# Carbon-13

Carbon-13 (13C) is a natural, stable isotope of carbon with a nucleus containing six protons and seven neutrons. As one of the environmental isotopes, it makes up about 1.1% of all natural carbon on Earth.

Carbon-13,  13C
General
Name, symbolCarbon-13,13C
Neutrons7
Protons6
Nuclide data
Natural abundance1.109%
Isotope mass13.003355[1] u
Spin−​12
Complete table of nuclides

## Detection by mass spectrometry

A mass spectrum of an organic compound will usually contain a small peak of one mass unit greater than the apparent molecular ion peak (M) of the whole molecule. This is known as the M+1 peak and comes from the handful of molecules that contain a 13C atom in place of a 12C. A molecule containing one carbon atom will be expected to have an M+1 peak of approximately 1.1% of the size of the M peak, as 1.1% of the molecules will have a 13C rather than a 12C. Similarly, a molecule containing two carbon atoms will be expected to have an M+1 peak of approximately 2.2% of the size of the M peak, as there is double the previous likelihood that any molecule will contain a 13C atom.

In the above, the mathematics and chemistry have been simplified, however it can be used effectively to give the number of carbon atoms for small- to medium-sized organic molecules. In the following formula the result should be rounded to the nearest integer:

${\displaystyle C={\frac {100Y}{1.1X}}}$

C = number of C atoms X = amplitude of the M ion peak Y = amplitude of the M+1 ion peak

13C-enriched compounds are used in the research of metabolic processes by means of mass spectrometry. Such compounds are safe because they are non-radioactive. In addition, 13C is used to quantify proteins (quantitative proteomics). One important application is in "Stable isotope labeling with amino acids in cell culture" (SILAC). 13C-enriched compounds are used in medical diagnostic tests such as the urea breath test. Analysis in these tests is usually of the ratio of 13C to 12C by isotope ratio mass spectrometry.

The ratio of 13C to 12C is slightly higher in plants employing C4 carbon fixation than in plants employing C3 carbon fixation. Because the different isotope ratios for the two kinds of plants propagate through the food chain, it is possible to determine if the principal diet of a human or other animal consists primarily of C3 plants or C4 plants by measuring the isotopic signature of their collagen and other tissues. Deliberate increase of proportion of 13C in diet is the concept of i-food, a proposed way to increase longevity.

## Uses in science

Due to differential uptake in plants as well as marine carbonates of 13C, it is possible to use these isotopic signatures in earth science. Biological processes preferentially take up the lower mass isotope through kinetic fractionation. In aqueous geochemistry, by analyzing the δ13C value of carbonaceous material found in surface and ground waters, the source of the water can be identified. This is because atmospheric, carbonate, and plant derived δ13C values all differ with respect to Pee Dee Belemnite (PDB) standard. In biology, the ratio of carbon-13 and carbon-12 isotopes in plant tissues is different depending on the type of plant photosynthesis and this can be used, for example, to determine which types of plants were consumed by animals. In geology, the 13C/12C ratio is used to identify the layer in sedimentary rock created at the time of the Permian extinction 252 Mya when the ratio changed abruptly by 1%. More information about usage of 13C/12C ratio in science can be found in the article about isotopic signatures.

Carbon-13 has a non-zero spin quantum number of 1/2, and hence allows the structure of carbon-containing substances to be investigated using carbon-13 nuclear magnetic resonance.

## Notes

1. ^ "Exact Masses of the Elements and Isotopic Abundances". sisweb.com.
 Lighter: carbon-12 Carbon-13 is an isotope of carbon Heavier: carbon-14 Decay product of: boron-13, nitrogen-13 Decay chain of carbon-13 Decays to: stable
Carbon-12

Carbon-12 (12C) is the more abundant of the two stable isotopes of carbon (Carbon-13 being the other), amounting to 98.93% of the element carbon; its abundance is due to the triple-alpha process by which it is created in stars. Carbon-12 is of particular importance in its use as the standard from which atomic masses of all nuclides are measured, thus, its atomic mass is exactly 12 daltons by definition. Carbon-12 is composed of 6 protons 6 neutrons and 6 electrons.

