Carbon monoxide

Carbon monoxide (CO) is a colorless, odorless, and tasteless flammable gas that is slightly less dense than air. It is toxic to animals that use hemoglobin as an oxygen carrier (both invertebrate and vertebrate) when encountered in concentrations above about 35 ppm, although it is also produced in normal animal metabolism in low quantities, and is thought to have some normal biological functions. In the atmosphere, it is spatially variable and short lived, having a role in the formation of ground-level ozone.

Carbon monoxide consists of one carbon atom and one oxygen atom, connected by a triple bond that consists of two covalent bonds as well as one dative covalent bond.[5] It is the simplest oxocarbon and is isoelectronic with other triply-bonded diatomic molecules having ten valence electrons, including the cyanide anion, the nitrosonium cation and molecular nitrogen. In coordination complexes the carbon monoxide ligand is called carbonyl.

Carbon monoxide
Ball-and-stick model of carbon monoxide
Spacefill model of carbon monoxide
model of carbon monoxide
Names
Preferred IUPAC name
Carbon monoxide
Other names
Carbon monooxide
Carbonous oxide
Carbon(II) oxide
Carbonyl
Flue gas
Monoxide
Identifiers
3D model (JSmol)
3587264
ChEBI
ChemSpider
ECHA InfoCard 100.010.118
EC Number 211-128-3
421
KEGG
MeSH Carbon+monoxide
RTECS number FG3500000
UNII
UN number 1016
Properties
CO
Molar mass 28.010 g/mol
Appearance colorless gas
Odor odorless
Density 789 kg/m3, liquid
1.250 kg/m3 at 0 °C, 1 atm
1.145 kg/m3 at 25 °C, 1 atm
Melting point −205.02 °C (−337.04 °F; 68.13 K)
Boiling point −191.5 °C (−312.7 °F; 81.6 K)
27.6 mg/L (25 °C)
Solubility soluble in chloroform, acetic acid, ethyl acetate, ethanol, ammonium hydroxide, benzene
1.04 atm·m3/mol
−9.8·10−6 cm3/mol
1.0003364
0.122 D
Thermochemistry
29.1 J/(K·mol)
197.7 J/(mol·K)
−110.5 kJ/mol
−283.4 kJ/mol
Hazards
Safety data sheet See: data page
ICSC 0023
Extremely Flammable F+ Very Toxic T+
R-phrases (outdated) R61 R12 R26 R48/23
S-phrases (outdated) S53 S45
NFPA 704
Flash point −191 °C (−311.8 °F; 82.1 K)
609 °C (1,128 °F; 882 K)
Explosive limits 12.5–74.2%
Lethal dose or concentration (LD, LC):
8636 ppm (rat, 15 min)
5207 ppm (rat, 30 min)
1784 ppm (rat, 4 h)
2414 ppm (mouse, 4 h)
5647 ppm (guinea pig, 4 h)[1]
4000 ppm (human, 30 min)
5000 ppm (human, 5 min)[1]
US health exposure limits (NIOSH):[3]
PEL (Permissible)
TWA 50 ppm (55 mg/m3)
REL (Recommended)
TWA 35 ppm (40 mg/m3) C 200 ppm (229 mg/m3)
IDLH (Immediate danger)
1200 ppm
Related compounds
Related carbon oxides
Carbon dioxide
Carbon suboxide
Oxocarbons
Supplementary data page
Refractive index (n),
Dielectric constantr), etc.
Thermodynamic
data
Phase behaviour
solid–liquid–gas
UV, IR, NMR, MS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

History

Aristotle (384–322 BC) first recorded that burning coals produced toxic fumes. An ancient method of execution was to shut the criminal in a bathing room with smoldering coals. What was not known was the mechanism of death. Greek physician Galen (129–199 AD) speculated that there was a change in the composition of the air that caused harm when inhaled.[6] In 1776, the French chemist de Lassone produced CO by heating zinc oxide with coke, but mistakenly concluded that the gaseous product was hydrogen, as it burned with a blue flame. The gas was identified as a compound containing carbon and oxygen by the Scottish chemist William Cruikshank in 1800.[7][8] Its toxic properties on dogs were thoroughly investigated by Claude Bernard around 1846.[9]

During World War II, a gas mixture including carbon monoxide was used to keep motor vehicles running in parts of the world where gasoline and diesel fuel were scarce. External (with a few exceptions) charcoal or wood gas generators were fitted, and the mixture of atmospheric nitrogen, hydrogen, carbon monoxide, and small amounts of other gases produced by gasification was piped to a gas mixer. The gas mixture produced by this process is known as wood gas. Carbon monoxide was also used on a large scale during the Holocaust at some Nazi German extermination camps, the most notable by gas vans in Chełmno, and in the Action T4 "euthanasia" program.[10]

Sources

Carbon monoxide is produced from the partial oxidation of carbon-containing compounds; it forms when there is not enough oxygen to produce carbon dioxide (CO2), such as when operating a stove or an internal combustion engine in an enclosed space. In the presence of oxygen, including atmospheric concentrations, carbon monoxide burns with a blue flame, producing carbon dioxide.[11] Coal gas, which was widely used before the 1960s for domestic lighting, cooking, and heating, had carbon monoxide as a significant fuel constituent. Some processes in modern technology, such as iron smelting, still produce carbon monoxide as a byproduct.[12] A large quantity of CO byproduct is formed during the oxidative processes for the production of chemicals. For this reason, the process off-gases have to be purified. On the other hand, considerable research efforts are made in order to optimize the process conditions,[13] develop catalyst with improved selectivity [14] and to understand the reaction pathways leading to the target product and side products.[15][16]

Worldwide, the largest source of carbon monoxide is natural in origin, due to photochemical reactions in the troposphere that generate about 5×1012 kilograms per year.[17] Other natural sources of CO include volcanoes, forest fires, other forms of combustion, and carbon monoxide-releasing molecules.

In biology, carbon monoxide is naturally produced by the action of heme oxygenase 1 and 2 on the heme from hemoglobin breakdown. This process produces a certain amount of carboxyhemoglobin in normal persons, even if they do not breathe any carbon monoxide. Following the first report that carbon monoxide is a normal neurotransmitter in 1993,[18][19] as well as one of three gases that naturally modulate inflammatory responses in the body (the other two being nitric oxide and hydrogen sulfide), carbon monoxide has received a great deal of clinical attention as a biological regulator. In many tissues, all three gases are known to act as anti-inflammatories, vasodilators, and promoters of neovascular growth.[20] Clinical trials of small amounts of carbon monoxide as a drug are ongoing.[21] Too much carbon monoxide causes carbon monoxide poisoning.

Molecular properties

Carbon monoxide has a molar mass of 28.0, which, according to the ideal gas law, makes it slightly less dense than air, whose average molar mass is 28.8.

The bond length between the carbon atom and the oxygen atom is 112.8 pm.[22][23] This bond length is consistent with a triple bond, as in molecular nitrogen (N2), which has a similar bond length (109.76 pm) and nearly the same molecular mass. Carbon–oxygen double bonds are significantly longer, 120.8 pm in formaldehyde, for example.[24] The boiling point (82 K) and melting point (68 K) are very similar to those of N2 (77 K and 63 K, respectively). The bond-dissociation energy of 1072 kJ/mol is stronger than that of N2 (942 kJ/mol) and represents the strongest chemical bond known.[25]

The ground electronic state of carbon monoxide is a singlet state[26] since there are no unpaired electrons.

Bonding and dipole moment

The carbon monoxide has a very high bond-dissociation energy, the strongest of any neutral molecule, 11.65 eV. Carbon and oxygen together have a total of 10 electrons in the valence shell. Following the octet rule for both carbon and oxygen, the two atoms form a triple bond, with six shared electrons in three bonding molecular orbitals, rather than the usual double bond found in organic carbonyl compounds. Since four of the shared electrons come from the oxygen atom and only two from carbon, one bonding orbital is occupied by two electrons from oxygen, forming a dative or dipolar bond. This causes a C←O polarization of the molecule, with a small negative charge on carbon and a small positive charge on oxygen. The other two bonding orbitals are each occupied by one electron from carbon and one from oxygen, forming (polar) covalent bonds with a reverse C→O polarization, since oxygen is more electronegative than carbon. In the free carbon monoxide, a net negative charge δ remains at the carbon end and the molecule has a small dipole moment of 0.122 D.[27]

The molecule is therefore asymmetric: oxygen has more electron density than carbon, and is also slightly positively charged compared to carbon being negative. By contrast, the isoelectronic dinitrogen molecule has no dipole moment.

Carbon Monoxide-2
The most important resonance form of carbon monoxide is C≡O+. An important minor contributor is the non-octet carbenic structure :C=O.

Carbon monoxide has a computed fractional bond order of 2.6, indicating that the "third" bond is important but constitutes somewhat less than a full bond.[28] Thus, in valence bond terms, C≡O+ is the most important structure, while :C=O is non-octet, but has a neutral formal charge on each atom and represents the second most important resonance contributor. Because of the lone pair and divalence of carbon in this resonance structure, carbon monoxide is often considered to be an extraordinarily stabilized carbene.[29] Isocyanides are compounds in which the O is replaced by an NR (R = alkyl or aryl) group and have a similar bonding scheme.

