Carboniferous

The Carboniferous is a geologic period and system that spans 60 million years from the end of the Devonian Period 358.9 million years ago (Mya), to the beginning of the Permian Period, 298.9 Mya. The name Carboniferous means "coal-bearing" and derives from the Latin words carbō ("coal") and ferō ("I bear, I carry"), and was coined by geologists William Conybeare and William Phillips in 1822.[6]

Based on a study of the British rock succession, it was the first of the modern 'system' names to be employed, and reflects the fact that many coal beds were formed globally during that time.[7] The Carboniferous is often treated in North America as two geological periods, the earlier Mississippian and the later Pennsylvanian.[8] Terrestrial animal life was well established by the Carboniferous period.[9] Amphibians were the dominant land vertebrates, of which one branch would eventually evolve into amniotes, the first solely terrestrial vertebrates.

Arthropods were also very common, and many (such as Meganeura) were much larger than those of today. Vast swaths of forest covered the land, which would eventually be laid down and become the coal beds characteristic of the Carboniferous stratigraphy evident today. The atmospheric content of oxygen also reached its highest levels in geological history during the period, 35%[10] compared with 21% today, allowing terrestrial invertebrates to evolve to great size.[10]

The later half of the period experienced glaciations, low sea level, and mountain building as the continents collided to form Pangaea. A minor marine and terrestrial extinction event, the Carboniferous rainforest collapse, occurred at the end of the period, caused by climate change.[11]

Carboniferous Period
358.9–298.9 million years ago
C
Mean atmospheric O
2
content over period duration
c. 32.3 vol %[1][2]
(162 % of modern level)
Mean atmospheric CO
2
content over period duration
c. 800 ppm[3]
(3 times pre-industrial level)
Mean surface temperature over period duration c. 14 °C[4]
(0 °C above modern level)
Sea level (above present day) Falling from 120 m to present-day level throughout the Mississippian, then rising steadily to about 80 m at end of period[5]
Key events in the Carboniferous
-360 —
-355 —
-350 —
-345 —
-340 —
-335 —
-330 —
-325 —
-320 —
-315 —
-310 —
-305 —
-300 —
-295 —
Key events of the Carboniferous Period
Axis scale: millions of years ago

Subdivisions

In the United States the Carboniferous is usually broken into Mississippian (earlier) and Pennsylvanian (later) subperiods. The Mississippian is about twice as long as the Pennsylvanian, but due to the large thickness of coal-bearing deposits with Pennsylvanian ages in Europe and North America, the two subperiods were long thought to have been more or less equal in duration.[12]

System Series
(NW Europe)
Stage
(NW Europe)
Series
(ICS)
Stage
(ICS)
Age
(Ma)
Permian younger
Carboniferous Silesian Stephanian Pennsylvanian Gzhelian 298.9–303.7
Westphalian Kasimovian 303.7–307.0
Moscovian 307.0–315.2
Bashkirian 315.2–323.2
Namurian
Mississippian Serpukhovian 323.2–330.9
Dinantian Visean Visean 330.9–346.7
Tournaisian Tournaisian 346.7–358.9
Devonian older
Subdivisions of the Carboniferous system in Europe compared with the official ICS-stages (as of 2018)

In Europe the Lower Carboniferous sub-system is known as the Dinantian, comprising the Tournaisian and Visean Series, dated at 362.5-332.9 Ma, and the Upper Carboniferous sub-system is known as the Silesian, comprising the Namurian, Westphalian, and Stephanian Series, dated at 332.9-298.9 Ma. The Silesian is roughly contemporaneous with the late Mississippian Serpukhovian plus the Pennsylvanian. In Britain the Dinantian is traditionally known as the Carboniferous Limestone, the Namurian as the Millstone Grit, and the Westphalian as the Coal Measures and Pennant Sandstone.

The International Commission on Stratigraphy (ICS) faunal stages (in bold) from youngest to oldest, together with some of their regional subdivisions, are:

Palaeogeography

A global drop in sea level at the end of the Devonian reversed early in the Carboniferous; this created the widespread inland seas and the carbonate deposition of the Mississippian.[13] There was also a drop in south polar temperatures; southern Gondwanaland was glaciated throughout the period, though it is uncertain if the ice sheets were a holdover from the Devonian or not.[13] These conditions apparently had little effect in the deep tropics, where lush swamps, later to become coal, flourished to within 30 degrees of the northernmost glaciers.[13]

US pennsylvanian general USGS
Generalized geographic map of the United States in Middle Pennsylvanian time.

Mid-Carboniferous, a drop in sea level precipitated a major marine extinction, one that hit crinoids and ammonites especially hard.[13] This sea level drop and the associated unconformity in North America separate the Mississippian subperiod from the Pennsylvanian subperiod.[13] This happened about 323 million years ago, at the onset of the Permo-Carboniferous Glaciation.[14]

The Carboniferous was a time of active mountain-building as the supercontinent Pangaea came together. The southern continents remained tied together in the supercontinent Gondwana, which collided with North America–Europe (Laurussia) along the present line of eastern North America. This continental collision resulted in the Hercynian orogeny in Europe, and the Alleghenian orogeny in North America; it also extended the newly uplifted Appalachians southwestward as the Ouachita Mountains.[13] In the same time frame, much of present eastern Eurasian plate welded itself to Europe along the line of the Ural Mountains. Most of the Mesozoic supercontinent of Pangea was now assembled, although North China (which would collide in the Latest Carboniferous), and South China continents were still separated from Laurasia. The Late Carboniferous Pangaea was shaped like an "O."

There were two major oceans in the Carboniferous—Panthalassa and Paleo-Tethys, which was inside the "O" in the Carboniferous Pangaea. Other minor oceans were shrinking and eventually closed - Rheic Ocean (closed by the assembly of South and North America), the small, shallow Ural Ocean (which was closed by the collision of Baltica and Siberia continents, creating the Ural Mountains) and Proto-Tethys Ocean (closed by North China collision with Siberia/Kazakhstania).

