that results from acute cellular injury, apoptosis is a highly regulated and controlled process that confers advantages during an organism's lifecycle. For example, the separation of fingers and toes in a developing human embryo occurs because cells between the digits undergo apoptosis. Unlike necrosis, apoptosis produces cell fragments called apoptotic bodies that phagocytic cells are able to engulf and remove before the contents of the cell can spill out onto surrounding cells and cause damage to them.Because apoptosis cannot stop once it has begun, it is a highly regulated process. Apoptosis can be initiated through one of two pathways. In the intrinsic pathway the cell kills itself because it senses cell stress, while in the extrinsic pathway the cell kills itself because of signals from other cells. Weak external signals may also activate the intrinsic pathway of apoptosis. Both pathways induce cell death by activating caspases, which are proteases, or enzymes that degrade proteins. The two pathways both activate initiator caspases, which then activate executioner caspases, which then kill the cell by degrading proteins indiscriminately.

Research on apoptosis has increased substantially since the early 1990s. In addition to its importance as a biological phenomenon, defective apoptotic processes have been implicated in a wide variety of diseases. Excessive apoptosis causes atrophy, whereas an insufficient amount results in uncontrolled cell proliferation, such as cancer.

Some factors like Fas receptors and caspases promote apoptosis, while some members of the Bcl-2 family of proteins inhibit apoptosis.

Autolysis (biology)

In biology, autolysis, more commonly known as self-digestion, refers to the destruction of a cell through the action of its own enzymes. It may also refer to the digestion of an enzyme by another molecule of the same enzyme.

The term derives from the Greek words αὐτο- ("self") and λύσις ("splitting").

Autophagy

Autophagy (or autophagocytosis) (from the Ancient Greek αὐτόφαγος autóphagos, meaning "self-devouring" and κύτος kýtos, meaning "hollow") is the natural, regulated mechanism of the cell that disassembles unnecessary or dysfunctional components. It allows the orderly degradation and recycling of cellular components.Three forms of autophagy are commonly described: macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA). In macroautophagy, expendable cytoplasmic constituents are targeted and isolated from the rest of the cell within a double-membraned vesicle known as an autophagosome, which, in time, fuses with an available lysosome, bringing its specialty process of waste management and disposal; and eventually the contents of the vesicle (now called an autolysosome) are degraded and recycled.

In disease, autophagy has been seen as an adaptive response to stress, promoting survival of the cell; but in other cases it appears to promote cell death and morbidity. In the extreme case of starvation, the breakdown of cellular components promotes cellular survival by maintaining cellular energy levels.

The name "autophagy" was coined by Belgian biochemist Christian de Duve in 1963 based on his discovery of the functions of lysosome. The identification of autophagy-related genes in yeast in the 1990s allowed researchers to deduce the mechanisms of autophagy, which eventually led to the award of the 2016 Nobel Prize in Physiology or Medicine to Japanese researcher Yoshinori Ohsumi.

Autoschizis

"Autoschizis" is a term derived from the Greek αὐτο- auto-, meaning "self", and σχίζειν skhizein, "to split". It was introduced in 1998 to describe a novel form of cancer cell death characterized by a reduction in cell size that occurs due to the loss of cytoplasm through self-excision (the cell splits open) without the loss of cell organelles, morphologic degradation of the cells nucleus and nucleolus without the formation of apoptotic bodies and destruction of the cell membrane. The cell death results from karyorrhexis and karyolysis. Autoschizis can be initiated via in vivo treatment with vitamin C (VC), synthetic vitamin K (VK3) or, better, a combination of both. The treatment has been tested on various types of cancer cells in vitro and in vivo with positive results.

Caspase

Caspases (cysteine-aspartic proteases, cysteine aspartases or cysteine-dependent aspartate-directed proteases) are a family of protease enzymes playing essential roles in programmed cell death (including apoptosis, pyroptosis and necroptosis) and inflammation. They are named caspases due to their specific cysteine protease activity – a cysteine in its active site nucleophilically attacks and cleaves a target protein only after an aspartic acid residue. As of 2009, there are 11 or 12 confirmed caspases in humans and 10 in mice, carrying out a variety of cellular functions.