If carbon monoxide acts as a ligand, the polarity of the dipole may reverse with a net negative charge on the oxygen end, depending on the structure of the coordination complex.[30] See also the section "Coordination chemistry" below.

Bond polarity and oxidation state

Theoretical and experimental studies show that, despite the greater electronegativity of oxygen, the dipole moment points from the more-negative carbon end to the more-positive oxygen end.[31][32] The three bonds are in fact polar covalent bonds that are strongly polarized. The calculated polarization toward the oxygen atom is 71% for the σ-bond and 77% for both π-bonds.[33]

The oxidation state of carbon in carbon monoxide is +2 in each of these structures. It is calculated by counting all the bonding electrons as belonging to the more electronegative oxygen. Only the two non-bonding electrons on carbon are assigned to carbon. In this count, carbon then has only two valence electrons in the molecule compared to four in the free atom.

Biological and physiological properties

Toxicity

Carbon monoxide poisoning is the most common type of fatal air poisoning in many countries.[34] Carbon monoxide is colorless, odorless, and tasteless, but highly toxic. It combines with hemoglobin to produce carboxyhemoglobin, which usurps the space in hemoglobin that normally carries oxygen, but is ineffective for delivering oxygen to bodily tissues. Concentrations as low as 667 ppm may cause up to 50% of the body's hemoglobin to convert to carboxyhemoglobin.[35] A level of 50% carboxyhemoglobin may result in seizure, coma, and fatality. In the United States, the OSHA limits long-term workplace exposure levels above 50 ppm.[36]

The most common symptoms of carbon monoxide poisoning may resemble other types of poisonings and infections, including symptoms such as headache, nausea, vomiting, dizziness, fatigue, and a feeling of weakness. Affected families often believe they are victims of food poisoning. Infants may be irritable and feed poorly. Neurological signs include confusion, disorientation, visual disturbance, syncope (fainting), and seizures.[37]

Some descriptions of carbon monoxide poisoning include retinal hemorrhages, and an abnormal cherry-red blood hue.[38] In most clinical diagnoses these signs are seldom noticed.[37] One difficulty with the usefulness of this cherry-red effect is that it corrects, or masks, what would otherwise be an unhealthy appearance, since the chief effect of removing deoxygenated hemoglobin is to make an asphyxiated person appear more normal, or a dead person appear more lifelike, similar to the effect of red colorants in embalming fluid. The "false" or unphysiologic red-coloring effect in anoxic CO-poisoned tissue is related to the meat-coloring commercial use of carbon monoxide, discussed below.

Carbon monoxide also binds to other molecules such as myoglobin and mitochondrial cytochrome oxidase. Exposures to carbon monoxide may cause significant damage to the heart and central nervous system, especially to the globus pallidus,[39] often with long-term chronic pathological conditions. Carbon monoxide may have severe adverse effects on the fetus of a pregnant woman.[40]

Normal human physiology

Carbon monoxide is produced naturally by the human body as a signaling molecule. Thus, carbon monoxide may have a physiological role in the body, such as a neurotransmitter or a blood vessel relaxant.[41] Because of carbon monoxide's role in the body, abnormalities in its metabolism have been linked to a variety of diseases, including neurodegenerations, hypertension, heart failure, and pathological inflammation.[41] Relative to inflammation, carbon monoxide has been shown to inhibit the movement of leukocytes to inflamed tissues, stimulate leukocyte phagocytosis of bacteria, and reduce the production of pro-inflammatory cytokines by leukocytes. In animal model studies, furthermore, carbon monoxide reduced the severity of experimentally induced bacterial sepsis, pancreatitis, hepatic ischemia/reperfusion injury, colitis, osteoarthritis, lung injury, lung transplantation rejection, and neuropathic pain while promoting skin wound healing. These actions are similar to those of Specialized pro-resolving mediators which act to dampen, reverse, and repair the tissue damage due to diverse inflammation responses. Indeed, carbon monoxide can act additively with one of these mediators (Resolvin D1) to limit inflammatory responses. The studies implicate carbon monoxide as a physiological contributor to limiting inflammation and suggest that its delivery by inhalation or carbon monoxide-forming drugs may be therapeutically useful for controlling pathological inflammatory responses.[42][43][44][45]

CO functions as an endogenous signaling molecule, modulates functions of the cardiovascular system, inhibits blood platelet aggregation and adhesion, suppresses, reverses, and repairs the damage caused by inflammatory responses. It may play a role as potential therapeutic agent.[42][46]

Microbiology

Carbon monoxide is a nutrient for methanogenic archaea, which reduce it to methane using hydrogen.[47] This is the theme for the emerging field of bioorganometallic chemistry. Extremophile micro-organisms can, thus, utilize carbon monoxide in such locations as the thermal vents of volcanoes.[48]

Some microbes can convert carbon monoxide to carbon dioxide to yield energy.[49]

In bacteria, carbon monoxide is produced via the reduction of carbon dioxide by the enzyme carbon monoxide dehydrogenase, an Fe-Ni-S-containing protein.[50]

CooA is a carbon monoxide sensor protein.[51] The scope of its biological role is still unknown; it may be part of a signaling pathway in bacteria and archaea. Its occurrence in mammals is not established.

Occurrence

Monthly averages of global concentrations of tropospheric carbon monoxide at an altitude of about 12,000 feet. Data were collected by the MOPITT (Measurements Of Pollution In The Troposphere) sensor on NASA’s Terra satellite.[52]

Carbon monoxide occurs in various natural and artificial environments. Typical concentrations in parts per million are as follows:

Composition of dry atmosphere, by volume[53]
ppmv: parts per million by volume (note: volume fraction is equal to mole fraction for ideal gas only, see volume (thermodynamics))
Concentration Source
0.1 ppmv Natural atmosphere level (MOPITT)[54]
0.5–5 ppmv Average level in homes[55]
5–15 ppmv Near-properly adjusted gas stoves in homes, modern vehicle exhaust emissions[56]
17 ppmv Atmosphere of Venus
100–200 ppmv Exhaust from automobiles in the Mexico City central area in 1975[57]
700 ppmv Atmosphere of Mars
<1000 ppmv Car exhaust fumes after passing through catalytic converter[58]
5,000 ppmv Exhaust from a home wood fire[59]
30,000–100,000ppmv Undiluted warm car exhaust without a catalytic converter[58]

Atmospheric presence

The streak of red, orange, and yellow across South America, Africa, and the Atlantic Ocean in this animation points to high levels of carbon monoxide on September 30, 2005.
Carbon Monoxide concentrations in spring.
Carbon Monoxide concentrations in Northern Hemisphere spring as measured with the MOPITT instrument.

Carbon monoxide (CO) is present in small amounts (about 80 ppb) in the Earth's atmosphere. About half of the carbon monoxide in Earth's atmosphere is from the burning of fossil fuels and biomass (such as forest and bushfires).[60] Most of the rest of carbon monoxide comes from chemical reactions with organic compounds emitted by human activities and plants. Small amounts are also emitted from the ocean, and from geological activity because carbon monoxide occurs dissolved in molten volcanic rock at high pressures in the Earth's mantle.[61] Because natural sources of carbon monoxide are so variable from year to year, it is difficult to accurately measure natural emissions of the gas.

Carbon monoxide has an indirect effect on radiative forcing by elevating concentrations of direct greenhouse gases, including methane and tropospheric ozone. CO can react chemically with other atmospheric constituents (primarily the hydroxyl radical, OH.) that would otherwise destroy methane.[62] Through natural processes in the atmosphere, it is eventually oxidized to carbon dioxide and ozone. Carbon monoxide is both short-lived in the atmosphere (with an average lifetime of about one to two months) and spatially variable in concentration.[63]

In the atmosphere of Venus carbon monoxide occurs as a result of the photodissociation of carbon dioxide by electromagnetic radiation of wavelengths shorter than 169 nm.

Due to its long lifetime in the mid-troposphere, carbon monoxide is also used as tracer of transport for pollutant plumes.[64]

Urban pollution

Carbon monoxide is a temporary atmospheric pollutant in some urban areas, chiefly from the exhaust of internal combustion engines (including vehicles, portable and back-up generators, lawn mowers, power washers, etc.), but also from incomplete combustion of various other fuels (including wood, coal, charcoal, oil, paraffin, propane, natural gas, and trash).