Climate

Average global temperatures in the Early Carboniferous Period were high: approximately 20 °C (68 °F). However, cooling during the Middle Carboniferous reduced average global temperatures to about 12 °C (54 °F). Lack of growth rings of fossilized trees suggest a lack of seasons of a tropical climate. Glaciations in Gondwana, triggered by Gondwana's southward movement, continued into the Permian and because of the lack of clear markers and breaks, the deposits of this glacial period are often referred to as Permo-Carboniferous in age.

The cooling and drying of the climate led to the Carboniferous Rainforest Collapse (CRC) during the late Carboniferous. Tropical rainforests fragmented and then were eventually devastated by climate change.[11]

Rocks and coal

MississippianMarbleUT
Lower Carboniferous marble in Big Cottonwood Canyon, Wasatch Mountains, Utah.

Carboniferous rocks in Europe and eastern North America largely consist of a repeated sequence of limestone, sandstone, shale and coal beds.[15] In North America, the early Carboniferous is largely marine limestone, which accounts for the division of the Carboniferous into two periods in North American schemes. The Carboniferous coal beds provided much of the fuel for power generation during the Industrial Revolution and are still of great economic importance.

The large coal deposits of the Carboniferous may owe their existence primarily to two factors. The first of these is the appearance of wood tissue and bark-bearing trees. The evolution of the wood fiber lignin and the bark-sealing, waxy substance suberin variously opposed decay organisms so effectively that dead materials accumulated long enough to fossilise on a large scale. The second factor was the lower sea levels that occurred during the Carboniferous as compared to the preceding Devonian period. This promoted the development of extensive lowland swamps and forests in North America and Europe. Based on a genetic analysis of mushroom fungi, it was proposed that large quantities of wood were buried during this period because animals and decomposing bacteria had not yet evolved enzymes that could effectively digest the resistant phenolic lignin polymers and waxy suberin polymers. They suggest that fungi that could break those substances down effectively only became dominant towards the end of the period, making subsequent coal formation much rarer.[16][17][18]

The Carboniferous trees made extensive use of lignin. They had bark to wood ratios of 8 to 1, and even as high as 20 to 1. This compares to modern values less than 1 to 4. This bark, which must have been used as support as well as protection, probably had 38% to 58% lignin. Lignin is insoluble, too large to pass through cell walls, too heterogeneous for specific enzymes, and toxic, so that few organisms other than Basidiomycetes fungi can degrade it. To oxidize it requires an atmosphere of greater than 5% oxygen, or compounds such as peroxides. It can linger in soil for thousands of years and its toxic breakdown products inhibit decay of other substances.[19] One possible reason for its high percentages in plants at that time was to provide protection from insects in a world containing very effective insect herbivores (but nothing remotely as effective as modern plant eating insects) and probably many fewer protective toxins produced naturally by plants than exist today. As a result, undegraded carbon built up, resulting in the extensive burial of biologically fixed carbon, leading to an increase in oxygen levels in the atmosphere; estimates place the peak oxygen content as high as 35%, as compared to 21% today.[20] This oxygen level may have increased wildfire activity. It also may have promoted gigantism of insects and amphibians — creatures that have been constrained in size by respiratory systems that are limited in their physiological ability to transport and distribute oxygen at the lower atmospheric concentrations that have since been available.[21]

In eastern North America, marine beds are more common in the older part of the period than the later part and are almost entirely absent by the late Carboniferous. More diverse geology existed elsewhere, of course. Marine life is especially rich in crinoids and other echinoderms. Brachiopods were abundant. Trilobites became quite uncommon. On land, large and diverse plant populations existed. Land vertebrates included large amphibians.

Life

Plants

Meyers b15 s0272b
Etching depicting some of the most significant plants of the Carboniferous.

Early Carboniferous land plants, some of which were preserved in coal balls, were very similar to those of the preceding Late Devonian, but new groups also appeared at this time.

Lycopsid joggins mcr1
Ancient in situ lycopsid, probably Sigillaria, with attached stigmarian roots.
Lycopsid mcr2
Base of a lycopsid showing connection with bifurcating stigmarian roots.

The main Early Carboniferous plants were the Equisetales (horse-tails), Sphenophyllales (scrambling plants), Lycopodiales (club mosses), Lepidodendrales (scale trees), Filicales (ferns), Medullosales (informally included in the "seed ferns", an artificial assemblage of a number of early gymnosperm groups) and the Cordaitales. These continued to dominate throughout the period, but during late Carboniferous, several other groups, Cycadophyta (cycads), the Callistophytales (another group of "seed ferns"), and the Voltziales (related to and sometimes included under the conifers), appeared.

The Carboniferous lycophytes of the order Lepidodendrales, which are cousins (but not ancestors) of the tiny club-moss of today, were huge trees with trunks 30 meters high and up to 1.5 meters in diameter. These included Lepidodendron (with its cone called Lepidostrobus), Anabathra, Lepidophloios and Sigillaria. The roots of several of these forms are known as Stigmaria. Unlike present-day trees, their secondary growth took place in the cortex, which also provided stability, instead of the xylem.[22] The Cladoxylopsids were large trees, that were ancestors of ferns, first arising in the Carboniferous.[23]

The fronds of some Carboniferous ferns are almost identical with those of living species. Probably many species were epiphytic. Fossil ferns and "seed ferns" include Pecopteris, Cyclopteris, Neuropteris, Alethopteris, and Sphenopteris; Megaphyton and Caulopteris were tree ferns.

The Equisetales included the common giant form Calamites, with a trunk diameter of 30 to 60 cm (24 in) and a height of up to 20 m (66 ft). Sphenophyllum was a slender climbing plant with whorls of leaves, which was probably related both to the calamites and the lycopods.