The role of these enzymes in programmed cell death was first identified in 1993, with their functions in apoptosis well characterised. This is a form of programmed cell death, occurring widely during development, and throughout life to maintain cell homeostasis. Activation of caspases ensures that the cellular components are degraded in a controlled manner, carrying out cell death with minimal effect on surrounding tissues.Caspases have other identified roles in programmed cell death such as pyroptosis and necroptosis. These forms of cell death are important for protecting an organism from stress signals and pathogenic attack. Caspases also have a role in inflammation, whereby it directly processes pro-inflammatory cytokines such as pro-IL1β. These are signalling molecules that allow recruitment of immune cells to an infected cell or tissue. There are other identified roles of caspases such as cell proliferation, tumour suppression, cell differentiation, neural development and axon guidance and ageing.Caspase deficiency has been identified as a cause of tumour development. Tumour growth can occur by a combination of factors, including a mutation in a cell cycle gene which removes the restraints on cell growth, combined with mutations in apoptopic proteins such as Caspases that would respond by inducing cell death in abnormally growing cells. Conversely, over-activation of some caspases such as caspase-3 can lead to excessive programmed cell death. This is seen in several neurodegenerative diseases where neural cells are lost, such as Alzheimer's disease. Caspases involved with processing inflammatory signals are also implicated in disease. Insufficient activation of these caspases can increase an organism's susceptibility to infection, as an appropriate immune response may not be activated. The integral role caspases play in cell death and disease has led to research on using caspases as a drug target. For example, inflammatory caspase-1 has been implicated in causing autoimmune diseases; drugs blocking the activation of Caspase-1 have been used to improve the health of patients. Additionally, scientists have used caspases as cancer therapy to kill unwanted cells in tumours.

Immunogenic cell death

Immunogenic cell death or immunogenic apoptosis is a form of cell death caused by some cytostatic agents such as anthracyclines, oxaliplatin and bortezomib, or radiotherapy and photodynamic therapy (PDT). Unlike normal apoptosis, which is mostly nonimmunogenic or even tolerogenic, immunogenic apoptosis of cancer cells can induce an effective antitumour immune response through activation of dendritic cells (DCs) and consequent activation of specific T cell response.

Most of the agents inducing immunogenic cell death are targeting endoplasmic reticulum (ER), leading to ER stress and production of reactive oxygen species (ROS). Both ER stress and ROS production are key players of intracellular signaling pathways that govern ICD.

ICD is characterized by secretion of damage-associated molecular patterns (DAMPs).There are three most important DAMPs which are exposed to the cell surface during ICD. Calreticulin (CRT), one of the DAMP molecules, which is normally in the lumen of endoplasmic reticulum (ER), is translocated after the induction of immunogenic apoptosis to the surface of dying cell where it functions as an "eat me" signal for professional phagocytes. Other important surface exposed DAMPs are heat-shock proteins (HSPs), namely HSP70 and HSP90, which are under stress condition also translocated to the plasma membrane. On the cell surface they have an immunostimulatory effect, based on their interaction with number of antigen-presenting cell (APC) surface receptors like CD91 and CD40 and also facilitate crosspresentation of antigens derived from tumour cells on MHC class I molecule, which than leads to the CD8+ T cell response. Other important DAMPs, characteristic for ICD are secreted amphoterin (HMGB1) and ATP. HMGB1 is considered to be late apoptotic marker and its release to the extracellular space seems to be required for the optimal release and presentation of tumour antigens to dendritic cells. It binds to several pattern recognition receptors (PRRs) such as Toll-like receptor (TLR) 2 and 4, which are expressed on APCs. The most recently found DAMP released during immunogenic cell death is ATP, which functions as a "find-me" signal for monocytes when secreted and induces their attraction to the site of apoptosis.The concept of ICD has started taking shape over past few years, there were found some inducers mentioned above, which have a potential as anti-tumour vaccination strategies. The use of ICD inducers alone or in combination with other anticancer therapies (targeted therapies, immunotherapies ) has been effective in mouse models of cancer and is being tested in the clinic.

Ischemic cell death

Ischemic cell death, or oncosis, is a form of accidental cell death. The process is characterized by an ATP depletion within the cell leading to impairment of ionic pumps, cell swelling, clearing of the cytosol, dilation of the Endoplasmic Reticulum and Golgi, mitochondrial condensation, chromatin clumping, and cytoplasmic bleb formation. Oncosis refers to a series of cellular reactions following injury that precedes cell death. The process of oncosis is divided into three stages. First, the cell becomes committed to oncosis as a result of damage incurred to the plasma membrane through toxicity or ischemia, resulting in the leak of ions and water due to ATP depletion. The ionic imbalance that occurs subsequently causes the cell to swell without a concurrent change in membrane permeability to reverse the swelling. Stage two the reversibility threshold for the cell is passed and it becomes committed to cell death. During this stage the membrane becomes abnormally permeable to trypan blue and propidium iodide, indicating membrane compromise. The final stage is cell death and removal of the cell via phagocytosis mediated by an inflammatory response.

Karyorrhexis

Karyorrhexis (from Greek κάρυον karyon, "kernel, seed or nucleus", and ῥῆξις rhexis, "bursting") is the destructive fragmentation of the nucleus of a dying cell whereby its chromatin is distributed irregularly throughout the cytoplasm. It is usually preceded by pyknosis and can occur as a result of either programmed cell death (apoptosis), senescence, or necrosis.

