Cannabis

Cannabis (/ˈkænəbɪs/)[2] is a genus of flowering plants in the family Cannabaceae. The number of species within the genus is disputed. Three species may be recognized: Cannabis sativa, Cannabis indica, and Cannabis ruderalis; C. ruderalis may be included within C. sativa; all three may be treated as subspecies of a single species, C. sativa;[1][3][4][5] or C. sativa may be accepted as a single undivided species.[6] The genus is widely accepted as being indigenous to and originating from Central Asia, with some researchers also including upper South Asia in its origin.[7][8]

The plant is also known as hemp, although this term is often used to refer only to varieties of Cannabis cultivated for non-drug use. Cannabis has long been used for hemp fibre, hemp seeds and their oils, hemp leaves for use as vegetables and as juice, medicinal purposes, and as a recreational drug. Industrial hemp products are made from cannabis plants selected to produce an abundance of fiber. To satisfy the UN Narcotics Convention, some cannabis strains have been bred to produce minimal levels of tetrahydrocannabinol (THC), the principal psychoactive constituent. Some strains have been selectively bred to produce a maximum of THC (a cannabinoid), the strength of which is enhanced by curing the flowers. Various compounds, including hashish and hash oil, are extracted from the plant.[9]

Globally, in 2013, 60,400 kilograms of cannabis was produced legally.[10] In 2014 there were an estimated 182.5 million cannabis users (3.8% of the population aged 15–64).[11] This percentage did not change significantly between 1998 and 2014.[11]

Cannabis
Cannabis sativa Koehler drawing
Common hemp
Scientific classification
Kingdom: Plantae
Clade: Angiosperms
Clade: Eudicots
Clade: Rosids
Order: Rosales
Family: Cannabaceae
Genus: Cannabis
L.
Species[1]

Description

Cannabis plants in front of the Dhaulagiri summit
Cannabis growing as weeds at the foot of Dhaulagiri, Nepal.
Empty plot for Afghan embassy
A thicket of wild cannabis in Islamabad, Pakistan.

Cannabis is an annual, dioecious, flowering herb. The leaves are palmately compound or digitate, with serrate leaflets.[12] The first pair of leaves usually have a single leaflet, the number gradually increasing up to a maximum of about thirteen leaflets per leaf (usually seven or nine), depending on variety and growing conditions. At the top of a flowering plant, this number again diminishes to a single leaflet per leaf. The lower leaf pairs usually occur in an opposite leaf arrangement and the upper leaf pairs in an alternate arrangement on the main stem of a mature plant.

The leaves have a peculiar and diagnostic venation pattern that enables persons poorly familiar with the plant to distinguish a cannabis leaf from unrelated species that have confusingly similar leaves (see illustration). As is common in serrated leaves, each serration has a central vein extending to its tip. However, the serration vein originates from lower down the central vein of the leaflet, typically opposite to the position of, not the first notch down, but the next notch. This means that on its way from the midrib of the leaflet to the point of the serration, the vein serving the tip of the serration passes close by the intervening notch. Sometimes the vein will actually pass tangent to the notch, but often it will pass by at a small distance, and when that happens a spur vein (occasionally a pair of such spur veins) branches off and joins the leaf margin at the deepest point of the notch. This venation pattern varies slightly among varieties, but in general it enables one to tell Cannabis leaves from superficially similar leaves without difficulty and without special equipment. Tiny samples of Cannabis plants also can be identified with precision by microscopic examination of leaf cells and similar features, but that requires special expertise and equipment.[13]

Reproduction

All known strains of Cannabis are wind-pollinated[14] and the fruit is an achene.[15] Most strains of Cannabis are short day plants,[14] with the possible exception of C. sativa subsp. sativa var. spontanea (= C. ruderalis), which is commonly described as "auto-flowering" and may be day-neutral.