Cordaites, a tall plant (6 to over 30 meters) with strap-like leaves, was related to the cycads and conifers; the catkin-like reproductive organs, which bore ovules/seeds, is called Cardiocarpus. These plants were thought to live in swamps. True coniferous trees (Walchia, of the order Voltziales) appear later in the Carboniferous, and preferred higher drier ground.

Marine invertebrates

In the oceans the marine invertebrate groups are the Foraminifera, corals, Bryozoa, Ostracoda, brachiopods, ammonoids, hederelloids, microconchids and echinoderms (especially crinoids). For the first time foraminifera take a prominent part in the marine faunas. The large spindle-shaped genus Fusulina and its relatives were abundant in what is now Russia, China, Japan, North America; other important genera include Valvulina, Endothyra, Archaediscus, and Saccammina (the latter common in Britain and Belgium). Some Carboniferous genera are still extant.

The microscopic shells of radiolarians are found in cherts of this age in the Culm of Devon and Cornwall, and in Russia, Germany and elsewhere. Sponges are known from spicules and anchor ropes, and include various forms such as the Calcispongea Cotyliscus and Girtycoelia, the demosponge Chaetetes, and the genus of unusual colonial glass sponges Titusvillia.

Both reef-building and solitary corals diversify and flourish; these include both rugose (for example, Caninia, Corwenia, Neozaphrentis), heterocorals, and tabulate (for example, Chladochonus, Michelinia) forms. Conularids were well represented by Conularia

Bryozoa are abundant in some regions; the fenestellids including Fenestella, Polypora, and Archimedes, so named because it is in the shape of an Archimedean screw. Brachiopods are also abundant; they include productids, some of which (for example, Gigantoproductus) reached very large (for brachiopods) size and had very thick shells, while others like Chonetes were more conservative in form. Athyridids, spiriferids, rhynchonellids, and terebratulids are also very common. Inarticulate forms include Discina and Crania. Some species and genera had a very wide distribution with only minor variations.

Annelids such as Serpulites are common fossils in some horizons. Among the mollusca, the bivalves continue to increase in numbers and importance. Typical genera include Aviculopecten, Posidonomya, Nucula, Carbonicola, Edmondia, and Modiola. Gastropods are also numerous, including the genera Murchisonia, Euomphalus, Naticopsis. Nautiloid cephalopods are represented by tightly coiled nautilids, with straight-shelled and curved-shelled forms becoming increasingly rare. Goniatite ammonoids are common.

Trilobites are rarer than in previous periods, on a steady trend towards extinction, represented only by the proetid group. Ostracoda, a class of crustaceans, were abundant as representatives of the meiobenthos; genera included Amphissites, Bairdia, Beyrichiopsis, Cavellina, Coryellina, Cribroconcha, Hollinella, Kirkbya, Knoxiella, and Libumella.

Amongst the echinoderms, the crinoids were the most numerous. Dense submarine thickets of long-stemmed crinoids appear to have flourished in shallow seas, and their remains were consolidated into thick beds of rock. Prominent genera include Cyathocrinus, Woodocrinus, and Actinocrinus. Echinoids such as Archaeocidaris and Palaeechinus were also present. The blastoids, which included the Pentreinitidae and Codasteridae and superficially resembled crinoids in the possession of long stalks attached to the seabed, attain their maximum development at this time.

Aviculopecten subcardiformis01

Aviculopecten subcardiformis; a bivalve from the Logan Formation (Lower Carboniferous) of Wooster, Ohio (external mold).

LoganFauna011312

Bivalves (Aviculopecten) and brachiopods (Syringothyris) in the Logan Formation (Lower Carboniferous) in Wooster, Ohio.

Syringothyris01

Syringothyris sp.; a spiriferid brachiopod from the Logan Formation (Lower Carboniferous) of Wooster, Ohio (internal mold).

Palaeophycus01

Palaeophycus ichnosp.; a trace fossil from the Logan Formation (Lower Carboniferous) of Wooster, Ohio.

PlatyceratidMississippian

Crinoid calyx from the Lower Carboniferous of Ohio with a conical platyceratid gastropod (Palaeocapulus acutirostre) attached.

Conulariid03

Conulariid from the Lower Carboniferous of Indiana.

Syringoporid

Tabulate coral (a syringoporid); Boone Limestone (Lower Carboniferous) near Hiwasse, Arkansas.

Freshwater and lagoonal invertebrates

Freshwater Carboniferous invertebrates include various bivalve molluscs that lived in brackish or fresh water, such as Anthraconaia, Naiadites, and Carbonicola; diverse crustaceans such as Candona, Carbonita, Darwinula, Estheria, Acanthocaris, Dithyrocaris, and Anthrapalaemon.

Megarachne BW
The upper Carboniferous giant spider-like eurypterid Megarachne grew to legspans of 50 cm (20 in).

The Eurypterids were also diverse, and are represented by such genera as Adelophthalmus, Megarachne (originally misinterpreted as a giant spider, hence its name) and the specialised very large Hibbertopterus. Many of these were amphibious.

Frequently a temporary return of marine conditions resulted in marine or brackish water genera such as Lingula, Orbiculoidea, and Productus being found in the thin beds known as marine bands.