In apoptosis, the cleavage of DNA is done by Ca2+ and Mg2+ -dependent endonucleases.

Necrosis

Necrosis (from the Greek νέκρωσις "death, the stage of dying, the act of killing" from νεκρός "dead") is a form of cell injury which results in the premature death of cells in living tissue by autolysis.Necrosis is caused by factors external to the cell or tissue, such as infection, toxins, or trauma which result in the unregulated digestion of cell components.

In contrast, apoptosis is a naturally occurring programmed and targeted cause of cellular death.

While apoptosis often provides beneficial effects to the organism, necrosis is almost always detrimental and can be fatal.Cellular death due to necrosis does not follow the apoptotic signal transduction pathway, but rather various receptors are activated, and result in the loss of cell membrane integrity and an uncontrolled release of products of cell death into the extracellular space.This initiates in the surrounding tissue an inflammatory response which attracts leukocytes and nearby phagocytes which eliminate the dead cells by phagocytosis. However, microbial damaging substances released by leukocytes would create collateral damage to surrounding tissues. This excess collateral damage inhibits the healing process. Thus, untreated necrosis results in a build-up of decomposing dead tissue and cell debris at or near the site of the cell death. A classic example is gangrene. For this reason, it is often necessary to remove necrotic tissue surgically, a procedure known as debridement.

Neurodegeneration

Neurodegeneration is the progressive loss of structure or function of neurons, including death of neurons. Many neurodegenerative diseases – including amyotrophic lateral sclerosis, Parkinson's disease, Alzheimer's disease, and Huntington's disease – occur as a result of neurodegenerative processes. Such diseases are incurable, resulting in progressive degeneration and/or death of neuron cells. As research progresses, many similarities appear that relate these diseases to one another on a sub-cellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate many diseases simultaneously. There are many parallels between different neurodegenerative disorders including atypical protein assemblies as well as induced cell death. Neurodegeneration can be found in many different levels of neuronal circuitry ranging from molecular to systemic.

PD-L1

Programmed death-ligand 1 (PD-L1) also known as cluster of differentiation 274 (CD274) or B7 homolog 1 (B7-H1) is a protein that in humans is encoded by the CD274 gene.Programmed death-ligand 1 (PD-L1) is a 40kDa type 1 transmembrane protein that has been speculated to play a major role in suppressing the adaptive arm of immune system during particular events such as pregnancy, tissue allografts, autoimmune disease and other disease states such as hepatitis. Normally the adaptive immune system reacts to antigens that are associated with immune system activation by exogenous or endogenous danger signals. In turn, clonal expansion of antigen-specific CD8+ T cells and/or CD4+ helper cells is propagated. The binding of PD-L1 to the inhibitory checkpoint molecule PD-1 transmits an inhibitory signal based on interaction with phosphatases (SHP-1 or SHP-2) via Immunoreceptor Tyrosine-Based Switch Motif (ITSM) motif . This reduces the proliferation of antigen-specific T-cells in lymph nodes, while simultaneously reducing apoptosis in regulatory T cells (anti-inflammatory, suppressive T cells) - further mediated by a lower regulation of the gene Bcl-2.

Paraptosis

Paraptosis (from the Greek παρά para, "related to" and apoptosis) is a type of programmed cell death, morphologically distinct from apoptosis and necrosis. The defining features of paraptosis are cytoplasmic vacuolation, independent of caspase activation and inhibition, and lack of apoptotic morphology. Paraptosis lacks several of the hallmark characteristics of apoptosis, such as membrane blebbing, chromatin condensation, and nuclear fragmentation. Like apoptosis and other types of programmed cell death, the cell is involved in causing its own death, and gene expression is required. This is in contrast to necrosis, which is non-programmed cell death that results from injury to the cell.

Paraptosis has been found in some developmental and neurodegenerative cell deaths, as well as induced by several cancer drugs.

Parthanatos

Parthanatos (derived from the Greek Θάνατος, "Death") is a form of programmed cell death that is distinct from other cell death processes such as necrosis and apoptosis. While necrosis is caused by acute cell injury resulting in traumatic cell death and apoptosis is a highly controlled process signalled by apoptotic intracellular signals, parthanatos is caused by the accumulation of PAR and the nuclear translocation of apoptosis-inducing factor (AIF) from mitochondria. Parthanatos is also known as PARP-1 dependent cell death. PARP-1 mediates parthanatos when it is over-activated in response to extreme genomic stress and synthesizes PAR which causes nuclear translocation of AIF. Parthanatos is involved in diseases that afflict hundreds of millions of people worldwide. Well known diseases involving parthanatos include Parkinson's disease, stroke, heart attack, and diabetes. It also has potential use as a treatment for ameliorating disease and various medical conditions such as diabetes and obesity.