Cannabis is predominantly dioecious,[14][16] having imperfect flowers, with staminate "male" and pistillate "female" flowers occurring on separate plants.[17] "At a very early period the Chinese recognized the Cannabis plant as dioecious",[18] and the (c. 3rd century BCE) Erya dictionary defined xi "male Cannabis" and fu (or ju ) "female Cannabis".[19] Male flowers are normally borne on loose panicles, and female flowers are borne on racemes.[20]

Many monoecious varieties have also been described,[21] in which individual plants bear both male and female flowers.[22] (Although monoecious plants are often referred to as "hermaphrodites", true hermaphrodites – which are less common in Cannabis – bear staminate and pistillate structures together on individual flowers, whereas monoecious plants bear male and female flowers at different locations on the same plant.) Subdioecy (the occurrence of monoecious individuals and dioecious individuals within the same population) is widespread.[23][24][25] Many populations have been described as sexually labile.[26][27][28]

As a result of intensive selection in cultivation, Cannabis exhibits many sexual phenotypes that can be described in terms of the ratio of female to male flowers occurring in the individual, or typical in the cultivar.[29] Dioecious varieties are preferred for drug production, where the female flowers are used. Dioecious varieties are also preferred for textile fiber production, whereas monoecious varieties are preferred for pulp and paper production. It has been suggested that the presence of monoecy can be used to differentiate licit crops of monoecious hemp from illicit drug crops.[23] However, sativa strains often produce monoecious individuals, probably as a result of inbreeding.

Trichomes
Cannabis flower with visible trichomes
Cannabis male flowers
Male Cannabis flower buds

Sex determination

Cannabis has been described as having one of the most complicated mechanisms of sex determination among the dioecious plants.[29] Many models have been proposed to explain sex determination in Cannabis.

Based on studies of sex reversal in hemp, it was first reported by K. Hirata in 1924 that an XY sex-determination system is present.[27] At the time, the XY system was the only known system of sex determination. The X:A system was first described in Drosophila spp in 1925.[30] Soon thereafter, Schaffner disputed Hirata's interpretation,[31] and published results from his own studies of sex reversal in hemp, concluding that an X:A system was in use and that furthermore sex was strongly influenced by environmental conditions.[28]

Since then, many different types of sex determination systems have been discovered, particularly in plants.[16] Dioecy is relatively uncommon in the plant kingdom, and a very low percentage of dioecious plant species have been determined to use the XY system. In most cases where the XY system is found it is believed to have evolved recently and independently.[32]

Since the 1920s, a number of sex determination models have been proposed for Cannabis. Ainsworth describes sex determination in the genus as using "an X/autosome dosage type".[16]

The question of whether heteromorphic sex chromosomes are indeed present is most conveniently answered if such chromosomes were clearly visible in a karyotype. Cannabis was one of the first plant species to be karyotyped; however, this was in a period when karyotype preparation was primitive by modern standards (see History of Cytogenetics). Heteromorphic sex chromosomes were reported to occur in staminate individuals of dioecious "Kentucky" hemp, but were not found in pistillate individuals of the same variety. Dioecious "Kentucky" hemp was assumed to use an XY mechanism. Heterosomes were not observed in analyzed individuals of monoecious "Kentucky" hemp, nor in an unidentified German cultivar. These varieties were assumed to have sex chromosome composition XX.[33] According to other researchers, no modern karyotype of Cannabis had been published as of 1996.[34] Proponents of the XY system state that Y chromosome is slightly larger than the X, but difficult to differentiate cytologically.[35]

More recently, Sakamoto and various co-authors[36][37] have used RAPD to isolate several genetic marker sequences that they name Male-Associated DNA in Cannabis (MADC), and which they interpret as indirect evidence of a male chromosome. Several other research groups have reported identification of male-associated markers using RAPD and AFLP.[38][26][39] Ainsworth commented on these findings, stating,

It is not surprising that male-associated markers are relatively abundant. In dioecious plants where sex chromosomes have not been identified, markers for maleness indicate either the presence of sex chromosomes which have not been distinguished by cytological methods or that the marker is tightly linked to a gene involved in sex determination.[16]

Environmental sex determination is known to occur in a variety of species.[40] Many researchers have suggested that sex in Cannabis is determined or strongly influenced by environmental factors.[28] Ainsworth reviews that treatment with auxin and ethylene have feminizing effects, and that treatment with cytokinins and gibberellins have masculinizing effects.[16] It has been reported that sex can be reversed in Cannabis using chemical treatment.[41] A PCR-based method for the detection of female-associated DNA polymorphisms by genotyping has been developed.[42]

Hemp plants-cannabis sativa-single 3

A male hemp plant

Cannabis indica Selkem

Dense raceme of female flowers typical of drug-type varieties of Cannabis

Biochemistry and drugs

Cannabis plants produce a group of chemicals called cannabinoids, which produce mental and physical effects when consumed.