Large CO pollution events can be observed from space over cities.[65]

Role in ground-level ozone formation

Carbon monoxide is, along with aldehydes, part of the series of cycles of chemical reactions that form photochemical smog. It reacts with hydroxyl radical (OH) to produce a radical intermediate HOCO, which transfers rapidly its radical hydrogen to O2 to form peroxy radical (HO2) and carbon dioxide (CO2).[66] Peroxy radical subsequently reacts with nitrogen oxide (NO) to form nitrogen dioxide (NO2) and hydroxyl radical. NO2 gives O(3P) via photolysis, thereby forming O3 following reaction with O2. Since hydroxyl radical is formed during the formation of NO2, the balance of the sequence of chemical reactions starting with carbon monoxide and leading to the formation of ozone is:

CO + 2O2 + hν → CO2 + O3

(where hν refers to the photon of light absorbed by the NO2 molecule in the sequence)

Although the creation of NO2 is the critical step leading to low level ozone formation, it also increases this ozone in another, somewhat mutually exclusive way, by reducing the quantity of NO that is available to react with ozone.[67]

Indoor pollution

In closed environments, the concentration of carbon monoxide can easily rise to lethal levels. On average, 170 people in the United States die every year from carbon monoxide produced by non-automotive consumer products.[68] However, according to the Florida Department of Health, "every year more than 500 Americans die from accidental exposure to carbon monoxide and thousands more across the U.S. require emergency medical care for non-fatal carbon monoxide poisoning"[69] These products include malfunctioning fuel-burning appliances such as furnaces, ranges, water heaters, and gas and kerosene room heaters; engine-powered equipment such as portable generators; fireplaces; and charcoal that is burned in homes and other enclosed areas. The American Association of Poison Control Centers (AAPCC) reported 15,769 cases of carbon monoxide poisoning resulting in 39 deaths in 2007.[70] In 2005, the CPSC reported 94 generator-related carbon monoxide poisoning deaths.[68] Forty-seven of these deaths were known to have occurred during power outages due to severe weather, including Hurricane Katrina.[68] Still others die from carbon monoxide produced by non-consumer products, such as cars left running in attached garages. The Centers for Disease Control and Prevention estimates that several thousand people go to hospital emergency rooms every year to be treated for carbon monoxide poisoning.[71]

Presence in blood

Carbon monoxide is absorbed through breathing and enters the blood stream through gas exchange in the lungs. It is also produced in heme catabolism and enters the blood from the tissues, and thus is present in all normal tissues, even if not inhaled.

Normal circulating levels in the blood are 0% to 3% saturation,[72] i.e. the ratio of the amount of carboxyhaemoglobin present to the total circulating haemoglobin,[73] and are higher in smokers. Carbon monoxide levels cannot be assessed through a physical exam. Laboratory testing requires a blood sample (arterial or venous) and laboratory analysis on a CO-Oximeter. Additionally, a noninvasive carboxyhemoglobin (SpCO) test method from Pulse CO-Oximetry exists and has been validated compared to invasive methods.[74]

Space

Outside of Earth, carbon monoxide is the second-most common molecule in the interstellar medium, after molecular hydrogen. Because of its asymmetry, this polar molecule produces far brighter spectral lines than the hydrogen molecule, making CO much easier to detect. Interstellar CO was first detected with radio telescopes in 1970. It is now the most commonly used tracer of molecular gas in general in the interstellar medium of galaxies, as molecular hydrogen can only be detected using ultraviolet light, which requires space telescopes. Carbon monoxide observations provide much of the information about the molecular clouds in which most stars form.[75]

Beta Pictoris, the second brightest star in the constellation Pictor, shows an excess of infrared emission compared to normal stars of its type, which is caused by large quantities of dust and gas (including carbon monoxide)[76][77] near the star.

Solid carbon monoxide is a component of comets.[78] Halley's Comet is about 15% carbon monoxide.[79] It has also been identified spectroscopy on the surface of Neptune's moon Triton.[80] At room temperature and at atmospheric pressure carbon monoxide is actually only metastable (see Boudouard reaction) and the same is true at low temperatures where CO and CO
2
are solid, but nevertheless it can exist for billions of years in comets. However, there is very little CO in the atmosphere of Pluto, which seems to have been formed from comets. This may be because there is (or was) liquid water inside Pluto. Carbon monoxide can react with water to form carbon dioxide and hydrogen:

CO + H2O → H
2
+ CO
2

This is called the water-gas shift reaction when occurring in the gas phase, but it can also take place (very slowly) in aqueous solution. If the hydrogen partial pressure is high enough (for instance in an underground sea), formic acid will be formed:

CO + H2O → HCOOH

These reactions can take place in only a few million years even at temperatures such as found at Pluto.[81]

Mining

Miners refer to carbon monoxide as "white damp" or the "silent killer". It can be found in confined areas of poor ventilation in both surface mines and underground mines. The most common sources of carbon monoxide in mining operations are the internal combustion engine and explosives, however in coal mines carbon monoxide can also be found due to the low temperature oxidation of coal.[82]

Production

Many methods have been developed for carbon monoxide's production.[83]

Industrial production

A major industrial source of CO is producer gas, a mixture containing mostly carbon monoxide and nitrogen, formed by combustion of carbon in air at high temperature when there is an excess of carbon. In an oven, air is passed through a bed of coke. The initially produced CO2 equilibrates with the remaining hot carbon to give CO. The reaction of CO2 with carbon to give CO is described as the Boudouard reaction.[84] Above 800 °C, CO is the predominant product:

CO2 + C → 2 CO (ΔH = 170 kJ/mol)

Another source is "water gas", a mixture of hydrogen and carbon monoxide produced via the endothermic reaction of steam and carbon:

H2O + C → H2 + CO (ΔH = +131 kJ/mol)

Other similar "synthesis gases" can be obtained from natural gas and other fuels.

Carbon monoxide can also be produced by high-temperature electrolysis of carbon dioxide with solid oxide electrolyzer cells:[85]

2 CO2 → 2 CO + O2

Carbon monoxide is also a byproduct of the reduction of metal oxide ores with carbon, shown in a simplified form as follows:

MO + C → M + CO

Carbon monoxide is also produced by the direct oxidation of carbon in a limited supply of oxygen or air.

2 C(s) + O2 → 2 CO(g)

Since CO is a gas, the reduction process can be driven by heating, exploiting the positive (favorable) entropy of reaction. The Ellingham diagram shows that CO formation is favored over CO2 in high temperatures.

Laboratory preparation

Carbon monoxide is conveniently produced in the laboratory by the dehydration of formic acid or oxalic acid, for example with concentrated sulfuric acid.[86][87][88] Another method is heating an intimate mixture of powdered zinc metal and calcium carbonate, which releases CO and leaves behind zinc oxide and calcium oxide:

Zn + CaCO3 → ZnO + CaO + CO

Silver nitrate and iodoform also afford carbon monoxide:

CHI3 + 3AgNO3 + H2O → 3HNO3 + CO + 3AgI

Finally, metal oxalate salts release CO upon heating, leaving a carbonate as byproduct:

Na
2
C
2
O
4
Na
2
CO
3
+ CO

Coordination chemistry

MO COeng
Energy level scheme of the σ and π orbitals of carbon monoxide
Carbon-monoxide-HOMO-phase-3D-balls
The HOMO of CO is a σ MO.
Carbon-monoxide-LUMO-phase-3D-balls
The LUMO of CO is a π* antibonding MO.

Most metals form coordination complexes containing covalently attached carbon monoxide. Only metals in lower oxidation states will complex with carbon monoxide ligands. This is because there must be sufficient electron density to facilitate back-donation from the metal dxz-orbital, to the π* molecular orbital from CO. The lone pair on the carbon atom in CO, also donates electron density to the dx²−y² on the metal to form a sigma bond. This electron donation is also exhibited with the cis effect, or the labilization of CO ligands in the cis position. Nickel carbonyl, for example, forms by the direct combination of carbon monoxide and nickel metal:

Ni + 4 CO → Ni(CO)4 (1 bar, 55 °C)

For this reason, nickel in any tubing or part must not come into prolonged contact with carbon monoxide. Nickel carbonyl decomposes readily back to Ni and CO upon contact with hot surfaces, and this method is used for the industrial purification of nickel in the Mond process.[89]

In nickel carbonyl and other carbonyls, the electron pair on the carbon interacts with the metal; the carbon monoxide donates the electron pair to the metal. In these situations, carbon monoxide is called the carbonyl ligand. One of the most important metal carbonyls is iron pentacarbonyl, Fe(CO)5:

Structure of iron pentacarbonyl.
Iron pentacarbonyl.

Structure of iron pentacarbonyl.
Iron pentacarbonyl.

Many metal-CO complexes are prepared by decarbonylation of organic solvents, not from CO. For instance, iridium trichloride and triphenylphosphine react in boiling 2-methoxyethanol or DMF to afford IrCl(CO)(PPh3)2.

Metal carbonyls in coordination chemistry are usually studied using infrared spectroscopy.

Organic and main group chemistry

In the presence of strong acids and water, carbon monoxide reacts with alkenes to form carboxylic acids in a process known as the Koch–Haaf reaction.[86] In the Gattermann–Koch reaction, arenes are converted to benzaldehyde derivatives in the presence of AlCl3 and HCl.[87] Organolithium compounds (e.g. butyl lithium) react with carbon monoxide, but these reactions have little scientific use.

Although CO reacts with carbocations and carbanions, it is relatively nonreactive toward organic compounds without the intervention of metal catalysts.[90]

With main group reagents, CO undergoes several noteworthy reactions. Chlorination of CO is the industrial route to the important compound phosgene. With borane CO forms the adduct H3BCO, which is isoelectronic with the acetylium cation [H3CCO]+. CO reacts with sodium to give products resulting from C-C coupling such as sodium acetylenediolate 2Na+
·C
2
O2−
2
. It reacts with molten potassium to give a mixture of an organometallic compound, potassium acetylenediolate 2K+
·C
2
O2−
2
, potassium benzenehexolate 6K+
C
6
O6−
6
,[91] and potassium rhodizonate 2K+
·C
6
O2−
6
.[92]

The compounds cyclohexanehexone or triquinoyl (C6O6) and cyclopentanepentone or leuconic acid (C5O5), which so far have been obtained only in trace amounts, can be regarded as polymers of carbon monoxide.