Carbon-13 nuclear magnetic resonance

Carbon-13 (C13) nuclear magnetic resonance (most commonly known as carbon-13 NMR or 13C NMR or sometimes simply referred to as carbon NMR) is the application of nuclear magnetic resonance (NMR) spectroscopy to carbon. It is analogous to proton NMR (1H NMR) and allows the identification of carbon atoms in an organic molecule just as proton NMR identifies hydrogen atoms. As such 13C NMR is an important tool in chemical structure elucidation in organic chemistry. 13C NMR detects only the 13C isotope of carbon, whose natural abundance is only 1.1%, because the main carbon isotope, 12C, is not detectable by NMR since it has zero net spin.

Carbon-14

Carbon-14, (14C), or radiocarbon, is a radioactive isotope of carbon with an atomic nucleus containing 6 protons and 8 neutrons. Its presence in organic materials is the basis of the radiocarbon dating method pioneered by Willard Libby and colleagues (1949) to date archaeological, geological and hydrogeological samples. Carbon-14 was discovered on February 27, 1940, by Martin Kamen and Sam Ruben at the University of California Radiation Laboratory in Berkeley, California. Its existence had been suggested by Franz Kurie in 1934.There are three naturally occurring isotopes of carbon on Earth: carbon-12, which makes up 99% of all carbon on Earth; carbon-13, which makes up 1%; and carbon-14, which occurs in trace amounts, making up about 1 or 1.5 atoms per 1012 atoms of carbon in the atmosphere. Carbon-12 and carbon-13 are both stable, while carbon-14 is unstable and has a half-life of 5,730±40 years. Carbon-14 decays into nitrogen-14 through beta decay. A gram of carbon containing 1 atom of carbon-14 per 1012 atoms will emit ~0.2 beta particles per second. The primary natural source of carbon-14 on Earth is cosmic ray action on nitrogen in the atmosphere, and it is therefore a cosmogenic nuclide. However, open-air nuclear testing between 1955–1980 contributed to this pool.

The different isotopes of carbon do not differ appreciably in their chemical properties. This resemblance is used in chemical and biological research, in a technique called carbon labeling: carbon-14 atoms can be used to replace nonradioactive carbon, in order to trace chemical and biochemical reactions involving carbon atoms from any given organic compound.

Chemical structure

A chemical structure determination includes a chemist's specifying the molecular geometry and, when feasible and necessary, the electronic structure of the target molecule or other solid. Molecular geometry refers to the spatial arrangement of atoms in a molecule and the chemical bonds that hold the atoms together, and can be represented using structural formulae and by molecular models; complete electronic structure descriptions include specifying the occupation of a molecule's molecular orbitals. Structure determination can be applied to a range of targets from very simple molecules (e.g., diatomic oxygen or nitrogen), to very complex ones (e.g., such as of protein or DNA).

Theories of chemical structure were first developed by August Kekule, Archibald Scott Couper, and Aleksandr Butlerov, among others, from about 1858. These theories were first to state that chemical compounds are not a random cluster of atoms and functional groups, but rather had a definite order defined by the valency of the atoms composing the molecule, giving the molecules a three dimensional structure that could be determined or solved.