Terrestrial invertebrates

Fossil remains of air-breathing insects,[24] myriapods and arachnids[25] are known from the late Carboniferous, but so far not from the early Carboniferous.[9] The first true priapulids appeared during this period. Their diversity when they do appear, however, shows that these arthropods were both well developed and numerous. Their large size can be attributed to the moistness of the environment (mostly swampy fern forests) and the fact that the oxygen concentration in the Earth's atmosphere in the Carboniferous was much higher than today.[26] This required less effort for respiration and allowed arthropods to grow larger with the up to 2.6-meter-long (8.5 ft) millipede-like Arthropleura being the largest-known land invertebrate of all time. Among the insect groups are the huge predatory Protodonata (griffinflies), among which was Meganeura, a giant dragonfly-like insect and with a wingspan of ca. 75 cm (30 in)—the largest flying insect ever to roam the planet. Further groups are the Syntonopterodea (relatives of present-day mayflies), the abundant and often large sap-sucking Palaeodictyopteroidea, the diverse herbivorous Protorthoptera, and numerous basal Dictyoptera (ancestors of cockroaches).[24] Many insects have been obtained from the coalfields of Saarbrücken and Commentry, and from the hollow trunks of fossil trees in Nova Scotia. Some British coalfields have yielded good specimens: Archaeoptitus, from the Derbyshire coalfield, had a spread of wing extending to more than 35 cm (14 in); some specimens (Brodia) still exhibit traces of brilliant wing colors. In the Nova Scotian tree trunks land snails (Archaeozonites, Dendropupa) have been found.

Meganeura

The late Carboniferous giant dragonfly-like insect Meganeura grew to wingspans of 75 cm (30 in).

Pulmonoscopius BW

The gigantic Pulmonoscorpius from the early Carboniferous reached a length of up to 70 cm (28 in).

Fish

Many fish inhabited the Carboniferous seas; predominantly Elasmobranchs (sharks and their relatives). These included some, like Psammodus, with crushing pavement-like teeth adapted for grinding the shells of brachiopods, crustaceans, and other marine organisms. Other sharks had piercing teeth, such as the Symmoriida; some, the petalodonts, had peculiar cycloid cutting teeth. Most of the sharks were marine, but the Xenacanthida invaded fresh waters of the coal swamps. Among the bony fish, the Palaeonisciformes found in coastal waters also appear to have migrated to rivers. Sarcopterygian fish were also prominent, and one group, the Rhizodonts, reached very large size.

Most species of Carboniferous marine fish have been described largely from teeth, fin spines and dermal ossicles, with smaller freshwater fish preserved whole.

Freshwater fish were abundant, and include the genera Ctenodus, Uronemus, Acanthodes, Cheirodus, and Gyracanthus.

Sharks (especially the Stethacanthids) underwent a major evolutionary radiation during the Carboniferous.[27] It is believed that this evolutionary radiation occurred because the decline of the placoderms at the end of the Devonian period caused many environmental niches to become unoccupied and allowed new organisms to evolve and fill these niches.[27] As a result of the evolutionary radiation Carboniferous sharks assumed a wide variety of bizarre shapes including Stethacanthus which possessed a flat brush-like dorsal fin with a patch of denticles on its top.[27] Stethacanthus's unusual fin may have been used in mating rituals.[27]

Stethacanthus BW

Akmonistion of the shark order Symmoriida roamed the oceans of the early Carboniferous.

Falcatus

Falcatus was a Carboniferous shark, with a high degree of sexual dimorphism.

Tetrapods

Carboniferous amphibians were diverse and common by the middle of the period, more so than they are today; some were as long as 6 meters, and those fully terrestrial as adults had scaly skin.[28] They included a number of basal tetrapod groups classified in early books under the Labyrinthodontia. These had long bodies, a head covered with bony plates and generally weak or undeveloped limbs. The largest were over 2 meters long. They were accompanied by an assemblage of smaller amphibians included under the Lepospondyli, often only about 15 cm (6 in) long. Some Carboniferous amphibians were aquatic and lived in rivers (Loxomma, Eogyrinus, Proterogyrinus); others may have been semi-aquatic (Ophiderpeton, Amphibamus, Hyloplesion) or terrestrial (Dendrerpeton, Tuditanus, Anthracosaurus).

The Carboniferous Rainforest Collapse slowed the evolution of amphibians who could not survive as well in the cooler, drier conditions. Reptiles, however, prospered due to specific key adaptations.[11] One of the greatest evolutionary innovations of the Carboniferous was the amniote egg, which allowed the laying of eggs in a dry environment, allowing for the further exploitation of the land by certain tetrapods. These included the earliest sauropsid reptiles (Hylonomus), and the earliest known synapsid (Archaeothyris). These small lizard-like animals quickly gave rise to many descendants, reptiles, birds, and mammals.

Reptiles underwent a major evolutionary radiation in response to the drier climate that preceded the rainforest collapse.[11][29] By the end of the Carboniferous period, amniotes had already diversified into a number of groups, including protorothyridids, captorhinids, araeoscelids, and several families of pelycosaurs.

Pederpes22small

The amphibian-like Pederpes, the most primitive Mississippian tetrapod

Hylonomus BW

Hylonomus, the earliest sauropsid reptile, appeared in the Pennsylvanian.

Petrolacosaurus BW

Petrolacosaurus, the first diapsid reptile known, lived during the late Carboniferous.

Archaeothyris BW

Archaeothyris was a very early synapsid and the oldest known.

Fungi

Because plants and animals were growing in size and abundance in this time (for example, Lepidodendron), land fungi diversified further. Marine fungi still occupied the oceans. All modern classes of fungi were present in the Late Carboniferous (Pennsylvanian Epoch).[30]

Extinction events

Romer's gap

The first 15 million years of the Carboniferous had very limited terrestrial fossils. This gap in the fossil record is called Romer's gap after the American palaentologist Alfred Romer. While it has long been debated whether the gap is a result of fossilisation or relates to an actual event, recent work indicates the gap period saw a drop in atmospheric oxygen levels, indicating some sort of ecological collapse.[31] The gap saw the demise of the Devonian fish-like ichthyostegalian labyrinthodonts, and the rise of the more advanced temnospondyl and reptiliomorphan amphibians that so typify the Carboniferous terrestrial vertebrate fauna.