Poly (ADP-ribose) polymerase

Poly (ADP-ribose) polymerase (PARP) is a family of proteins involved in a number of cellular processes such as DNA repair, genomic stability, and programmed cell death.

Programmed cell death

Programmed cell death (or PCD) is the death of a cell in any form, mediated by an intracellular program, and is also referred to as Cellular Suicide. PCD is carried out in a biological process, which usually confers advantage during an organism's life-cycle. For example, the differentiation of fingers and toes in a developing human embryo occurs because cells between the fingers apoptose; the result is that the digits are separate. PCD serves fundamental functions during both plant and animal tissue development.

Apoptosis and autophagy, both are the forms of programmed cell death, but necrosis was long seen as a non-physiological process that occurs as a result of infection or injury.Necrosis is the death of a cell caused by external factors such as trauma or infection and occurs in several different forms. Recently a form of programmed necrosis, called necroptosis, has been recognized as an alternative form of programmed cell death. It is hypothesized that necroptosis can serve as a cell-death backup to apoptosis when the apoptosis signaling is blocked by endogenous or exogenous factors such as viruses or mutations. Most recently, other types of regulated necrosis have been discovered as well, which share several signaling events with necroptosis and apoptosis.

Programmed cell death protein 1

Programmed cell death protein 1, also known as PD-1 and CD279 (cluster of differentiation 279), is a protein on the surface of cells that has a role in regulating the immune system's response to the cells of the human body by down-regulating the immune system and promoting self-tolerance by suppressing T cell inflammatory activity. This prevents autoimmune diseases, but it can also prevent the immune system from killing cancer cells.PD-1 is an immune checkpoint and guards against autoimmunity through two mechanisms. First, it promotes apoptosis (programmed cell death) of antigen-specific T-cells in lymph nodes. Second, it reduces apoptosis in regulatory T cells (anti-inflammatory, suppressive T cells).PD-1 inhibitors, a new class of drugs that block PD-1, activate the immune system to attack tumors and are used to treat certain types of cancer.The PD-1 protein in humans is encoded by the PDCD1 gene. PD-1 is a cell surface receptor that belongs to the immunoglobulin superfamily and is expressed on T cells and pro-B cells. PD-1 binds two ligands, PD-L1 and PD-L2.

Pyknosis

Pyknosis, or karyopyknosis, is the irreversible condensation of chromatin in the nucleus of a cell undergoing necrosis or apoptosis. It is followed by karyorrhexis, or fragmentation of the nucleus.

Pyknosis (from Greek pyknono meaning "to thicken up, to close or to condense") is also observed in the maturation of erythrocytes (a red blood cell) and the neutrophil (a type of white blood cell). The maturing metarubricyte (a stage in RBC maturation) will condense its nucleus before expelling it to become a reticulocyte. The maturing neutrophil will condense its nucleus into several connected lobes that stay in the cell until the end of its cell life.

Pyknotic nuclei are often found in the zona reticularis of the adrenal gland. They are also found in the keratinocytes of the outermost layer in parakeratinised epithelium.

Reoviridae

Reoviridae is a family of viruses. They have a wide host range, including vertebrates, invertebrates, plants, protists and fungi. They are unique in that they lack lipid envelopes and package their genomes of discrete double-stranded segments of RNA within multi-layered capsids. Lack of a lipid envelope has allowed three-dimensional structures of these large complex viruses (diameter,∼60–100 nm) to be obtained. There are currently 87 species in this family, divided among 30 genera. Reoviruses can affect the gastrointestinal system (such as Rotavirus) and respiratory tract. The name "Reo-" is derived from respiratory enteric orphan viruses. The term "orphan virus" refers to the fact that some of these viruses have been observed not associated with any known disease. Even though viruses in the family Reoviridae have more recently been identified with various diseases, the original name is still used.

Reovirus infection occurs often in humans, but most cases are mild or subclinical. Rotavirus, however, can cause severe diarrhea and intestinal distress in children, and lab studies in mice have implicated Orthoreovirus in the expression of coeliac disease in pre-disposed individuals. The virus can be readily detected in feces, and may also be recovered from pharyngeal or nasal secretions, urine, cerebrospinal fluid, and blood. Despite the ease of finding Reovirus in clinical specimens, their role in human disease or treatment is still uncertain.

Some viruses of this family, such as Phytoreovirus and Oryzavirus, infect plants. Most of the plant-infecting reoviruses are transmitted between plants by insect vectors. The viruses replicate in both the plant and the insect, generally causing disease in the plant, but little or no harm to the infected insect.

Principles of pathology
Anatomical pathology
Clinical pathology
In medicine
Lists
Mortality
After death
Paranormal
Legal
Fields
Other

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.