In determining structures of chemical compounds, one generally aims to obtain, minimally, the pattern and multiplicity of bonding between all atoms in the molecule; when possible, one seeks the three dimensional spatial coordinates of the atoms in the molecule (or other solid). The methods by which one can elucidate the structure of a molecule include spectroscopies such as nuclear magnetic resonance (proton and carbon-13 NMR), various methods of mass spectrometry (to give overall molecular mass, as well as fragment masses), and x-ray crystallography when applicable. The last technique can produce three-dimensional models at atomic-scale resolution, as long as crystals are available. When a molecule has an unpaired electron spin in a functional group of its structure, ENDOR and electron-spin resonance spectroscopes may also be performed. Techniques such as absorption spectroscopy and the vibrational spectroscopies, infrared and Raman, provide, respectively, important supporting information about the numbers and adjacencies of multiple bonds, and about the types of functional groups (whose internal bonding gives vibrational signatures); further inferential studies that give insight into the contributing electronic structure of molecules include cyclic voltammetry and X-ray photoelectron spectroscopy. These latter techniques become all the more important when the molecules contain metal atoms, and when the crystals required by crystallography or the specific atom types that are required by NMR are unavailable to exploit in the structure determination. Finally, more specialized methods such as electron microscopy are also applicable in some cases.

Earth's field NMR

Nuclear magnetic resonance (NMR) in the geomagnetic field is conventionally referred to as Earth's field NMR (EFNMR). EFNMR is a special case of low field NMR.

When a sample is placed in a constant magnetic field and stimulated (perturbed) by a time-varying (e.g., pulsed or alternating) magnetic field, NMR active nuclei resonate at characteristic frequencies. Examples of such NMR active nuclei are the isotopes carbon-13 and hydrogen-1 (which in NMR is conventionally known as proton NMR). The resonant frequency of each isotope is directly proportional to the strength of the applied magnetic field, and the magnetogyric or gyromagnetic ratio of that isotope. The signal strength is proportional both to the stimulating magnetic field and the number of nuclei of that isotope in the sample. Thus in the 21 tesla magnetic field that may be found in high resolution laboratory NMR spectrometers, protons resonate at 900 MHz. However, in the Earth's magnetic field the same nuclei resonate at audio frequencies of around 2 kHz and generate very weak signals.

The location of a nucleus within a complex molecule affects the 'chemical environment' (i.e. the rotating magnetic fields generated by the other nuclei) experienced by the nucleus. Thus different hydrocarbon molecules containing NMR active nuclei in different positions within the molecules produce slightly different patterns of resonant frequencies.

EFNMR signals can be affected by both magnetically noisy laboratory environments and natural variations in the Earth's field, which originally compromised its usefulness. However this disadvantage has been overcome by the introduction of electronic equipment which compensates changes in ambient magnetic fields.

Whereas chemical shifts are important in NMR, they are insignificant in the Earth's field. The absence of chemical shifts causes features such as spin-spin multiplets (that are separated by high fields) to be superimposed in EFNMR. Instead, EFNMR spectra are dominated by spin-spin coupling (J-coupling) effects. Software optimised for analysing these spectra can provide useful information about the structure of the molecules in the sample.

Geochemical Ocean Sections Study

The Geochemical Ocean Sections Study (GEOSECS) was a global survey of the three-dimensional distributions of chemical, isotopic, and radiochemical tracers in the ocean. A key objective was to investigate the deep thermohaline circulation of the ocean, using chemical tracers, including radiotracers, to establish the pathways taken by this.Expeditions undertaken during GEOSECS took place in the Atlantic Ocean from July 1972 to May 1973, in the Pacific Ocean from August 1973 to June 1974, and in the Indian Ocean from December 1977 to March 1978.Measurements included those of physical oceanographic quantities such as temperature, salinity, pressure and density, chemical / biological quantities such as total inorganic carbon, alkalinity, nitrate, phosphate, silicic acid, oxygen and apparent oxygen utilisation (AOU), and radiochemical / isotopic quantities such as carbon-13, carbon-14 and tritium.

Hyperpolarized carbon-13 MRI

Hyperpolarized carbon-13 MRI is a functional medical imaging technique for probing perfusion and metabolism using injected substrates.