Carboniferous rainforest collapse

Before the end of the Carboniferous Period, an extinction event occurred. On land this event is referred to as the Carboniferous Rainforest Collapse (CRC).[11] Vast tropical rainforests collapsed suddenly as the climate changed from hot and humid to cool and arid. This was likely caused by intense glaciation and a drop in sea levels.[32]

The new climatic conditions were not favorable to the growth of rainforest and the animals within them. Rainforests shrank into isolated islands, surrounded by seasonally dry habitats. Towering lycopsid forests with a heterogeneous mixture of vegetation were replaced by much less diverse tree-fern dominated flora.

Amphibians, the dominant vertebrates at the time, fared poorly through this event with large losses in biodiversity; reptiles continued to diversify due to key adaptations that let them survive in the drier habitat, specifically the hard-shelled egg and scales, both of which retain water better than their amphibian counterparts.[11]

See also

References

  1. ^ Image:Sauerstoffgehalt-1000mj.svg
  2. ^ File:OxygenLevel-1000ma.svg
  3. ^ Image:Phanerozoic Carbon Dioxide.png
  4. ^ Image:All palaeotemps.png
  5. ^ Haq, B. U.; Schutter, SR (2008). "A Chronology of Paleozoic Sea-Level Changes". Science. 322 (5898): 64–68. Bibcode:2008Sci...322...64H. doi:10.1126/science.1161648. PMID 18832639.
  6. ^ Rev. W. D. Conybeare and William Phillips, Outlines of the Geology of England and Wales ..., Part I, (London, England: William Phillips, 1822). On page 323, Conybeare titles the chapter "Book III. Medial or Carboniferous Order."
  7. ^ Cossey, P.J. et al. (2004) British Lower Carboniferous Stratigraphy, Geological Conservation Review Series, no 29, JNCC, Peterborough (p3)
  8. ^ "The Carboniferous Period". Archived from the original on 2012-02-10.
  9. ^ a b Russell Garwood; Gregory Edgecombe (2011). "Early terrestrial animals, evolution and uncertainty". Evolution, Education, and Outreach. 4 (3): 489–501. doi:10.1007/s12052-011-0357-y.
  10. ^ a b Beerling, David (2007). The emerald planet: how plants changed Earth's history. Oxford University press. p. 47. ISBN 9780192806024.
  11. ^ a b c d e f Sahney, S.; Benton, M.J. & Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica" (PDF). Geology. 38 (12): 1079–1082. Bibcode:2010Geo....38.1079S. doi:10.1130/G31182.1. Archived from the original on 2010-12-04.
  12. ^ Menning et al. 2006.
  13. ^ a b c d e f Stanley, S.M. (1999). "Earth System History". New York: Freeman and Company.
  14. ^ Global Warming and Al Gore Faustus Adventures inside the Earth. Fox Badibanga. ISBN 9780615289670.
  15. ^ Stanley (1999), p 426
  16. ^ Floudas, D.; Binder, M.; Riley, R.; Barry, K.; Blanchette, R. A.; Henrissat, B.; Martinez, A. T.; Otillar, R.; Spatafora, J. W.; Yadav, J. S.; Aerts, A.; Benoit, I.; Boyd, A.; Carlson, A.; Copeland, A.; Coutinho, P. M.; de Vries, R. P.; Ferreira, P.; Findley, K.; Foster, B.; Gaskell, J.; Glotzer, D.; Gorecki, P.; Heitman, J.; Hesse, C.; Hori, C.; Igarashi, K.; Jurgens, J. A.; Kallen, N.; Kersten, P.; Kohler, A.; Kues, U.; Kumar, T. K. A.; Kuo, A.; LaButti, K.; Larrondo, L. F.; Lindquist, E.; Ling, A.; Lombard, V.; Lucas, S.; Lundell, T.; Martin, R.; McLaughlin, D. J.; Morgenstern, I.; Morin, E.; Murat, C.; Nagy, L. G.; Nolan, M.; Ohm, R. A.; Patyshakuliyeva, A.; Rokas, A.; Ruiz-Duenas, F. J.; Sabat, G.; Salamov, A.; Samejima, M.; Schmutz, J.; Slot, J. C.; St. John, F.; Stenlid, J.; Sun, H.; Sun, S.; Syed, K.; Tsang, A.; Wiebenga, A.; Young, D.; Pisabarro, A.; Eastwood, D. C.; Martin, F.; Cullen, D.; Grigoriev, I. V.; Hibbett, D. S. (28 June 2012). "The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes". Science. 336 (6089): 1715–1719. Bibcode:2012Sci...336.1715F. doi:10.1126/science.1221748. PMID 22745431.
  17. ^ Biello, David (28 June 2012). "White Rot Fungi Slowed Coal Formation". Scientific American. Archived from the original on 30 June 2012. Retrieved 8 March 2013.
  18. ^ Waugh, Rob (29 June 2012). "Mushrooms may have stopped coal from forming 300 million years ago - and discovery could be key to creating new biofuels". Mail online. Archived from the original on 8 July 2012. Retrieved 8 March 2013.
  19. ^ Robinson, JM. 1990 Lignin, land plants, and fungi: Biological evolution affecting Phanerozoic oxygen balance. Geology 18; 607–610, on p608.
  20. ^ "Ancient Animals Got a Rise out of Oxygen". highbeam.com. 13 May 1995. Archived from the original on 3 January 2013. Retrieved 1 May 2018.
  21. ^ Dudley, Robert (24 March 1998). "Atmospheric Oxygen, Giant Paleozoic Insects and the Evolution of Aerial Locomotor Performance" (PDF). The Journal of Experimental Biology. 201: 1043–1050. Archived (PDF) from the original on 24 January 2013.
  22. ^ A HISTORY OF PALAEOZOIC FORESTS - Part 2 The Carboniferous coal swamp forests Archived 2012-09-20 at the Wayback Machine
  23. ^ C.Michael Hogan. 2010. Fern. Encyclopedia of Earth. National council for Science and the Environment Archived November 9, 2011, at the Wayback Machine. Washington, DC
  24. ^ a b Garwood, Russell J.; Sutton, Mark D. (2010). "X-ray micro-tomography of Carboniferous stem-Dictyoptera: New insights into early insects". Biology Letters. 6 (5): 699–702. doi:10.1098/rsbl.2010.0199. PMC 2936155. PMID 20392720. Archived from the original on August 9, 2016. Retrieved June 9, 2015.
  25. ^ Russell Garwood; Jason A. Dunlop; Mark D. Sutton (2009). "High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids". Biology Letters. 5 (6): 841–844. doi:10.1098/rsbl.2009.0464. PMC 2828000. PMID 19656861.
  26. ^ "Archived copy". doi:10.1371/journal.pone.0022610;jsessionid=B5ED8399160D7F46A7647ADE513F5B9C.ambra01 (inactive 2019-03-16). Archived from the original on 2014-04-09. Retrieved 2011-09-28.CS1 maint: Archived copy as title (link)
  27. ^ a b c d R. Aidan Martin. "A Golden Age of Sharks". Biology of Sharks and Rays. Archived from the original on 2008-05-22. Retrieved 2008-06-23.
  28. ^ Stanley (1999), p 411-12.
  29. ^ M. Alan Kazlev (1998) The Carboniferous Period of the Paleozoic Era: 299 to 359 million years ago Archived 2008-06-21 at the Wayback Machine, Palaeos.org, Retrieved on 2008-06-23
  30. ^ Blackwell, Meredith, Vilgalys, Rytas, James, Timothy Y., and Taylor, John W. 2008. Fungi. Eumycota: mushrooms, sac fungi, yeast, molds, rusts, smuts, etc.. Version 21 February 2008. "Archived copy". Archived from the original on 2008-09-24. Retrieved 2008-06-25.CS1 maint: Archived copy as title (link) in The Tree of Life Web Project, "Archived copy". Archived from the original on 2011-02-24. Retrieved 2008-10-10.CS1 maint: Archived copy as title (link)
  31. ^ Ward, P. et al. (2006): Confirmation of Romer's Gap is a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization. Proceedings of the National Academy of Sciences no 103 (45): pp 16818-16822.
  32. ^ Heckel, P.H. (2008). "Pennsylvanian cyclothems in Midcontinent North America as far-field effects of waxing and waning of Gondwana ice sheets". Resolving the Late Paleozoic Ice Age in Time and Space:Geological Society of America Special Paper. 441: 275–289. doi:10.1130/2008.2441(19). ISBN 978-0-8137-2441-6.