At pressures of over 5 gigapascals, carbon monoxide converts into a solid polymer of carbon and oxygen. This is metastable at atmospheric pressure but is a powerful explosive.[93][94]

Uses

Chemical industry

Carbon monoxide is an industrial gas that has many applications in bulk chemicals manufacturing.[95] Large quantities of aldehydes are produced by the hydroformylation reaction of alkenes, carbon monoxide, and H2. Hydroformylation is coupled to the Shell higher olefin process to give precursors to detergents.

Phosgene, useful for preparing isocyanates, polycarbonates, and polyurethanes, is produced by passing purified carbon monoxide and chlorine gas through a bed of porous activated carbon, which serves as a catalyst. World production of this compound was estimated to be 2.74 million tonnes in 1989.[96]

CO + Cl2 → COCl2

Methanol is produced by the hydrogenation of carbon monoxide. In a related reaction, the hydrogenation of carbon monoxide is coupled to C-C bond formation, as in the Fischer-Tropsch process where carbon monoxide is hydrogenated to liquid hydrocarbon fuels. This technology allows coal or biomass to be converted to diesel.

In the Cativa process, carbon monoxide and methanol react in the presence of a homogeneous Iridium catalyst and hydroiodic acid to give acetic acid. This process is responsible for most of the industrial production of acetic acid.

An industrial scale use for pure carbon monoxide is purifying nickel in the Mond process.

Carbon monoxide can also be used in the water-gas shift reaction to produce hydrogen.

Meat coloring

Carbon monoxide is used in modified atmosphere packaging systems in the US, mainly with fresh meat products such as beef, pork, and fish to keep them looking fresh. The carbon monoxide combines with myoglobin to form carboxymyoglobin, a bright-cherry-red pigment. Carboxymyoglobin is more stable than the oxygenated form of myoglobin, oxymyoglobin, which can become oxidized to the brown pigment metmyoglobin. This stable red color can persist much longer than in normally packaged meat.[97] Typical levels of carbon monoxide used in the facilities that use this process are between 0.4% to 0.5%.

The technology was first given "generally recognized as safe" (GRAS) status by the U.S. Food and Drug Administration (FDA) in 2002 for use as a secondary packaging system, and does not require labeling. In 2004, the FDA approved CO as primary packaging method, declaring that CO does not mask spoilage odor.[98] Despite this ruling, the process remains controversial for fears that it masks spoilage.[99][100] In 2007, a bill[101] was introduced to the United States House of Representatives to label modified atmosphere carbon monoxide packaging as a color additive, but the bill died in subcommittee. The process is banned in many other countries, including Japan, Singapore, and the European Union.[102][103][104]

Medicine

In biology, carbon monoxide is naturally produced by the action of heme oxygenase 1 and 2 on the heme from hemoglobin breakdown. This process produces a certain amount of carboxyhemoglobin in normal persons, even if they do not breathe any carbon monoxide.

Following the first report that carbon monoxide is a normal neurotransmitter in 1993,[18][19] as well as one of three gases that naturally modulate inflammatory responses in the body (the other two being nitric oxide and hydrogen sulfide), carbon monoxide has received a great deal of clinical attention as a biological regulator. In many tissues, all three gases are known to act as anti-inflammatories, vasodilators, and encouragers of neovascular growth.[20] However, the issues are complex, as neovascular growth is not always beneficial, since it plays a role in tumor growth, and also the damage from wet macular degeneration, a disease for which smoking (a major source of carbon monoxide in the blood, several times more than natural production) increases the risk from 4 to 6 times.

There is a theory that, in some nerve cell synapses, when long-term memories are being laid down, the receiving cell makes carbon monoxide, which back-transmits to the transmitting cell, telling it to transmit more readily in future. Some such nerve cells have been shown to contain guanylate cyclase, an enzyme that is activated by carbon monoxide.[19]

Studies involving carbon monoxide have been conducted in many laboratories throughout the world for its anti-inflammatory and cytoprotective properties. These properties have potential to be used to prevent the development of a series of pathological conditions including ischemia reperfusion injury, transplant rejection, atherosclerosis, severe sepsis, severe malaria, or autoimmunity. Clinical tests involving humans have been performed, however the results have not yet been released.[21]

Metallurgy

Carbon monoxide is a strong reductive agent, and whilst not known, it has been used in pyrometallurgy to reduce metals from ores since ancient times. Carbon monoxide strips oxygen off metal oxides, reducing them to pure metal in high temperatures, forming carbon dioxide in the process. Carbon monoxide is not usually supplied as is, in gaseous phase, in the reactor, but rather it is formed in high temperature in presence of oxygen-carrying ore, carboniferous agent such as coke and high temperature. The blast furnace process is a typical example of a process of reduction of metal from ore with carbon monoxide.

Lasers

Carbon monoxide has also been used as a lasing medium in high-powered infrared lasers.[105]

Niche uses

Carbon monoxide has been proposed for use as a fuel on Mars. Carbon monoxide/oxygen engines have been suggested for early surface transportation use as both carbon monoxide and oxygen can be straightforwardly produced from the atmosphere of Mars by zirconia electrolysis, without using any Martian water resources to obtain hydrogen, which would be needed to make methane or any hydrogen-based fuel.[106] Likewise, blast furnace gas collected at the top of blast furnace, still contains some 10% to 30% of carbon monoxide, and is used as fuel on Cowper stoves and on Siemens-Martin furnaces on open hearth steelmaking.