It is enabled by techniques for hyperpolarization of carbon-13-containing molecules using dynamic nuclear polarization and rapid dissolution to create an injectable solution. Following the injection of a hyperpolarized substrate, metabolic activity can be mapped based on enzymatic conversion of the injected molecule. In contrast with other metabolic imaging methods such as positron emission tomography, hyperpolarized carbon-13 MRI provides chemical as well as spatial information, allowing this technique to be used to probe the activity of specific metabolic pathways. This has led to new ways of imaging disease. For example, metabolic conversion of hyperpolarized pyruvate into lactate is increasingly being used to image cancerous tissues via the Warburg effect.

Isotone

Two nuclides are isotones if they have the same neutron number N, but different proton number Z. For example, boron-12 and carbon-13 nuclei both contain 7 neutrons, and so are isotones. Similarly, 36S, 37Cl, 38Ar, 39K, and 40Ca nuclei are all isotones of 20 because they all contain 20 neutrons. Despite its similarity to the Greek for "same stretching", the term was formed by the German physicist K. Guggenheimer by changing the "p" in "isotope" from "p" for "proton" to "n" for "neutron".The largest numbers of observationally stable nuclides exist for isotones 50 (five: 86Kr, 88Sr, 89Y, 90Zr, 92Mo) and 82 (six: 138Ba, 139La, 140Ce, 141Pr, 142Nd, 144Sm). Neutron numbers for which there are no stable isotones are 19, 21, 35, 39, 45, 61, 89, 115, 123, and 127 or more. In contrast, the proton numbers for which there are no stable isotopes are 43, 61, and 83 or more. This is related to nuclear magic numbers, the number of nucleons forming complete shells within the nucleus, e.g. 2, 8, 20, 28, 50, 82, and 126. No more than one stable nuclide has the same odd neutron number, except for 1 (2H and 3He), 5 (9Be and 10B), 7 (13C and 14N), 55 (97Mo and 99Ru), and 107 (179Hf and 180mTa). Odd neutron numbers for which there is a stable nuclide and a primordial radionuclide are 27 (50V), 65 (113Cd), 81 (138La), 85 (147Sm), and 105 (176Lu). Neutron numbers for which there are two primordial radionuclides are 88 (151Eu and 152Gd) and 112 (187Re and 190Pt).

Isotope

Isotopes are variants of a particular chemical element which differ in neutron number, and consequently in nucleon number. All isotopes of a given element have the same number of protons but different numbers of neutrons in each atom.The term isotope is formed from the Greek roots isos (ἴσος "equal") and topos (τόπος "place"), meaning "the same place"; thus, the meaning behind the name is that different isotopes of a single element occupy the same position on the periodic table. It was coined by a Scottish doctor and writer Margaret Todd in 1913 in a suggestion to chemist Frederick Soddy.

The number of protons within the atom's nucleus is called atomic number and is equal to the number of electrons in the neutral (non-ionized) atom. Each atomic number identifies a specific element, but not the isotope; an atom of a given element may have a wide range in its number of neutrons. The number of nucleons (both protons and neutrons) in the nucleus is the atom's mass number, and each isotope of a given element has a different mass number.

For example, carbon-12, carbon-13 and carbon-14 are three isotopes of the element carbon with mass numbers 12, 13 and 14 respectively. The atomic number of carbon is 6, which means that every carbon atom has 6 protons, so that the neutron numbers of these isotopes are 6, 7 and 8 respectively.

Isotope analysis

Isotope analysis is the identification of isotopic signature, the abundance of certain stable isotopes and chemical elements within organic and inorganic compounds. Isotopic analysis can be used to understand the flow of energy through a food web, to reconstruct past environmental and climatic conditions, to investigate human and animal diets in the past, for food authentification, and a variety of other physical, geological, palaeontological and chemical processes. Stable isotope ratios are measured using mass spectrometry, which separates the different isotopes of an element on the basis of their mass-to-charge ratio.

Isotopes in medicine

A medical isotope is an isotope used in medicine.

The first uses of isotopes in medicine were in radiopharmaceuticals, and this is still the most common use. However more recently, separated stable isotopes have also come into use.