Sources

  • Dudley, Robert (1998). "Atmospheric Oxygen, Giant Paleozoic Insects and the Evolution of Aerial Locomotor Performance". Journal of Experimental Biology. 201: 1043–1050.
  • Menning, M.; Alekseev, A.S.; Chuvashov, B.I.; Davydov, V.I.; Devuyst, F.X.; Forke, H.C.; Grunt, T.A.; Hance, L.; Heckel, P.H.; Izokh, N.G.; Jin, Y.G.; Jones, P.J.; Kotlyar, G.V.; Kozur, H.W.; Nemyrovska, T.I.; Schneider, J.W.; Wang, X.D.; Weddige, K.; Weyer, D. & Work, D.M. (2006). "Global time scale and regional stratigraphic reference scales of Central and West Europe, East Europe, Tethys, South China, and North America as used in the Devonian–Carboniferous–Permian Correlation Chart 2003 (DCP 2003)". Palaeogeography, Palaeoclimatology, Palaeoecology. 240 (1–2): 318–372. doi:10.1016/j.palaeo.2006.03.058.
  • Ogg, Jim (June 2004). "Overview of Global Boundary Stratotype Sections and Points (GSSP's)". Archived from the original on April 23, 2006. Retrieved April 30, 2006.
  • Stanley, S.M. (1999). Earth System History. New York: W.H. Freeman and Company. ISBN 978-0-7167-2882-5.

 This article incorporates text from a publication now in the public domainChisholm, Hugh, ed. (1911). "Carboniferous System" . Encyclopædia Britannica (11th ed.). Cambridge University Press.

External links

Caenogastropoda

Caenogastropoda (from Ancient Greek caeno- meaning "recent") is a taxonomic clade, a large diverse group which are mostly sea snails and other marine gastropod mollusks, but also includes some freshwater snails and some land snails.

Caenogastropoda contains many families of shelled marine molluscs – including the periwinkles, cowries, wentletraps, moon snails, murexes, cone snails and turrids – and constitutes about 60% of all living gastropods.

Carboniferous Limestone

Carboniferous Limestone is a collective term for the succession of limestones occurring widely throughout Great Britain and Ireland that were deposited during the Dinantian Epoch of the Carboniferous Period. These rocks formed between 363 and 325 million years ago. Within England and Wales, the entire limestone succession, which includes subordinate mudstones and some thin sandstones, is known as the Carboniferous Limestone Supergroup.

Coal measures

The coal measures is a lithostratigraphical term for the coal-bearing part of the Upper Carboniferous System. The Coal Measures Group consists of the Upper Coal Measures Formation, the Middle Coal Measures Formation and the Lower Coal Measures Formation. The group records the deposition of fluvio-deltaic sediments which consists mainly of clastic rocks (claystones, shales, siltstones, sandstones, conglomerates) interstratified with the beds of coal. In most places, the coal measures are underlain by coarser clastic sequences known as Millstone Grit, of Namurian age. The top of the coal measures may be marked by an unconformity, the overlying rocks being Permian or later in age. In some parts of Britain, however, the Coal Measures grade up into mainly coal-barren red beds of late Westphalian and possibly Stephanian age. Within the Pennine Basin these barren measures are now referred to as the Warwickshire Group, from the district where they achieve their thickest development.The coal measures formed during Westphalian and earliest Stephanian times in the European ('Heerlen') chronostratigraphical scheme (which is approximately equivalent to the Middle Pennsylvanian Series of the IUGS global chronostratigraphical scheme).