See also

References

  1. ^ a b "Carbon monoxide". Immediately Dangerous to Life and Health Concentrations (IDLH). National Institute for Occupational Safety and Health (NIOSH).
  2. ^ Richard, Pohanish (2012). Sittig's Handbook of Toxic and Hazardous Chemicals and Carcinogens (2 ed.). Elsevier. p. 572. ISBN 978-1-4377-7869-4. Retrieved 5 September 2015.
  3. ^ NIOSH Pocket Guide to Chemical Hazards. "#0105". National Institute for Occupational Safety and Health (NIOSH).
  4. ^ GOV, NOAA Office of Response and Restoration, US. "CARBON MONOXIDE - CAMEO Chemicals - NOAA". cameochemicals.noaa.gov.
  5. ^ "Molecular orbitals in Carbon Monoxide CO". University of Liverpool. Retrieved May 10, 2016.
  6. ^ Penney, David G. (2000) Carbon Monoxide Toxicity, CRC Press, p. 5, ISBN 0-8493-2065-8.
  7. ^ Cruickshank, W. (1801) "Some observations on different hydrocarbonates and combinations of carbone with oxygen, etc. in reply to some of Dr. Priestley's late objections to the new system of chemistry," Journal of Natural Philosophy, Chemistry and the Arts [a.k.a. Nicholson's Journal], 1st series, 5 : 1–9.
  8. ^ Cruickshank, W. (1801) "Some additional observations on hydrocarbonates, and the gaseous oxide of carbon," Journal of Natural Philosophy, Chemistry and the Arts, 1st series, 5 : 201–211.
  9. ^ Waring, Rosemary H.; Steventon, Glyn B.; Mitchell, Steve C. (2007). Molecules of death. Imperial College Press. p. 38. ISBN 978-1-86094-814-5.
  10. ^ Kitchen, Martin (2006). A history of modern Germany, 1800–2000. Wiley-Blackwell. p. 323. ISBN 978-1-4051-0041-0.
  11. ^ Thompson, Mike. Carbon Monoxide – Molecule of the Month, Winchester College, UK.
  12. ^ Ayres, Robert U.; Ayres, Edward H. (2009). Crossing the Energy Divide: Moving from Fossil Fuel Dependence to a Clean-Energy Future. Wharton School Publishing. p. 36. ISBN 978-0-13-701544-3.
  13. ^ Kinetic studies of propane oxidation on Mo and V based mixed oxide catalysts (PDF). 2011.
  14. ^ Amakawa, Kazuhiko; Kolen'Ko, Yury V.; Villa, Alberto; Schuster, Manfred E/; Csepei, Lénárd-István; Weinberg, Gisela; Wrabetz, Sabine; Naumann d'Alnoncourt, Raoul; Girgsdies, Frank; Prati, Laura; Schlögl, Robert; Trunschke, Annette (26 April 2013). "Multifunctionality of Crystalline MoV(TeNb) M1 Oxide Catalysts in Selective Oxidation of Propane and Benzyl Alcohol". ACS Catalysis. 3 (6): 1103–1113. doi:10.1021/cs400010q.
  15. ^ Naumann d'Alnoncourt, Raoul; Csepei, Lénárd-István; Hävecker, Michael; Girgsdies, Frank; Schuster, Manfred E.; Schlögl, Robert; Trunschke, Annette (March 2014). "The reaction network in propane oxidation over phase-pure MoVTeNb M1 oxide catalysts" (PDF). Journal of Catalysis. 311: 369–385. doi:10.1016/j.jcat.2013.12.008. Archived from the original (PDF) on 2016-02-15. Retrieved 2018-04-14.
  16. ^ Hävecker, Michael; Wrabetz, Sabine; Kröhnert, Jutta; Csepei, Lenard-Istvan; Naumann d'Alnoncourt, Raoul; Kolen'Ko, Yury V.; Girgsdies, Frank; Schlögl, Robert; Trunschke, Annette (January 2012). "Surface chemistry of phase-pure M1 MoVTeNb oxide during operation in selective oxidation of propane to acrylic acid" (PDF). Journal of Catalysis. 285 (1): 48–60. doi:10.1016/j.jcat.2011.09.012. Archived from the original (PDF) on 2016-10-30. Retrieved 2018-04-14.
  17. ^ Weinstock, B.; Niki, H. (1972). "Carbon Monoxide Balance in Nature". Science. 176 (4032): 290–2. Bibcode:1972Sci...176..290W. doi:10.1126/science.176.4032.290. PMID 5019781.
  18. ^ a b Verma, A; Hirsch, D.; Glatt, C.; Ronnett, G.; Snyder, S. (1993). "Carbon monoxide: A putative neural messenger". Science. 259 (5093): 381–4. Bibcode:1993Sci...259..381V. doi:10.1126/science.7678352. PMID 7678352.
  19. ^ a b c Kolata, Gina (January 26, 1993). "Carbon Monoxide Gas Is Used by Brain Cells As a Neurotransmitter". The New York Times. Retrieved May 2, 2010.
  20. ^ a b Li, L; Hsu, A; Moore, PK (2009). "Actions and interactions of nitric oxide, carbon monoxide and hydrogen sulphide in the cardiovascular system and in inflammation—a tale of three gases!". Pharmacology & Therapeutics. 123 (3): 386–400. doi:10.1016/j.pharmthera.2009.05.005. PMID 19486912.
  21. ^ a b Johnson, Carolyn Y. (October 16, 2009). "Poison gas may carry a medical benefit". The Boston Globe. Retrieved October 16, 2009.
  22. ^ Gilliam, O. R.; Johnson, C. M.; Gordy, W. (1950). "Microwave Spectroscopy in the Region from Two to Three Millimeters". Physical Review. 78 (2): 140–144. Bibcode:1950PhRv...78..140G. doi:10.1103/PhysRev.78.140.
  23. ^ Haynes, William M. (2010). Handbook of Chemistry and Physics (91 ed.). Boca Raton, Florida: CRC Press. p. 9–33. ISBN 978-1439820773.
  24. ^ Haynes, William M. (2010). Handbook of Chemistry and Physics (91 ed.). Boca Raton, Florida: CRC Press. p. 9–39. ISBN 978-1439820773.
  25. ^ Common Bond Energies (D) and Bond Lengths (r). wiredchemist.com
  26. ^ Vidal, C. R. (28 June 1997). "Highly Excited Triplet States of Carbon Monoxide". Archived from the original on 2006-08-28. Retrieved August 16, 2012.
  27. ^ Scuseria, Gustavo E.; Miller, Michael D.; Jensen, Frank; Geertsen, Jan (1991). "The dipole moment of carbon monoxide". J. Chem. Phys. 94 (10): 6660. Bibcode:1991JChPh..94.6660S. doi:10.1063/1.460293.
  28. ^ Martinie, Ryan J.; Bultema, Jarred J.; Vander Wal, Mark N.; Burkhart, Brandon J.; Vander Griend, Douglas A.; DeKock, Roger L. (2011-08-01). "Bond Order and Chemical Properties of BF, CO, and N2". Journal of Chemical Education. 88 (8): 1094–1097. doi:10.1021/ed100758t. ISSN 0021-9584.
  29. ^ 1925-, Ulrich, Henri (2009). Cumulenes in click reactions. Wiley InterScience (Online service). Chichester, U.K.: Wiley. p. 45. ISBN 9780470747957. OCLC 476311784.
  30. ^ Lupinetti, Anthony J.; Fau, Stefan; Frenking, Gernot; Strauss, Steven H. (1997). "Theoretical Analysis of the Bonding between CO and Positively Charged Atoms". J. Phys. Chem. A. 101 (49): 9551–9559. Bibcode:1997JPCA..101.9551L. doi:10.1021/jp972657l.
  31. ^ Blanco, Fernando; Alkorta, Ibon; Solimannejad, Mohammad; Elguero, Jose (2009). "Theoretical Study of the 1:1 Complexes between Carbon Monoxide and Hypohalous Acids". J. Phys. Chem. A. 113 (13): 3237–3244. Bibcode:2009JPCA..113.3237B. doi:10.1021/jp810462h. hdl:10261/66300. PMID 19275137.
  32. ^ Meerts, W; De Leeuw, F.H.; Dymanus, A. (1 June 1977). "Electric and magnetic properties of carbon monoxide by molecular-beam electric-resonance spectroscopy". Chemical Physics. 22 (2): 319–324. Bibcode:1977CP.....22..319M. doi:10.1016/0301-0104(77)87016-X.
  33. ^ Stefan, Thorsten; Janoschek, Rudolf (2000). "How relevant are S=O and P=O Double Bonds for the Description of the Acid Molecules H2SO3, H2SO4, and H3PO3, respectively?". Journal of Molecular Modeling. 6 (2): 282–288. doi:10.1007/PL00010730.
  34. ^ Omaye ST (2002). "Metabolic modulation of carbon monoxide toxicity". Toxicology. 180 (2): 139–150. doi:10.1016/S0300-483X(02)00387-6. PMID 12324190.
  35. ^ Tikuisis, P; Kane, DM; McLellan, TM; Buick, F; Fairburn, SM (1992). "Rate of formation of carboxyhemoglobin in exercising humans exposed to carbon monoxide". Journal of Applied Physiology. 72 (4): 1311–9. doi:10.1152/jappl.1992.72.4.1311. PMID 1592720.
  36. ^ "OSHA CO guidelines". OSHA. Archived from the original on January 26, 2010. Retrieved May 27, 2009.
  37. ^ a b Blumenthal, Ivan (1 June 2001). "Carbon monoxide poisoning". J R Soc Med. 94 (6): 270–272. doi:10.1177/014107680109400604. PMC 1281520. PMID 11387414.
  38. ^ Ganong, William F (2005). "37". Review of medical physiology (22 ed.). McGraw-Hill. p. 684. ISBN 978-0-07-144040-0. Retrieved May 27, 2009.
  39. ^ Prockop LD, Chichkova RI (2007). "Carbon monoxide intoxication: an updated review". J Neurol Sci. 262 (1–2): 122–130. doi:10.1016/j.jns.2007.06.037. PMID 17720201.
  40. ^ Tucker Blackburn, Susan (2007). Maternal, fetal, & neonatal physiology: a clinical perspective. Elsevier Health Sciences. p. 325. ISBN 978-1-4160-2944-1.
  41. ^ a b Wu, L; Wang, R (December 2005). "Carbon Monoxide: Endogenous Production, Physiological Functions, and Pharmacological Applications". Pharmacol Rev. 57 (4): 585–630. doi:10.1124/pr.57.4.3. PMID 16382109.
  42. ^ a b Wallace JL, Ianaro A, Flannigan KL, Cirino G (2015). "Gaseous mediators in resolution of inflammation". Seminars in Immunology. 27 (3): 227–33. doi:10.1016/j.smim.2015.05.004. PMID 26095908.
  43. ^ Uehara EU, Shida Bde S, de Brito CA (2015). "Role of nitric oxide in immune responses against viruses: beyond microbicidal activity". Inflammation Research. 64 (11): 845–52. doi:10.1007/s00011-015-0857-2. PMID 26208702.
  44. ^ Nakahira K, Choi AM (2015). "Carbon monoxide in the treatment of sepsis". American Journal of Physiology. Lung Cellular and Molecular Physiology. 309 (12): L1387–93. doi:10.1152/ajplung.00311.2015. PMC 4683310. PMID 26498251.
  45. ^ Shinohara M, Serhan CN (2016). "Novel Endogenous Proresolving Molecules:Essential Fatty Acid-Derived and Gaseous Mediators in the Resolution of Inflammation". Journal of Atherosclerosis and Thrombosis. 23 (6): 655–64. doi:10.5551/jat.33928. PMID 27052783.
  46. ^ Olas, Beata (25 April 2014). "Carbon monoxide is not always a poison gas for human organism: Physiological and pharmacological features of CO". Chemico-Biological Interactions. 222 (5 October 2014): 37–43. doi:10.1016/j.cbi.2014.08.005. PMID 25168849. Retrieved 23 October 2014.
  47. ^ Thauer, R. K. (1998). "Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 Marjory Stephenson Prize Lecture" (Free). Microbiology. 144 (9): 2377–2406. doi:10.1099/00221287-144-9-2377. PMID 9782487.
  48. ^ Hogan, C. Michael (2010). "Extremophile" in E. Monosson and C. Cleveland (eds.). Encyclopedia of Earth. National Council for Science and the Environment, Washington, DC
  49. ^ "Martian life must be rare as free energy source remains untapped". New Scientist. May 13, 2017.
  50. ^ Jaouen, G., ed. (2006). Bioorganometallics: Biomolecules, Labeling, Medicine. Weinheim: Wiley-VCH. ISBN 978-3-527-30990-0.
  51. ^ Roberts, G. P.; Youn, H.; Kerby, R. L. (2004). "CO-Sensing Mechanisms". Microbiology and Molecular Biology Reviews. 68 (3): 453–473. doi:10.1128/MMBR.68.3.453-473.2004. PMC 515253. PMID 15353565.