Cannabinoids, terpenoids, and other compounds are secreted by glandular trichomes that occur most abundantly on the floral calyxes and bracts of female plants.[43] As a drug it usually comes in the form of dried flower buds (marijuana), resin (hashish), or various extracts collectively known as hashish oil.[9] In the early 20th century, it became illegal in most of the world to cultivate or possess Cannabis for sale or personal use.

Cannabis sativa radix profile

Root system side view

Cannabis sativa radix topview

Root system top view

Cannabis hemp sativa (left) indica (right)

Micrograph C. sativa (left), C. indica (right)

Chromosomes and genome

Cannabis, like many organisms, is diploid, having a chromosome complement of 2n=20, although polyploid individuals have been artificially produced.[44] The first genome sequence of Cannabis, which is estimated to be 820 Mb in size, was published in 2011 by a team of Canadian scientists.[45]

Taxonomy

Cannabis sativa leaf diagnostic venation 2012 01 23 0829 c
Underside of Cannabis sativa leaf, showing diagnostic venation

The genus Cannabis was formerly placed in the nettle (Urticaceae) or mulberry (Moraceae) family, and later, along with the genus Humulus (hops), in a separate family, the hemp family (Cannabaceae sensu stricto).[46] Recent phylogenetic studies based on cpDNA restriction site analysis and gene sequencing strongly suggest that the Cannabaceae sensu stricto arose from within the former family Celtidaceae, and that the two families should be merged to form a single monophyletic family, the Cannabaceae sensu lato.[47][48]

Various types of Cannabis have been described, and variously classified as species, subspecies, or varieties:[49]

  • plants cultivated for fiber and seed production, described as low-intoxicant, non-drug, or fiber types.
  • plants cultivated for drug production, described as high-intoxicant or drug types.
  • escaped, hybridised, or wild forms of either of the above types.

Cannabis plants produce a unique family of terpeno-phenolic compounds called cannabinoids, some of which produce the "high" which may be experienced from consuming marijuana. There are 483 identifiable chemical constituents known to exist in the cannabis plant,[50] and at least 85 different cannabinoids have been isolated from the plant.[51] The two cannabinoids usually produced in greatest abundance are cannabidiol (CBD) and/or Δ9-tetrahydrocannabinol (THC), but only THC is psychoactive.[52] Since the early 1970s, Cannabis plants have been categorized by their chemical phenotype or "chemotype", based on the overall amount of THC produced, and on the ratio of THC to CBD.[53] Although overall cannabinoid production is influenced by environmental factors, the THC/CBD ratio is genetically determined and remains fixed throughout the life of a plant.[38] Non-drug plants produce relatively low levels of THC and high levels of CBD, while drug plants produce high levels of THC and low levels of CBD. When plants of these two chemotypes cross-pollinate, the plants in the first filial (F1) generation have an intermediate chemotype and produce intermedite amounts of CBD and THC. Female plants of this chemotype may produce enough THC to be utilized for drug production.[53][54]

Cannabis-vegetative-growth-00003
Top of Cannabis plant in vegetative growth stage

Whether the drug and non-drug, cultivated and wild types of Cannabis constitute a single, highly variable species, or the genus is polytypic with more than one species, has been a subject of debate for well over two centuries. This is a contentious issue because there is no universally accepted definition of a species.[55] One widely applied criterion for species recognition is that species are "groups of actually or potentially interbreeding natural populations which are reproductively isolated from other such groups."[56] Populations that are physiologically capable of interbreeding, but morphologically or genetically divergent and isolated by geography or ecology, are sometimes considered to be separate species.[56] Physiological barriers to reproduction are not known to occur within Cannabis, and plants from widely divergent sources are interfertile.[44] However, physical barriers to gene exchange (such as the Himalayan mountain range) might have enabled Cannabis gene pools to diverge before the onset of human intervention, resulting in speciation.[57] It remains controversial whether sufficient morphological and genetic divergence occurs within the genus as a result of geographical or ecological isolation to justify recognition of more than one species.[58][59][60]