Examples of non-radioactive medical isotopes are:

Deuterium in deuterated drugs

Carbon-13 used in liver function and metabolic tests

Isotopically pure diamond

An isotopical pure diamond is a type of diamond that is composed entirely of one isotope of carbon. Isotopically pure diamonds have been manufactured from either the more common carbon isotope with mass number 12 (abbreviated as 12C) or the less common 13C isotope. Compared to natural diamonds that are composed of a mixture of 12C and 13C isotopes, isotopically pure diamonds possess improved characteristics such as increased thermal conductivity. Thermal conductivity of diamonds is at a minimum when 12C and 13C are in a ratio of 1:1 and reaches a maximum when the composition is 100% 12C or 100% 13C.

Nuclear magnetic resonance spectroscopy

Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique to observe local magnetic fields around atomic nuclei. The sample is placed in a magnetic field and the NMR signal is produced by excitation of the nuclei sample with radio waves into nuclear magnetic resonance, which is detected with sensitive radio receivers. The intramolecular magnetic field around an atom in a molecule changes the resonance frequency, thus giving access to details of the electronic structure of a molecule and its individual functional groups. As the fields are unique or highly characteristic to individual compounds, in modern organic chemistry practice, NMR spectroscopy is the definitive method to identify monomolecular organic compounds. Similarly, biochemists use NMR to identify proteins and other complex molecules. Besides identification, NMR spectroscopy provides detailed information about the structure, dynamics, reaction state, and chemical environment of molecules. The most common types of NMR are proton and carbon-13 NMR spectroscopy, but it is applicable to any kind of sample that contains nuclei possessing spin.

NMR spectra are unique, well-resolved, analytically tractable and often highly predictable for small molecules. Different functional groups are obviously distinguishable, and identical functional groups with differing neighboring substituents still give distinguishable signals. NMR has largely replaced traditional wet chemistry tests such as color reagents or typical chromatography for identification. A disadvantage is that a relatively large amount, 2–50 mg, of a purified substance is required, although it may be recovered through a workup. Preferably, the sample should be dissolved in a solvent, because NMR analysis of solids requires a dedicated magic angle spinning machine and may not give equally well-resolved spectra. The timescale of NMR is relatively long, and thus it is not suitable for observing fast phenomena, producing only an averaged spectrum. Although large amounts of impurities do show on an NMR spectrum, better methods exist for detecting impurities, as NMR is inherently not very sensitive - though at higher frequencies, sensitivity is higher.

Correlation spectroscopy is a development of ordinary NMR. In two-dimensional NMR, the emission is centered around a single frequency, and correlated resonances are observed. This allows identifying the neighboring substituents of the observed functional group, allowing unambiguous identification of the resonances. There are also more complex 3D and 4D methods and a variety of methods designed to suppress or amplify particular types of resonances. In nuclear Overhauser effect (NOE) spectroscopy, the relaxation of the resonances is observed. As NOE depends on the proximity of the nuclei, quantifying the NOE for each nucleus allows for construction of a three-dimensional model of the molecule.

NMR spectrometers are relatively expensive; universities usually have them, but they are less common in private companies. Modern NMR spectrometers have a very strong, large and expensive liquid helium-cooled superconducting magnet, because resolution directly depends on magnetic field strength. Less expensive machines using permanent magnets and lower resolution are also available, which still give sufficient performance for certain application such as reaction monitoring and quick checking of samples. There are even benchtop nuclear magnetic resonance spectrometers. NMR can be observed in magnetic fields less than a millitesla. Low-resolution NMR produces broader peaks which can easily overlap one another causing issues in resolving complex structures. The use of higher strength magnetic fields result in clear resolution of the peaks and is the standard in industry.