  52. ^ Global Maps. Carbon Monoxide. earthobservatory.nasa.gov
  53. ^ Source for figures: Carbon dioxide, NOAA Earth System Research Laboratory, (updated 2010.06). Methane, IPCC TAR table 6.1, (updated to 1998). The NASA total was 17 ppmv over 100%, and CO2 was increased here by 15 ppmv. To normalize, N2 should be reduced by about 25 ppmv and O2 by about 7 ppmv.
  54. ^ Committee on Medical and Biological Effects of Environmental Pollutants (1977). Carbon Monoxide. Washington, D.C.: National Academy of Sciences. p. 29. ISBN 978-0-309-02631-4.
  55. ^ Green W. "An Introduction to Indoor Air Quality: Carbon Monoxide (CO)". United States Environmental Protection Agency. Retrieved 2008-12-16.
  56. ^ Gosink, Tom (1983-01-28). "What Do Carbon Monoxide Levels Mean?". Alaska Science Forum. Geophysical Institute, University of Alaska Fairbanks. Archived from the original on 2008-12-25. Retrieved 2007-12-01.
  57. ^ Singer, Siegfried Fred (1975). The Changing Global Environment. Springer. p. 90. ISBN 978-9027704023.
  58. ^ a b "Carbon Monoxide Poisoning: Vehicles (AEN-208)". www.abe.iastate.edu. Retrieved 11 February 2018.
  59. ^ Gosink T (January 28, 1983). "What Do Carbon Monoxide Levels Mean?". Alaska Science Forum. Geophysical Institute, University of Alaska Fairbanks. Archived from the original on December 25, 2008. Retrieved December 16, 2008.
  60. ^ Seinfeld, John; Pandis, Spyros (2006). Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. John Wiley & Sons. ISBN 978-0-471-72018-8.
  61. ^ Sigel, Astrid; Sigel, Roland K. O. (2009). Metal-Carbon Bonds in Enzymes and Cofactors. Royal Society of Chemistry. p. 243. ISBN 978-1-84755-915-9.
  62. ^ White, James Carrick; et al. (1989). Global climate change linkages: acid rain, air quality, and stratospheric ozone. Springer. p. 106. ISBN 978-0-444-01515-0.
  63. ^ Drummond, James (February 2, 2018). "MOPITT, Atmospheric Pollution, and Me: A Personal Story". Canadian Meteorological and Oceanographic Society. Retrieved August 1, 2018.
  64. ^ Pommier, M.; Law, K. S.; Clerbaux, C.; Turquety, S.; Hurtmans, D.; Hadji-Lazaro, J.; Coheur, P.-F.; Schlager, H.; Ancellet, G.; Paris, J.-D.; Nédélec, P.; Diskin, G. S.; Podolske, J. R.; Holloway, J. S.; Bernath, P. (2010). "IASI carbon monoxide validation over the Arctic during POLARCAT spring and summer campaigns". Atmospheric Chemistry and Physics. 10 (21): 10655–10678. Bibcode:2010ACP....1010655P. doi:10.5194/acp-10-10655-2010.
  65. ^ Pommier, M.; McLinden, C. A.; Deeter, M. (2013). "Relative changes in CO emissions over megacities based on observations from space". Geophysical Research Letters. 40 (14): 3766. Bibcode:2013GeoRL..40.3766P. doi:10.1002/grl.50704.
  66. ^ Reeves, Claire E.; Penkett, Stuart A.; Bauguitte, Stephane; Law, Kathy S.; Evans, Mathew J.; Bandy, Brian J.; Monks, Paul S.; Edwards, Gavin D.; Phillips, Gavin; Barjat, Hannah; Kent, Joss; Dewey, Ken; Schmitgen, Sandra; Kley, Dieter (2002). "Potential for photochemical ozone formation in the troposphere over the North Atlantic as derived from aircraft observationsduring ACSOE". Journal of Geophysical Research. 107 (D23): 4707. Bibcode:2002JGRD..107.4707R. doi:10.1029/2002JD002415.
  67. ^ Ozone and other photochemical oxidants. National Academies. 1977. p. 23. ISBN 978-0-309-02531-7.
  68. ^ a b c U.S. Consumer Product Safety Commission, Carbon Monoxide Questions and Answers Archived 2010-01-09 at the Wayback Machine, accessed 2009-12-04
  69. ^ "Tracking Carbon Monoxide". Environmental Public Health Tracking – Florida Dept. of Health. Archived from the original on 2011-09-27.
  70. ^ "AAPCC Annual Data Reports 2007". American Association of Poison Control Centers.
  71. ^ Centers for Disease Control and Prevention, National Environmental Public Health Tracking Network, Carbon Monoxide Poisoning, accessed 2009-12-04
  72. ^ "Carbon Monoxide (Blood) - Health Encyclopedia - University of Rochester Medical Center". www.urmc.rochester.edu.
  73. ^ [1]
  74. ^ Roth D.; Herkner H.; Schreiber W.; Hubmann N.; Gamper G.; Laggner A.N.; Havel C. (2011). "Accuracy of Noninvasive Multiwave Pulse Oximetry Compared With Carboxyhemoglobin From Blood Gas Analysis in Unselected Emergency Department Patients" (PDF). Annals of Emergency Medicine. 58 (1): 74–9. doi:10.1016/j.annemergmed.2010.12.024. PMID 21459480.
  75. ^ Combes, Françoise (1991). "Distribution of CO in the Milky Way". Annual Review of Astronomy & Astrophysics. 29: 195–237. Bibcode:1991ARA&A..29..195C. doi:10.1146/annurev.aa.29.090191.001211.
  76. ^ Khan, Amina. "Did two planets around nearby star collide? Toxic gas holds hints". Los Angeles Times. Retrieved March 9, 2014.
  77. ^ Dent, W.R.F.; Wyatt, M.C.;Roberge, A.; Augereau, J.-C.; Casassus, S.;Corder, S.; Greaves, J.S.; de Gregorio-Monsalvo, I; Hales, A.; Jackson, A.P.; Hughes, A. Meredith; Lagrange, A.-M; Matthews, B.; Wilner, D. (March 6, 2014). "Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk". Science. 343 (6178): 1490–1492. arXiv:1404.1380. Bibcode:2014Sci...343.1490D. doi:10.1126/science.1248726. PMID 24603151. Retrieved March 9, 2014.CS1 maint: Uses authors parameter (link)
  78. ^ Greenberg, J. Mayo (1998). "Making a comet nucleus". Astronomy and Astrophysics. 330: 375. Bibcode:1998A&A...330..375G.
  79. ^ Yeomans, Donald K. (2005). "Comets (World Book Online Reference Center 125580)". NASA. Archived from the original on 29 April 2005. Retrieved 20 November 2007.
  80. ^ Lellouch, E.; de Bergh, C.; Sicardy, B.; Ferron, S.; Käufl, H.-U. (2010). "Detection of CO in Triton's atmosphere and the nature of surface-atmosphere interactions". Astronomy and Astrophysics. 512: L8. arXiv:1003.2866. doi:10.1051/0004-6361/201014339. ISSN 0004-6361.
  81. ^ Christopher Glein and Hunter Waite (May 11, 2018). "Primordial N2 provides a cosmo chemical explanation for the existence of Sputnik Planitia, Pluto". Icarus. 313: 79–92. arXiv:1805.09285. Bibcode:2018Icar..313...79G. doi:10.1016/j.icarus.2018.05.007.
  82. ^ "MSHA - Occupational Illness and Injury Prevention Program - Health Topics - Carbon Monoxide". arlweb.msha.gov. Retrieved 2017-12-31.
  83. ^ Holleman, A. F.; Wiberg, E. "Inorganic Chemistry" Academic Press: San Diego, 200. ISBN 0-12-352651-5.
  84. ^ Higman, C; van der Burgt, M (2003). Gasification. Gulf Professional Publishing. p. 12. ISBN 978-0-7506-7707-3.
  85. ^ Zheng, Yun; Wang, Jianchen; Yu, Bo; Zhang, Wenqiang; Chen, Jing; Qiao, Jinli; Zhang, Jiujun (2017). "A review of high temperature co-electrolysis of H O and CO to produce sustainable fuels using solid oxide electrolysis cells (SOECs): advanced materials and technology". Chem. Soc. Rev. 46 (5): 1427–1463. doi:10.1039/C6CS00403B. PMID 28165079.
  86. ^ a b Koch, H.; Haaf, W. (1973). "1-Adamantanecarboxylic Acid". Organic Syntheses.; Collective Volume, 5, p. 20
  87. ^ a b Coleman, G. H.; Craig, David (1943). "p-Tolualdehyde". Organic Syntheses.; Collective Volume, 2, p. 583
  88. ^ Brauer, Georg (1963). Handbook of Preparative Inorganic Chemistry Vol. 1, 2nd Ed. Newyork: Academic Press. p. 646. ISBN 978-0121266011.
  89. ^ Mond L, Langer K, Quincke F (1890). "Action of carbon monoxide on nickel". Journal of the Chemical Society. 57: 749–753. doi:10.1039/CT8905700749.
  90. ^ Chatani, N.; Murai, S. "Carbon Monoxide" in Encyclopedia of Reagents for Organic Synthesis (Ed: L. Paquette) 2004, J. Wiley & Sons, New York. doi:10.1002/047084289
  91. ^ Büchner, W.; Weiss, E. (1964). "Zur Kenntnis der sogenannten "Alkalicarbonyle" IV[1] Über die Reaktion von geschmolzenem Kalium mit Kohlenmonoxid". Helvetica Chimica Acta. 47 (6): 1415–1423. doi:10.1002/hlca.19640470604.
  92. ^ Fownes, George (1869). A Manual of elementary chemistry. H.C. Lea. p. 678.
  93. ^ Katz, Allen I.; Schiferl, David; Mills, Robert L. (1984). "New phases and chemical reactions in solid carbon monoxide under pressure". The Journal of Physical Chemistry. 88 (15): 3176–3179. doi:10.1021/j150659a007.
  94. ^ Evans, W. J.; Lipp, M. J.; Yoo, C.-S.; Cynn, H.; Herberg, J. L.; Maxwell, R. S.; Nicol, M. F. (2006). "Pressure-Induced Polymerization of Carbon Monoxide: Disproportionation and Synthesis of an Energetic Lactonic Polymer". Chemistry of Materials. 18 (10): 2520–2531. doi:10.1021/cm0524446.
  95. ^ Elschenbroich, C.; Salzer, A. (2006). Organometallics: A Concise Introduction (2nd ed.). Weinheim: Wiley-VCH. ISBN 978-3-527-28165-7.
  96. ^ Wolfgang Schneider; Werner Diller, "Phosgene", Ullmann's Encyclopedia of Industrial Chemistry, Weinheim: Wiley-VCH, doi:10.1002/14356007.a19_411
  97. ^ Sorheim, S; Nissena, H; Nesbakken, T (1999). "The storage life of beef and pork packaged in an atmosphere with low carbon monoxide and high carbon dioxide". Journal of Meat Science. 52 (2): 157–164. doi:10.1016/S0309-1740(98)00163-6.
  98. ^ Eilert EJ (2005). "New packaging technologies for the 21st century". Journal of Meat Science. 71 (1): 122–127. doi:10.1016/j.meatsci.2005.04.003. PMID 22064057.
  99. ^ Huffman, Randall D. "Low-Oxygen Packaging with CO: A Study in Food Politics That Warrants Peer Review". FoodSafetyMagazine.com. Retrieved April 18, 2007.
  100. ^ "Food Safety: Carbon Monoxide". Food and Water Watch. Retrieved March 1, 2015.
  101. ^ "Carbon Monoxide Treated Meat, Poultry, and Seafood Safe Handling, Labeling, and Consumer Protection Act (Introduced in House)". The Library of Congress. 2007-07-19.
  102. ^ "Proof in the Pink? Meat Treated to Give It Fresh Look". ABC News. November 14, 2007. Retrieved May 5, 2009.
  103. ^ Carbon Monoxide in Meat Packaging: Myths and Facts. American Meat Institute. 2008. Archived from the original on 2011-07-14. Retrieved May 5, 2009.
  104. ^ "CO in packaged meat". Carbon Monoxide Kills Campaign. Archived from the original on September 26, 2010. Retrieved May 5, 2009.
  105. ^ Ionin, A.; Kinyaevskiy, I.; Klimachev, Y.; Kotkov, A.; Kozlov, A. (2012). "Novel mode-locked carbon monoxide laser system achieves high accuracy". SPIE Newsroom. doi:10.1117/2.1201112.004016.
  106. ^ Landis (2001). "Mars Rocket Vehicle Using In Situ Propellants". Journal of Spacecraft and Rockets. 38 (5): 730–735. Bibcode:2001JSpRo..38..730L. doi:10.2514/2.3739.