Early classifications

Cannab2 new
Relative size of varieties of Cannabis

The genus Cannabis was first classified using the "modern" system of taxonomic nomenclature by Carl Linnaeus in 1753, who devised the system still in use for the naming of species.[61] He considered the genus to be monotypic, having just a single species that he named Cannabis sativa L. (L. stands for Linnaeus, and indicates the authority who first named the species). Linnaeus was familiar with European hemp, which was widely cultivated at the time. In 1785, noted evolutionary biologist Jean-Baptiste de Lamarck published a description of a second species of Cannabis, which he named Cannabis indica Lam.[62] Lamarck based his description of the newly named species on plant specimens collected in India. He described C. indica as having poorer fiber quality than C. sativa, but greater utility as an inebriant. Additional Cannabis species were proposed in the 19th century, including strains from China and Vietnam (Indo-China) assigned the names Cannabis chinensis Delile, and Cannabis gigantea Delile ex Vilmorin.[63] However, many taxonomists found these putative species difficult to distinguish. In the early 20th century, the single-species concept was still widely accepted, except in the Soviet Union where Cannabis continued to be the subject of active taxonomic study. The name Cannabis indica was listed in various Pharmacopoeias, and was widely used to designate Cannabis suitable for the manufacture of medicinal preparations.[64]

20th century

In 1924, Russian botanist D.E. Janichevsky concluded that ruderal Cannabis in central Russia is either a variety of C. sativa or a separate species, and proposed C. sativa L. var. ruderalis Janisch, and Cannabis ruderalis Janisch, as alternative names.[49] In 1929, renowned plant explorer Nikolai Vavilov assigned wild or feral populations of Cannabis in Afghanistan to C. indica Lam. var. kafiristanica Vav., and ruderal populations in Europe to C. sativa L. var. spontanea Vav.[54][63] In 1940, Russian botanists Serebriakova and Sizov proposed a complex classification in which they also recognized C. sativa and C. indica as separate species. Within C. sativa they recognized two subspecies: C. sativa L. subsp. culta Serebr. (consisting of cultivated plants), and C. sativa L. subsp. spontanea (Vav.) Serebr. (consisting of wild or feral plants). Serebriakova and Sizov split the two C. sativa subspecies into 13 varieties, including four distinct groups within subspecies culta. However, they did not divide C. indica into subspecies or varieties.[49][65]

In the 1970s, the taxonomic classification of Cannabis took on added significance in North America. Laws prohibiting Cannabis in the United States and Canada specifically named products of C. sativa as prohibited materials. Enterprising attorneys for the defense in a few drug busts argued that the seized Cannabis material may not have been C. sativa, and was therefore not prohibited by law. Attorneys on both sides recruited botanists to provide expert testimony. Among those testifying for the prosecution was Dr. Ernest Small, while Dr. Richard E. Schultes and others testified for the defense. The botanists engaged in heated debate (outside of court), and both camps impugned the other's integrity.[58][59] The defense attorneys were not often successful in winning their case, because the intent of the law was clear.[66]

In 1976, Canadian botanist Ernest Small[67] and American taxonomist Arthur Cronquist published a taxonomic revision that recognizes a single species of Cannabis with two subspecies: C. sativa L. subsp. sativa, and C. sativa L. subsp. indica (Lam.) Small & Cronq.[63] The authors hypothesized that the two subspecies diverged primarily as a result of human selection; C. sativa subsp. sativa was presumably selected for traits that enhance fiber or seed production, whereas C. sativa subsp. indica was primarily selected for drug production. Within these two subspecies, Small and Cronquist described C. sativa L. subsp. sativa var. spontanea Vav. as a wild or escaped variety of low-intoxicant Cannabis, and C. sativa subsp. indica var. kafiristanica (Vav.) Small & Cronq. as a wild or escaped variety of the high-intoxicant type. This classification was based on several factors including interfertility, chromosome uniformity, chemotype, and numerical analysis of phenotypic characters.[53][63][68]