Helenodora

Helenodora inopinata is an extinct genus of onychophoran known from the Carboniferous Carbondale Formation of Illinois.

Laurasia

Laurasia () was the more northern of two supercontinents (the other being Gondwana) that formed part of the Pangaea supercontinent around 335 to 175 million years ago (Mya). It separated from Gondwana 215 to 175 Mya (beginning in the late Triassic period) during the breakup of Pangaea, drifting farther north after the split.

The name combines the names of Laurentia, the name given to the North American craton, and Eurasia. As suggested by the geologic naming, Laurasia included most of the land masses which make up today's continents of the Northern Hemisphere, chiefly Laurentia, Baltica, Siberia, Kazakhstania, and the North China and East China cratons.

Limnarchia

Limnarchia is a clade of temnospondyls. It includes the mostly Carboniferous-Permian age Dvinosauria and the mostly Permian-Triassic age Stereospondylomorpha. The clade was named in a 2000 phylogenetic analysis of stereospondyls and their relatives. Limnarchia means "lake rulers" in Greek, in reference to their aquatic lifestyles and long existence over a span of approximately 200 million years from the Late Carboniferous to the Early Cretaceous. In phylogenetic terms, Limnarchia is a stem-based taxon including all temnospondyls more closely related to Parotosuchus than to Eryops. It is the sister group of the clade Euskelia, which is all temnospondyls more closely related to Eryops than to Parotosuchus. Limnarchians represent an evolutionary radiation of temnospondyls into aquatic environments, while euskelians represent a radiation into terrestrial environments. While many euskelians were adapted to life on land with strong limbs and bony scutes, most limnarchians were better adapted for the water with poorly developed limbs and lateral line sensory systems in their skulls.Chinlestegophis, a putative Triassic stereospondyl considered to be related to metoposauroids such as Rileymillerus, has been noted to share many features with caecilians, a living group of legless burrowing amphibians. If Chinlestegophis is indeed both an advanced stereospondyl and a relative of caecilians, this means that limnarchians (in the form of caecilians) survived to the present day.

List of fossiliferous stratigraphic units in Texas

This article contains a list of fossil-bearing stratigraphic units in the state of Texas, U.S.

Mississippian (geology)

The Mississippian (also known as Lower Carboniferous or Early Carboniferous) is a subperiod in the geologic timescale or a subsystem of the geologic record. It is the earliest/lowermost of two subperiods of the Carboniferous period lasting from roughly 358.9 to 323.2 million years ago. As with most other geochronologic units, the rock beds that define the Mississippian are well identified, but the exact start and end dates are uncertain by a few million years. The Mississippian is so named because rocks with this age are exposed in the Mississippi River valley.

The Mississippian was a period of marine transgression in the Northern Hemisphere: the sea level was so high that only the Fennoscandian Shield and the Laurentian Shield were dry land. The cratons were surrounded by extensive delta systems and lagoons, and carbonate sedimentation on the surrounding continental platforms, covered by shallow seas.In North America, where the interval consists primarily of marine limestones, it is treated as a geologic period between the Devonian and the Pennsylvanian. During the Mississippian an important phase of orogeny occurred in the Appalachian Mountains. It is a major rock-building period named for the exposures in the Mississippi Valley region. The USGS geologic time scale shows its relation to other periods.In Europe, the Mississippian and Pennsylvanian are one more-or-less continuous sequence of lowland continental deposits and are grouped together as the Carboniferous system, and sometimes called the Upper Carboniferous and Lower Carboniferous instead.

Old Red Sandstone

The Old Red Sandstone is an assemblage of rocks in the North Atlantic region largely of Devonian age. It extends in the east across Great Britain, Ireland and Norway, and in the west along the northeastern seaboard of North America. It also extends northwards into Greenland and Svalbard. In Britain it is a lithostratigraphic unit (a sequence of rock strata) to which stratigraphers accord supergroup status and which is of considerable importance to early paleontology. For convenience the short version of the term, ORS is often used in literature on the subject. The term was coined to distinguish the sequence from the younger New Red Sandstone which also occurs widely throughout Britain.

Palaeoptera

The name Palaeoptera has been traditionally applied to those ancestral groups of winged insects (most of them extinct) that lacked the ability to fold the wings back over the abdomen as characterizes the Neoptera. The Diaphanopterodea, which are palaeopteran insects, had independently and uniquely evolved a different wing-folding mechanism. Both mayflies and dragonflies lack any of the smell centers in their brain found in Neoptera.

Paleozoic

The Paleozoic (or Palaeozoic) Era ( ; from the Greek palaios (παλαιός), "old" and zoe (ζωή), "life", meaning "ancient life") is the earliest of three geologic eras of the Phanerozoic Eon. It is the longest of the Phanerozoic eras, lasting from 541 to 251.902 million years ago, and is subdivided into six geologic periods (from oldest to youngest): the Cambrian, Ordovician, Silurian, Devonian, Carboniferous, and Permian. The Paleozoic comes after the Neoproterozoic Era of the Proterozoic Eon and is followed by the Mesozoic Era.

The Paleozoic was a time of dramatic geological, climatic, and evolutionary change. The Cambrian witnessed the most rapid and widespread diversification of life in Earth's history, known as the Cambrian explosion, in which most modern phyla first appeared. Arthropods, molluscs, fish, amphibians, synapsids and diapsids all evolved during the Paleozoic. Life began in the ocean but eventually transitioned onto land, and by the late Paleozoic, it was dominated by various forms of organisms. Great forests of primitive plants covered the continents, many of which formed the coal beds of Europe and eastern North America. Towards the end of the era, large, sophisticated diapsids and synapsids were dominant and the first modern plants (conifers) appeared.