External links

Afterdamp

Afterdamp is the toxic mixture of gases left in a mine following an explosion caused by firedamp, which itself can initiate a much larger explosion of coal dust. It consists of carbon dioxide, carbon monoxide and nitrogen. Hydrogen sulfide, another highly toxic gas, may also be present. However, it is the high content of carbon monoxide which kills by depriving victims of oxygen by combining preferentially with haemoglobin in the blood.

Afterdamp was the deadly gas which caused the majority of casualties in the many pit disasters of the British coalfields, such as the Senghenydd colliery disaster and elsewhere in the world. Such disasters continue to afflict working mines, especially in mainland China.

Breath carbon monoxide

Breath carbon monoxide is the level of carbon monoxide in a person's exhalation. It can be measured in a breath carbon monoxide test, generally by using a carbon monoxide breath monitor (breath CO monitor), such as for motivation and education for smoking cessation and also as a clinical aid in assessing carbon monoxide poisoning. The breath carbon monoxide level has been shown to have a close relationship with the level of CO in the blood known as carboxyhaemoglobin (%COHb) or "blood CO". This correlation allows for the level of CO in the blood to be indirectly measured through a breath sample.

Carbon monosulfide

Carbon monosulfide is a chemical compound with the formula CS. This diatomic molecule is the sulfur analogue of carbon monoxide, and is unstable as a solid or a liquid, but it has been observed as a gas both in the laboratory and in the interstellar medium. The molecule resembles carbon monoxide with a triple bond between carbon and sulfur. The molecule is not intrinsically unstable, but it tends to polymerize. This tendency reflects the greater stability of C−S single bonds.

Polymers with the formula (CS)n have been reported. Also, CS has been observed as a ligand in certain transition metal complexes.

Carbon monoxide-releasing molecules

Carbon monoxide-releasing molecules (CORMs) are chemical compounds designed to release controlled amounts of carbon monoxide (CO). CORMs are being developed as potential therapeutic agents to locally deliver CO to cells and tissues, thus overcoming limitations of CO gas inhalation protocols.CO is best known for its toxicity in carbon monoxide poisoning at high doses. However, CO is among endogenous gaseous signaling molecules and low dosing of CO has been linked to therapeutic benefits. Pre-clinical research has focused on CO's anti-inflammatory activity with significant applications in cardiovascular disease, oncology, transplant surgery, and neuroprotection.The majority of CO produced in mammals originates from the degradation of heme by the three isoforms of heme oxygenase, whereby HO-1 is induced by oxidative stress, CO, and an array of xenobiotics. HO-2 and HO-3 are constitutive. Other endogenous sources may include lipid peroxidation,The enzymatic reaction of heme oxygenase inspired the development of synthetic CORMs. The first synthetic CORMs were typically metal carbonyl complexes. A representative CORM that has been extensively characterized both from a biochemical and pharmacological view point is the ruthenium(II) complex Ru(glycinate)Cl(CO)3, commonly known as CORM-3.

Carbon monoxide detector

A carbon monoxide detector or CO detector is a device that detects the presence of the carbon monoxide (CO) gas in order to prevent carbon monoxide poisoning. In the late 1990s Underwriters Laboratories changed their definition of a single station CO detector with a sound device in it to a carbon monoxide (CO) alarm. This applies to all CO safety alarms that meet UL 2034 standard; however for passive indicators and system devices that meet UL 2075, UL refers to these as carbon monoxide detectors.

CO is a colorless, tasteless and odorless compound produced by incomplete combustion of carbon-containing materials. It is often referred to as the "silent killer" because it is virtually undetectable by humans without using detection technology and, in a study by Underwriters Laboratories, "Sixty percent of Americans could not identify any potential signs of a CO leak in the home". Elevated levels of CO can be dangerous to humans depending on the amount present and length of exposure. Smaller concentrations can be harmful over longer periods of time while increasing concentrations require diminishing exposure times to be harmful.CO detectors are designed to measure CO levels over time and sound an alarm before dangerous levels of CO accumulate in an environment, giving people adequate warning to safely ventilate the area or evacuate. Some system-connected detectors also alert a monitoring service that can dispatch emergency services if necessary.

While CO detectors do not serve as smoke detectors and vice versa, dual smoke/CO detectors are also sold. Smoke detectors warn of smoldering or flaming fires by detecting the smoke they generate, whereas CO detectors detect and warn people about dangerous CO buildup caused, for example, by a malfunctioning fuel-burning device. In the home, some common sources of CO include open flames, space heaters, water heaters, blocked chimneys or running a car or grill inside a garage.

Carbon monoxide poisoning

Carbon monoxide poisoning typically occurs from breathing in carbon monoxide (CO) at excessive levels. Symptoms are often described as "flu-like" and commonly include headache, dizziness, weakness, vomiting, chest pain, and confusion. Large exposures can result in loss of consciousness, arrhythmias, seizures, or death. The classically described "cherry red skin" rarely occurs. Long term complications may include feeling tired, trouble with memory, and movement problems. In those exposed to smoke, cyanide toxicity should also be considered.Carbon monoxide poisoning can occur accidentally or as an attempt to end one's life. CO is a colorless and odorless gas which is initially non-irritating. It is produced during incomplete burning of organic matter. This can occur from motor vehicles, heaters, or cooking equipment that run on carbon-based fuels. It can also occur from exposure to methylene chloride. Carbon monoxide primarily causes adverse effects by combining with hemoglobin to form carboxyhemoglobin (HbCO) preventing the blood from carrying oxygen. Additionally, myoglobin and mitochondrial cytochrome oxidase are affected. Diagnosis is based on a HbCO level of more than 3% among nonsmokers and more than 10% among smokers.Efforts to prevent poisoning include carbon monoxide detectors, proper venting of gas appliances, keeping chimneys clean, and keeping exhaust systems of vehicles in good repair. Treatment of poisoning generally consists of giving 100% oxygen along with supportive care. This should generally be carried out until symptoms are no longer present and the HbCO level is less than 10%. While hyperbaric oxygen therapy is used for severe poisonings, the benefit over standard oxygen delivery is unclear. The risk of death among those affected is between 1 and 30%.Carbon monoxide poisoning is relatively common, resulting in more than 20,000 emergency department visits a year in the United States. It is the most common type of fatal poisoning in many countries. In the United States non-fire related cases results in more than 400 deaths a year. Poisonings occur more often in the winter, particularly from the use of portable generators during power outages. The toxic effects of CO have been known since ancient history. The realization that hemoglobin was affected by CO was determined in 1857.