Nuclear magnetic resonance spectroscopy of proteins

Nuclear magnetic resonance spectroscopy of proteins (usually abbreviated protein NMR) is a field of structural biology in which NMR spectroscopy is used to obtain information about the structure and dynamics of proteins, and also nucleic acids, and their complexes. The field was pioneered by Richard R. Ernst and Kurt Wüthrich at the ETH, and by Ad Bax, Marius Clore, and Angela Gronenborn at the NIH, among others. Structure determination by NMR spectroscopy usually consists of several phases, each using a separate set of highly specialized techniques. The sample is prepared, measurements are made, interpretive approaches are applied, and a structure is calculated and validated.

NMR involves the quantum mechanical properties of the central core ("nucleus") of the atom. These properties depend on the local molecular environment, and their measurement provides a map of how the atoms are linked chemically, how close they are in space, and how rapidly they move with respect to each other. These properties are fundamentally the same as those used in the more familiar magnetic resonance imaging (MRI), but the molecular applications use a somewhat different approach, appropriate to the change of scale from millimeters (of interest to radiologists) to nanometers (bonded atoms are typically a fraction of a nanometer apart), a factor of a million. This change of scale requires much higher sensitivity of detection and stability for long term measurement. In contrast to MRI, structural biology studies do not directly generate an image, but rely on complex computer calculations to generate three-dimensional molecular models.

Currently most samples are examined in a solution in water, but methods are being developed to also work with solid samples. Data collection relies on placing the sample inside a powerful magnet, sending radio frequency signals through the sample, and measuring the absorption of those signals. Depending on the environment of atoms within the protein, the nuclei of individual atoms will absorb different frequencies of radio signals. Furthermore, the absorption signals of different nuclei may be perturbed by adjacent nuclei. This information can be used to determine the distance between nuclei. These distances in turn can be used to determine the overall structure of the protein.

A typical study might involve how two proteins interact with each other, possibly with a view to developing small molecules that can be used to probe the normal biology of the interaction ("chemical biology") or to provide possible leads for pharmaceutical use (drug development). Frequently, the interacting pair of proteins may have been identified by studies of human genetics, indicating the interaction can be disrupted by unfavorable mutations, or they may play a key role in the normal biology of a "model" organism like the fruit fly, yeast, the worm C. elegans, or mice. To prepare a sample, methods of molecular biology are typically used to make quantities by bacterial fermentation. This also permits changing the isotopic composition of the molecule, which is desirable because the isotopes behave differently and provide methods for identifying overlapping NMR signals.

Potassium benzoate

Potassium benzoate (E212), the potassium salt of benzoic acid, is a food preservative that inhibits the growth of mold, yeast and some bacteria. It works best in low-pH products, below 4.5, where it exists as benzoic acid.

Acidic foods and beverages such as fruit juice (citric acid), sparkling drinks (carbonic acid), soft drinks (phosphoric acid), and pickles (vinegar) may be preserved with potassium benzoate. It is approved for use in most countries including Canada, the U.S., and the EU, where it is designated by the E number E212.

Potassium benzoate is also used in the whistle in many fireworks.

Proton nuclear magnetic resonance

Proton nuclear magnetic resonance (proton NMR, hydrogen-1 NMR, or 1H NMR) is the application of nuclear magnetic resonance in NMR spectroscopy with respect to hydrogen-1 nuclei within the molecules of a substance, in order to determine the structure of its molecules. In samples where natural hydrogen (H) is used, practically all the hydrogen consists of the isotope 1H (hydrogen-1; i.e. having a proton for a nucleus).

Simple NMR spectra are recorded in solution, and solvent protons must not be allowed to interfere. Deuterated (deuterium = 2H, often symbolized as D) solvents especially for use in NMR are preferred, e.g. deuterated water, D2O, deuterated acetone, (CD3)2CO, deuterated methanol, CD3OD, deuterated dimethyl sulfoxide, (CD3)2SO, and deuterated chloroform, CDCl3. However, a solvent without hydrogen, such as carbon tetrachloride, CCl4 or carbon disulfide, CS2, may also be used.