Professors William Emboden, Loran Anderson, and Harvard botanist Richard E. Schultes and coworkers also conducted taxonomic studies of Cannabis in the 1970s, and concluded that stable morphological differences exist that support recognition of at least three species, C. sativa, C. indica, and C. ruderalis.[69][70][71][72] For Schultes, this was a reversal of his previous interpretation that Cannabis is monotypic, with only a single species.[73] According to Schultes' and Anderson's descriptions, C. sativa is tall and laxly branched with relatively narrow leaflets, C. indica is shorter, conical in shape, and has relatively wide leaflets, and C. ruderalis is short, branchless, and grows wild in Central Asia. This taxonomic interpretation was embraced by Cannabis aficionados who commonly distinguish narrow-leafed "sativa" strains from wide-leafed "indica" strains.[74]

Continuing research

Molecular analytical techniques developed in the late 20th century are being applied to questions of taxonomic classification. This has resulted in many reclassifications based on evolutionary systematics. Several studies of Random Amplified Polymorphic DNA (RAPD) and other types of genetic markers have been conducted on drug and fiber strains of Cannabis, primarily for plant breeding and forensic purposes.[75][76][26][77][78] Dutch Cannabis researcher E.P.M. de Meijer and coworkers described some of their RAPD studies as showing an "extremely high" degree of genetic polymorphism between and within populations, suggesting a high degree of potential variation for selection, even in heavily selected hemp cultivars.[38] They also commented that these analyses confirm the continuity of the Cannabis gene pool throughout the studied accessions, and provide further confirmation that the genus consists of a single species, although theirs was not a systematic study per se.

Karl W. Hillig, a graduate student in the laboratory of long-time Cannabis researcher Paul G. Mahlberg[79] at Indiana University, conducted a systematic investigation of genetic, morphological, and chemotaxonomic variation among 157 Cannabis accessions of known geographic origin, including fiber, drug, and feral populations. In 2004, Hillig and Mahlberg published a chemotaxonomic analysis of cannabinoid variation in their Cannabis germplasm collection. They used gas chromatography to determine cannabinoid content and to infer allele frequencies of the gene that controls CBD and THC production within the studied populations, and concluded that the patterns of cannabinoid variation support recognition of C. sativa and C. indica as separate species, but not C. ruderalis.[54] The authors assigned fiber/seed landraces and feral populations from Europe, Central Asia, and Turkey to C. sativa. Narrow-leaflet and wide-leaflet drug accessions, southern and eastern Asian hemp accessions, and feral Himalayan populations were assigned to C. indica. In 2005, Hillig published a genetic analysis of the same set of accessions (this paper was the first in the series, but was delayed in publication), and proposed a three-species classification, recognizing C. sativa, C. indica, and (tentatively) C. ruderalis.[57] In his doctoral dissertation published the same year, Hillig stated that principal components analysis of phenotypic (morphological) traits failed to differentiate the putative species, but that canonical variates analysis resulted in a high degree of discrimination of the putative species and infraspecific taxa.[80] Another paper in the series on chemotaxonomic variation in the terpenoid content of the essential oil of Cannabis revealed that several wide-leaflet drug strains in the collection had relatively high levels of certain sesquiterpene alcohols, including guaiol and isomers of eudesmol, that set them apart from the other putative taxa.[81] Hillig concluded that the patterns of genetic, morphological, and chemotaxonomic variation support recognition of C. sativa and C. indica as separate species. He also concluded there is little support to treat C. ruderalis as a separate species from C. sativa at this time, but more research on wild and weedy populations is needed because they were underrepresented in their collection.

In September 2005, New Scientist reported that researchers at the Canberra Institute of Technology had identified a new type of Cannabis based on analysis of mitochondrial and chloroplast DNA.[82] The New Scientist story, which was picked up by many news agencies and web sites, indicated that the research was to be published in the journal Forensic Science International.[83]

Despite advanced analytical techniques, much of the cannabis used recreationally is inaccurately classified. One laboratory at the University of British Columbia found that Jamaican Lamb's Bread, claimed to be 100% sativa, was in fact almost 100% indica (the opposite strain).[84] Legalization of cannabis in Canada (as of October 17, 2018) may help spur private-sector research, especially in terms of diversification of strains. It should also improve classification accuracy for cannabis used recreationally. Legalization coupled with Canadian government (Health Canada) oversight of production and labelling will likely result in more—and more accurate—testing to determine exact strains and content. Furthermore, the rise of craft cannabis growers in Canada should ensure quality, experimentation/research, and diversification of strains among private-sector producers.[85]

