Carbon trioxide

Carbon trioxide (CO3) is an unstable oxide of carbon (an oxocarbon). Three possible isomers of carbon trioxide, with molecular symmetry point groups Cs, D3h, and C2v, have been most studied by theoretical methods, and the C2v state has been shown to be the ground state of the molecule.[1][2]

Carbon trioxide should not be confused with the stable carbonate ion (CO32−).

Carbon trioxide can be produced, for example, in the drift zone of a negative corona discharge by reactions between carbon dioxide (CO2) and the atomic oxygen (O) created from molecular oxygen by free electrons in the plasma.[3]

Another reported method is photolysis of ozone O3 dissolved in liquid CO2, or in CO2/SF6 mixtures at -45 °C, irradiated with light of 2537 Å. The formation of CO3 is inferred but it appears to decay spontaneously by the route 2CO3 → 2CO2 + O2 with a lifetime much shorter than 1 minute.[4]

Carbon trioxide can be made by blowing ozone at dry ice (solid CO2), and it has also been detected in reactions between carbon monoxide (CO) and molecular oxygen (O2).

Co3-geometries
The Cs, D3h, and C2v isomers of carbon trioxide.

References

  1. ^ Tim Kowalczyk, Electronic structure and spectroscopy of carbon trioxide
  2. ^ T. Kowalczyk; A. I. Krylov (Aug 2007). "Electronic structure of carbon trioxide and vibronic interactions involving Jahn-Teller states". J. Phys. Chem. A. 111 (33): 8271–8276. Bibcode:2007JPCA..111.8271K. doi:10.1021/jp073627d. ISSN 1089-5639. PMID 17661455.
  3. ^ Sabin, J. R; Kim, H (1971). "A theoretical study of the structure and properties of carbon trioxide". Chemical Physics Letters. 11 (5, ): 593–597. Bibcode:1971CPL....11..593S. doi:10.1016/0009-2614(71)87010-0.
  4. ^ DeMore W. B.; Jacobsen C. W. (1969). "Formation of carbon trioxide in the photolysis of ozone in liquid carbon dioxide". Journal of Physical Chemistry. 73 (9): 2935–2938. doi:10.1021/j100843a026.
CO3

CO3 may refer to:

Carbon trioxide

Carbonate

MT-CO3

A postcode district in Colchester, UK

Carbon

Carbon (from Latin: carbo "coal") is a chemical element with symbol C and atomic number 6. It is nonmetallic and tetravalent—making four electrons available to form covalent chemical bonds. It belongs to group 14 of the periodic table. Three isotopes occur naturally, 12C and 13C being stable, while 14C is a radionuclide, decaying with a half-life of about 5,730 years. Carbon is one of the few elements known since antiquity.Carbon is the 15th most abundant element in the Earth's crust, and the fourth most abundant element in the universe by mass after hydrogen, helium, and oxygen. Carbon's abundance, its unique diversity of organic compounds, and its unusual ability to form polymers at the temperatures commonly encountered on Earth enables this element to serve as a common element of all known life. It is the second most abundant element in the human body by mass (about 18.5%) after oxygen.The atoms of carbon can bond together in different ways, termed allotropes of carbon. The best known are graphite, diamond, and amorphous carbon. The physical properties of carbon vary widely with the allotropic form. For example, graphite is opaque and black while diamond is highly transparent. Graphite is soft enough to form a streak on paper (hence its name, from the Greek verb "γράφειν" which means "to write"), while diamond is the hardest naturally occurring material known. Graphite is a good electrical conductor while diamond has a low electrical conductivity. Under normal conditions, diamond, carbon nanotubes, and graphene have the highest thermal conductivities of all known materials. All carbon allotropes are solids under normal conditions, with graphite being the most thermodynamically stable form at standard temperature and pressure. They are chemically resistant and require high temperature to react even with oxygen.