Historically, deuterated solvents were supplied with a small amount (typically 0.1%) of tetramethylsilane (TMS) as an internal standard for calibrating the chemical shifts of each analyte proton. TMS is a tetrahedral molecule, with all protons being chemically equivalent, giving one single signal, used to define a chemical shift = 0 ppm. It is volatile, making sample recovery easy as well. Modern spectrometers are able to reference spectra based on the residual proton in the solvent (e.g. the CHCl3, 0.01% in 99.99% CDCl3). Deuterated solvents are now commonly supplied without TMS.

Deuterated solvents permit the use of deuterium frequency-field lock (also known as deuterium lock or field lock) to offset the effect of the natural drift of the NMR's magnetic field ${\displaystyle B_{0}}$. In order to provide deuterium lock, the NMR constantly monitors the deuterium signal resonance frequency from the solvent and makes changes to the ${\displaystyle B_{0}}$ to keep the resonance frequency constant. Additionally, the deuterium signal may be used to accurately define 0 ppm as the resonant frequency of the lock solvent and the difference between the lock solvent and 0 ppm (TMS) are well known.

Proton NMR spectra of most organic compounds are characterized by chemical shifts in the range +14 to -4 ppm and by spin-spin coupling between protons. The integration curve for each proton reflects the abundance of the individual protons.

Simple molecules have simple spectra. The spectrum of ethyl chloride consists of a triplet at 1.5 ppm and a quartet at 3.5 ppm in a 3:2 ratio. The spectrum of benzene consists of a single peak at 7.2 ppm due to the diamagnetic ring current.

Together with carbon-13 NMR, proton NMR is a powerful tool for molecular structure characterization.

Relative atomic mass

Relative atomic mass (symbol: Ar) or atomic weight is a dimensionless physical quantity defined as the ratio of the average mass of atoms of a chemical element in a given sample to one unified atomic mass unit. The unified atomic mass unit (symbol: u or Da) is defined as being ​1⁄12 of the atomic mass of a carbon-12 atom. Since both values in the ratio are expressed in the same unit (u), the resulting value is dimensionless; hence the value is said to be relative.

For a single given sample, the relative atomic mass of a given element is the weighted arithmetic mean of the masses of the individual atoms (including their isotopes) that are present in the sample. This quantity can vary substantially between samples because the sample's origin (and therefore its radioactive history or diffusion history) may have produced unique combinations of isotopic abundances. For example, due to a different mixture of stable carbon-12 and carbon-13 isotopes, a sample of elemental carbon from volcanic methane will have a different relative atomic mass than one collected from plant or animal tissues.

The more common, and more specific quantity known as standard atomic weight (Ar, standard) is an application of the relative atomic mass values obtained from multiple different samples. It is sometimes interpreted as the expected range of the relative atomic mass values for the atoms of a given element from all terrestrial sources, with the various sources being taken from Earth. "Atomic weight" is often loosely and incorrectly used as a synonym for standard atomic weight (incorrectly because standard atomic weights are not from a single sample). Standard atomic weight is nevertheless the most widely published variant of relative atomic mass.

Additionally, the continued use of the term "atomic weight" (for any element) as opposed to "relative atomic mass" has attracted considerable controversy since at least the 1960s, mainly due to the technical difference between weight and mass in physics. Still, both terms are officially sanctioned by the IUPAC. The term "relative atomic mass" now seems to be replacing "atomic weight" as the preferred term, although the term "standard atomic weight" (as opposed to the more correct "standard relative atomic mass") continues to be used.

Urea breath test

The urea breath test is a rapid diagnostic procedure used to identify infections by Helicobacter pylori, a spiral bacterium implicated in gastritis, gastric ulcer, and peptic ulcer disease. It is based upon the ability of H. pylori to convert urea to ammonia and carbon dioxide. Urea breath tests are recommended in leading society guidelines as a preferred non-invasive choice for detecting H. pylori before and after treatment.

White sugar

White sugar, also called table sugar, granulated sugar or regular sugar, is the sugar commonly used in North America and Europe, made either of beet sugar or cane sugar, which has undergone a refining process.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.