The Paleozoic Era ended with the largest extinction event in the history of Earth, the Permian–Triassic extinction event. The effects of this catastrophe were so devastating that it took life on land 30 million years into the Mesozoic Era to recover. Recovery of life in the sea may have been much faster.

Pangaea

Pangaea or Pangea ( ) was a supercontinent that existed during the late Paleozoic and early Mesozoic eras. It assembled from earlier continental units approximately 335 million years ago, and it began to break apart about 175 million years ago. In contrast to the present Earth and its distribution of continental mass, much of Pangaea was in the southern hemisphere and surrounded by a superocean, Panthalassa. Pangaea was the most recent supercontinent to have existed and the first to be reconstructed by geologists.

Pennsylvanian (geology)

The Pennsylvanian (also known as Upper Carboniferous or Late Carboniferous) is, in the ICS geologic timescale, the younger of two subperiods (or upper of two subsystems) of the Carboniferous Period. It lasted from roughly 323.2 million years ago to 298.9 million years ago Ma (million years ago). As with most other geochronologic units, the rock beds that define the Pennsylvanian are well identified, but the exact date of the start and end are uncertain by a few hundred thousand years. The Pennsylvanian is named after the U.S. state of Pennsylvania, where the coal-productive beds of this age are widespread.The division between Pennsylvanian and Mississippian comes from North American stratigraphy. In North America, where the early Carboniferous beds are primarily marine limestones, the Pennsylvanian was in the past treated as a full-fledged geologic period between the Mississippian and the Permian. In Europe, the Mississippian and Pennsylvanian are one more-or-less continuous sequence of lowland continental deposits and are grouped together as the Carboniferous Period. The current internationally used geologic timescale of the ICS gives the Mississippian and Pennsylvanian the rank of subperiods, subdivisions of the Carboniferous Period.

Permian

The Permian is a geologic period and system which spans 47 million years from the end of the Carboniferous Period 298.9 million years ago (Mya), to the beginning of the Triassic period 251.902 Mya. It is the last period of the Paleozoic era; the following Triassic period belongs to the Mesozoic era. The concept of the Permian was introduced in 1841 by geologist Sir Roderick Murchison, who named it after the city of Perm.

The Permian witnessed the diversification of the early amniotes into the ancestral groups of the mammals, turtles, lepidosaurs, and archosaurs. The world at the time was dominated by two continents known as Pangaea and Siberia, surrounded by a global ocean called Panthalassa. The Carboniferous rainforest collapse left behind vast regions of desert within the continental interior. Amniotes, who could better cope with these drier conditions, rose to dominance in place of their amphibian ancestors.

The Permian (along with the Paleozoic) ended with the Permian–Triassic extinction event, the largest mass extinction in Earth's history, in which nearly 96% of marine species and 70% of terrestrial species died out. It would take well into the Triassic for life to recover from this catastrophe. Recovery from the Permian–Triassic extinction event was protracted; on land, ecosystems took 30 million years to recover.

Pulmonata

Pulmonata, or "pulmonates", is an informal group (previously an order, and before that a subclass) of snails and slugs characterized by the ability to breathe air, by virtue of having a pallial lung instead of a gill, or gills. The group includes many land and freshwater families, and several marine families.

The taxon Pulmonata as traditionally defined was found to be polyphyletic in a molecular study per Jörger et al., dating from 2010.Pulmonata are known from the Carboniferous Period to the present.Pulmonates have a single atrium and kidney, and a concentrated, symmetrical, nervous system. The mantle cavity is located on the right side of the body, and lacks gills, instead being converted into a vascularised lung. Most species have a shell, but no operculum, although the group does also include several shell-less slugs. Pulmonates are hermaphroditic, and some groups possess love darts.

Romeriida

Romeriida is a clade of reptiles that consists of diapsids and the extinct protorothyridid genus Paleothyris, if not the entire family Protorothyrididae. It is phylogenetically defined by Laurin & Reisz (1995) as the last common ancestor of Paleothyris and diapsids, and all its descendants. It is named after Alfred Romer, a prominent vertebrate paleontologist of the twentieth century.Protorothyridids were once placed in the family Romeriidae along with the captorhinid Romeria. Because Romeria is now considered to be a captorhinid, and Captorhinidae is placed outside Romeriida, the genus is excluded from the clade. Protorothyridids were once the collective term for several romeriid genera of uncertain classification. However, more recent studies have proposed that Protorothyrididae is a paraphyletic taxon. Therefore, it is possible that many protorothyridids do not lie within the clade Romeriida.

Several synapomorphies characterize the romeriids. These include the separation of the tabular bone from the opisthotic bone, ventrally keeled anterior pleurocentra, long and slender carpi and tarsi, and overlapping metapodials.Below is a cladogram showing the placement of Romeriida within Amniota, modified from Hill, 2005:

Cladogram after Müller & Reisz, 2006:

Polyphyletic Protorothyrididae

Strepsodus

Strepsodus is a genus of rhizodont lobe-finned fish that lived during the Carboniferous period. Fossils have been found in North America and Australia.

Tournaisian

The Tournaisian is in the ICS geologic timescale the lowest stage or oldest age of the Mississippian, the oldest subsystem of the Carboniferous. The Tournaisian age lasted from 358.9 Ma to 346.7 Ma. It is preceded by the Famennian (the uppermost stage of the Devonian) and is followed by the Viséan.

Cenozoic era
(present–66.0 Mya)
Mesozoic era
(66.0–251.902 Mya)
Paleozoic era
(251.902–541.0 Mya)
Proterozoic eon
(541.0 Mya–2.5 Gya)
Archean eon (2.5–4 Gya)
Hadean eon (4–4.6 Gya)

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.