The most common oxidation state of carbon in inorganic compounds is +4, while +2 is found in carbon monoxide and transition metal carbonyl complexes. The largest sources of inorganic carbon are limestones, dolomites and carbon dioxide, but significant quantities occur in organic deposits of coal, peat, oil, and methane clathrates. Carbon forms a vast number of compounds, more than any other element, with almost ten million compounds described to date, and yet that number is but a fraction of the number of theoretically possible compounds under standard conditions. For this reason, carbon has often been referred to as the "king of the elements".

Carbon dioxide

Carbon dioxide (chemical formula CO2) is a colorless gas with a density about 60% higher than that of dry air. Carbon dioxide consists of a carbon atom covalently double bonded to two oxygen atoms. It occurs naturally in Earth's atmosphere as a trace gas. The current concentration is about 0.04% (410 ppm) by volume, having risen from pre-industrial levels of 280 ppm. Natural sources include volcanoes, hot springs and geysers, and it is freed from carbonate rocks by dissolution in water and acids. Because carbon dioxide is soluble in water, it occurs naturally in groundwater, rivers and lakes, ice caps, glaciers and seawater. It is present in deposits of petroleum and natural gas. Carbon dioxide is odorless at normally encountered concentrations. However, at high concentrations, it has a sharp and acidic odor.As the source of available carbon in the carbon cycle, atmospheric carbon dioxide is the primary carbon source for life on Earth and its concentration in Earth's pre-industrial atmosphere since late in the Precambrian has been regulated by photosynthetic organisms and geological phenomena. Plants, algae and cyanobacteria use light energy to photosynthesize carbohydrate from carbon dioxide and water, with oxygen produced as a waste product.CO2 is produced by all aerobic organisms when they metabolize carbohydrates and lipids to produce energy by respiration. It is returned to water via the gills of fish and to the air via the lungs of air-breathing land animals, including humans. Carbon dioxide is produced during the processes of decay of organic materials and the fermentation of sugars in bread, beer and wine making. It is produced by combustion of wood and other organic materials and fossil fuels such as coal, peat, petroleum and natural gas. It is an unwanted byproduct in many large scale oxidation processes, for example, in the production of acrylic acid (over 5 million tons/year).It is a versatile industrial material, used, for example, as an inert gas in welding and fire extinguishers, as a pressurizing gas in air guns and oil recovery, as a chemical feedstock and as a supercritical fluid solvent in decaffeination of coffee and supercritical drying. It is added to drinking water and carbonated beverages including beer and sparkling wine to add effervescence. The frozen solid form of CO2, known as dry ice is used as a refrigerant and as an abrasive in dry-ice blasting.

Carbon dioxide is the most significant long-lived greenhouse gas in Earth's atmosphere. Since the Industrial Revolution anthropogenic emissions – primarily from use of fossil fuels and deforestation – have rapidly increased its concentration in the atmosphere, leading to global warming. Carbon dioxide also causes ocean acidification because it dissolves in water to form carbonic acid.

Carbon hexoxide

Carbon hexoxide or carbon hexaoxide is an oxide of carbon with an unusually large quantity of oxygen. The molecule has been produced and studied at cryogenic temperatures. The molecule is important in atmospheric chemistry and in the study of cold ices in the outer solar system and interstellar space. The substance could form and be present on Ganymede or Triton, moons in the outer solar system. The molecule consists of a six membered ring with five oxygen and one carbon atom, and one oxygen with a double bond with the carbon.

Carbon pentoxide

Carbon pentaoxide or carbon pentoxide is an unstable molecular oxide of carbon. The molecule has been produced and studied at cryogenic temperatures. The molecule is important in atmospheric chemistry and in the study of cold ices in the outer solar system and interstellar space. The substance could form and be present on Ganymede or Triton, moons in the outer solar system. The molecule has a C2 symmetry. It consists of a five membered ring with one carbon and four oxygen atoms. A fifth oxygen atom has a double bond to the carbon. Calculation has resulted in a theoretical structure. The pentagon is not regular, but varies in the length of its sides and angles. The distance between the oxygen atoms that are not attached to carbon is 1.406 Å, whereas the distance between one of these atoms and an oxygen attached to carbon is 1.457 Å. The carbon oxygen bond length is 1.376 Å. The double carbon to oxygen bond is the shortest at 1.180 Å. There is no carbon-to-carbon bond as there is only one carbon atom. The OOO bond angle is 100.2° and the OOC angle is 109.1°. The OCO bond angle is 125.4°.