Carbonylation

Carbonylation refers to reactions that introduce carbon monoxide into organic and inorganic substrates. Carbon monoxide is abundantly available and conveniently reactive, so it is widely used as a reactant in industrial chemistry. The term carbonylation also refers to oxidation of protein side chains.

Carboxyhemoglobin

Carboxyhemoglobin or carboxyhaemoglobin (symbol COHb or HbCO) is a stable complex of carbon monoxide and hemoglobin (Hb) that forms in red blood cells upon contact with carbon monoxide (CO). Carboxyhemoglobin is often mistaken for the compound formed by the combination of carbon dioxide and hemoglobin, which is actually carbaminohemoglobin. Exposure to small concentrations of CO hinder the ability of Hb to deliver oxygen to the body, because carboxyhemoglobin forms more readily than does oxyhemoglobin (HbO2). CO is produced in normal metabolism and is also a common chemical. Tobacco smoking (through carbon monoxide inhalation) raises the blood levels of COHb by a factor of several times from its normal concentrations.

Diffusing capacity for carbon monoxide

DLCO or TLCO (diffusing capacity or transfer factor of the lung for carbon monoxide (CO),) is the extent to which oxygen passes from the air sacs of the lungs into the blood. Commonly, it refers to the test used to determine this parameter. It was introduced in 1909.

George Daney

George Anthony Daney (September 2, 1946 – February 15, 1990) was an American football guard. He played college football at the University of Texas at El Paso. He was drafted in the first round of the joint 1968 AFL/NFL draft by the Kansas City Chiefs.

Heme oxygenase

Heme oxygenase or haem oxygenase (HO) is an enzyme that catalyzes the degradation of heme. This produces biliverdin, ferrous iron, and carbon monoxide. HO was first described in the late 1960's when Tenhunen demonstrated an enzymatic reaction for heme catabolism. HO is the premier source for endogenous carbon monoxide (CO) production, which is being studied for therapeutic benefits.

Hypoxia (medical)

Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during hypoventilation training or strenuous physical exercise.

Hypoxia differs from hypoxemia and anoxemia in that hypoxia refers to a state in which oxygen supply is insufficient, whereas hypoxemia and anoxemia refer specifically to states that have low or zero arterial oxygen supply. Hypoxia in which there is complete deprivation of oxygen supply is referred to as anoxia.

Generalized hypoxia occurs in healthy people when they ascend to high altitude, where it causes altitude sickness leading to potentially fatal complications: high altitude pulmonary edema (HAPE) and high altitude cerebral edema (HACE). Hypoxia also occurs in healthy individuals when breathing mixtures of gases with a low oxygen content, e.g. while diving underwater especially when using closed-circuit rebreather systems that control the amount of oxygen in the supplied air. Mild, non-damaging intermittent hypoxia is used intentionally during altitude training to develop an athletic performance adaptation at both the systemic and cellular level.Hypoxia is a common complication of preterm birth in newborn infants. Because the lungs develop late in pregnancy, premature infants frequently possess underdeveloped lungs. To improve lung function, doctors frequently place infants at risk of hypoxia inside incubators (also known as humidicribs) that provide continuous positive airway pressure.

Jeff Ward (musician)

Jeff Ward (November 18, 1962 – March 19, 1993) was a drummer for various rock bands including Skafish, Hammeron, Nine Inch Nails, Revolting Cocks, Ministry, Lard (Drums and Vocals), and Low Pop Suicide.

He committed suicide in 1993, dying of carbon monoxide poisoning. Revolting Cocks' 1993 album Linger Ficken' Good, Nine Inch Nails' 1994 album The Downward Spiral, Ministry's 1996 album Filth Pig, and Lard's 1997 release Pure Chewing Satisfaction all featured dedications to him, while Ward's friend (and Nine Inch Nails bandmate) Richard Patrick dealt with his death in the Filter track "It's Over." He provided vocals and drums for the 1000 Homo DJs and the song "Hey Asshole" where he impersonated a cop.

Metal carbonyl

Metal carbonyls are coordination complexes of transition metals with carbon monoxide ligands. Metal carbonyls are useful in organic synthesis and as catalysts or catalyst precursors in homogeneous catalysis, such as hydroformylation and Reppe chemistry. In the Mond process, nickel tetracarbonyl is used to produce pure nickel. In organometallic chemistry, metal carbonyls serve as precursors for the preparation of other organometalic complexes.

Metal carbonyls are toxic by skin contact, inhalation or ingestion, in part because of their ability to carbonylate hemoglobin to give carboxyhemoglobin, which prevents the binding of O2.

Oxide

An oxide is a chemical compound that contains at least one oxygen atom and one other element in its chemical formula. "Oxide" itself is the dianion of oxygen, an O2– atom. Metal oxides thus typically contain an anion of oxygen in the oxidation state of −2. Most of the Earth's crust consists of solid oxides, the result of elements being oxidized by the oxygen in air or in water. Hydrocarbon combustion affords the two principal carbon oxides: carbon monoxide and carbon dioxide. Even materials considered pure elements often develop an oxide coating. For example, aluminium foil develops a thin skin of Al2O3 (called a passivation layer) that protects the foil from further corrosion. Individual elements can often form multiple oxides, each containing different amounts of the element and oxygen. In some cases these are distinguished by specifying the number of atoms as in carbon monoxide and carbon dioxide, and in other cases by specifying the element's oxidation number, as in iron(II) oxide and iron(III) oxide. Certain elements can form many different oxides, such as those of nitrogen.

Pressure Chief

Pressure Chief is the fifth studio album by American band Cake. It was released on October 5, 2004, pushed back from its original August release date. It was produced by the band and recorded in a converted house in Sacramento. The lead single, "No Phone" peaked at #13 on the U.S. Billboard Modern Rock Tracks chart. The second single "Carbon Monoxide" garnered some airplay but failed to crack the Modern Rock Tracks top 40. The album was the band's second and last record under Columbia Records.

The songs "She'll Hang the Baskets" and "Tougher Than It Is" were both originally written for Cake's 1998 record Prolonging the Magic.

On its opening week, Pressure Chief sold about 46,000 copies, debuting and peaking at number 17 on the Billboard 200. However, it fell to #55 the following week.

Suicide methods

A suicide method is any means by which a person completes suicide, purposely ending their life.

Syngas

Syngas, or synthesis gas, is a fuel gas mixture consisting primarily of hydrogen, carbon monoxide, and very often some carbon dioxide. The name comes from its use as intermediates in creating synthetic natural gas (SNG) and for producing ammonia or methanol. Syngas is usually a product of gasification and the main application is electricity generation. Syngas is combustible and can be used as a fuel of internal combustion engines. Historically syngas has been used as a replacement for gasoline, when gasoline supply has been limited, for example wood gas was used to power cars in Europe during WWII, in Germany alone half a million cars was built or rebuilt to run on wood gas. However, syngas has less than half the energy density of natural gas.Syngas can be produced from many sources, including natural gas, coal, biomass, or virtually any hydrocarbon feedstock, by reaction with steam (steam reforming), carbon dioxide (dry reforming) or oxygen (partial oxidation). Syngas is a crucial intermediate resource for production of hydrogen, ammonia, methanol, and synthetic hydrocarbon fuels. Syngas is also used as an intermediate in producing synthetic petroleum for use as a fuel or lubricant via the Fischer–Tropsch process and previously the Mobil methanol to gasoline process.

Production methods include steam reforming of natural gas or liquid hydrocarbons to produce hydrogen, the gasification of coal, biomass, and in some types of waste-to-energy gasification facilities.

Water gas

Water gas is a mixture of carbon monoxide and hydrogen produced from synthesis gas. Synthesis gas is a useful product, but requires careful handling due to its flammability and the risk of carbon monoxide poisoning. The water-gas shift reaction can be used to reduce the carbon monoxide while producing additional hydrogen, resulting in water gas.

Mixed oxidation states
+1 oxidation state
+2 oxidation state
+3 oxidation state
+4 oxidation state
+5 oxidation state
+6 oxidation state
+7 oxidation state
+8 oxidation state
Related
Common oxides
Exotic oxides
Polymers
Compounds derived from oxides
Amino acid-derived
Lipid-derived
Nucleobase-derived
Vitamin-derived
Miscellaneous
Molecules
Deuterated
molecules
Unconfirmed
Related
Compounds
Carbon ions
Oxides and related
Distinct subtypes:

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.