Co3

Co3 may refer to:

Carbon trioxide in chemistry

Conway group Co3 in mathematics

Compounds of carbon

Compounds of carbon are defined as chemical substances containing carbon. More compounds of carbon exist than any other chemical element except for hydrogen. Organic carbon compounds are far more numerous than inorganic carbon compounds. In general bonds of carbon with other elements are covalent bonds. Carbon is tetravalent but carbon free radicals and carbenes occur as short-lived intermediates. Ions of carbon are carbocations and carbanions are also short-lived. An important carbon property is catenation as the ability to form long carbon chains and rings.

Glossary of chemical formulas

This is a list of common chemical compounds with chemical formulas and CAS numbers, indexed by formula. This complements alternative listing at inorganic compounds by element. There is no complete list of chemical compounds since by nature the list would be infinite.

Note: There are elements for which spellings may differ, such as aluminum/ aluminium, sulfur/ sulphur, and caesium/ cesium.

List of compounds with carbon number 1

This is a partial list of molecules that contain 1 carbon atom.

Oxocarbon

An oxocarbon or oxide of carbon is a chemical compound consisting only of carbon and oxygen.The simplest and most common oxocarbons are carbon monoxide (CO) and carbon dioxide (CO2) with IUPAC names carbon(II) oxide and carbon(IV) oxide respectively. Many other stable (practically if not thermodynamically) or metastable oxides of carbon are known, but they are rarely encountered, such as carbon suboxide (C3O2 or O=C=C=C=O) and mellitic anhydride (C12O9).

While textbooks will often list only the first three, and rarely the fourth, a large number of other oxides are known today, most of them synthesized since the 1960s. Some of these new oxides are stable at room temperature. Some are metastable or stable only at very low temperatures, but decompose to simpler oxocarbons when warmed. Many are inherently unstable and can be observed only momentarily as intermediates in chemical reactions or are so reactive that they can exist only in the gas phase or under matrix isolation conditions.

The inventory of oxocarbons appears to be steadily growing. The existence of graphene oxide and of other stable polymeric carbon oxides with unbounded molecular structures suggests that many more remain to be discovered.

Oxocarbon anion

In chemistry, an oxocarbon anion is a negative ion consisting solely of carbon and oxygen atoms, and therefore having the general formula CxOn−y for some integers x, y, and n.

The most common oxocarbon anions are carbonate, CO2−3, and oxalate, C2O2−4. There is however a large number of stable anions in this class, including several ones that have research or industrial use. There are also many unstable anions, like CO−2 and CO−4, that have a fleeting existence during some chemical reactions; and many hypothetical species, like CO4−4, that have been the subject of theoretical studies but have yet to be observed.

Stable oxocarbon anions form salts with a large variety of cations. Unstable anions may persist in very rarefied gaseous state, such as in interstellar clouds. Most oxocarbon anions have corresponding moieties in organic chemistry, whose compounds are usually esters. Thus, for example, the oxalate moiety [–O–(C=O)2–O–] occurs in the ester dimethyl oxalate H3C–O–(C=O)2–O–CH3.

Pećka Banja

Pećka Banja (Albanian: Banja e Pejës, Serbian Cyrillic: Пећка Бања) is a township located in the municipality of Istok, Kosovo. To many people it is known by the name Ilixhe. It is a tourist health center with services in Istoк and in the region, offering quality for inhabitation, highly developed infrastructure and services.

Trioxide

A trioxide is a compound with three oxygen atoms. For metals with the M2O3 formula there are several common structures. Al2O3, Cr2O3, Fe2O3, and V2O3 adopt the corundum structure. Many rare earth oxides adopt the "A-type rare earth structure" which is hexagonal. Several others plus indium oxide adopt the "C-type rare earth structure", also called "bixbyite", which is cubic and related to the fluorite structure.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.