Popular usage

The scientific debate regarding taxonomy has had little effect on the terminology in widespread use among cultivators and users of drug-type Cannabis. Cannabis aficionados recognize three distinct types based on such factors as morphology, native range, aroma, and subjective psychoactive characteristics. Sativa is the most widespread variety, which is usually tall, laxly branched, and found in warm lowland regions. Indica designates shorter, bushier plants adapted to cooler climates and highland environments. Ruderalis is the informal name for the short plants that grow wild in Europe and Central Asia.

Breeders, seed companies, and cultivators of drug type Cannabis often describe the ancestry or gross phenotypic characteristics of cultivars by categorizing them as "pure indica", "mostly indica", "indica/sativa", "mostly sativa", or "pure sativa".

Uses

Cannabis is used for a wide variety of purposes.

History

The use of Cannabis as a mind-altering drug has been documented by archaeological finds in prehistoric societies in Eurasia and Africa.[86] The oldest written record of cannabis usage is the Greek historian Herodotus's reference to the central Eurasian Scythians taking cannabis steam baths.[87] His (c. 440 BCE) Histories records, "The Scythians, as I said, take some of this hemp-seed [presumably, flowers], and, creeping under the felt coverings, throw it upon the red-hot stones; immediately it smokes, and gives out such a vapour as no Grecian vapour-bath can exceed; the Scyths, delighted, shout for joy."[88] Classical Greeks and Romans were using cannabis, while in the Middle East, use spread throughout the Islamic empire to North Africa. In 1545, cannabis spread to the western hemisphere where Spaniards imported it to Chile for its use as fiber. In North America, cannabis, in the form of hemp, was grown for use in rope, clothing and paper.[89][90][91][92]

Recreational use

Drug danger and dependence
Comparison of physical harm and dependence regarding various drugs[93]
Marijuana-Cannabis-Weed-Bud-Gram
A dried bud, typical of what is sold for drug use

Cannabis is a popular recreational drug around the world, only behind alcohol, caffeine and tobacco. In the United States alone, it is believed that over 100 million Americans have tried cannabis, with 25 million Americans having used it within the past year.[94]

The psychoactive effects of cannabis are known to have a triphasic nature. Primary psychoactive effects include a state of relaxation, and to a lesser degree, euphoria from its main psychoactive compound, tetrahydrocannabinol. Secondary psychoactive effects, such as a facility for philosophical thinking, introspection and metacognition have been reported among cases of anxiety and paranoia.[95] Finally, the tertiary psychoactive effects of the drug cannabis, can include an increase in heart rate and hunger, believed to be caused by 11-OH-THC, a psychoactive metabolite of THC produced in the liver.

Normal cognition is restored after approximately three hours for larger doses via a smoking pipe, bong or vaporizer.[95] However, if a large amount is taken orally the effects may last much longer. After 24 hours to a few days, minuscule psychoactive effects may be felt, depending on dosage, frequency and tolerance to the drug.

White pineapple cart
Commercial cannabis extract

Various forms of the drug cannabis exist, including extracts such as hashish and hash oil[9] which, because of appearance, are more susceptible to adulterants when left unregulated.

Cannabidiol (CBD), which has no psychotropic effects by itself[52] (although sometimes showing a small stimulant effect, similar to caffeine),[96] attenuates, or reduces[97] the higher anxiety levels caused by THC alone.[98]

According to Delphic analysis by British researchers in 2007, cannabis has a lower risk factor for dependence compared to both nicotine and alcohol.[99] However, everyday use of cannabis may be correlated with psychological withdrawal symptoms, such as irritability or insomnia,[95] and susceptibility to a panic attack may increase as levels of THC metabolites rise.[100][101] However, cannabis withdrawal symptoms are typically mild and are never life-threatening.[102]

Risk of adverse outcomes from cannabis use may be reduced by implementation of evidence-based education and intervention tools communicated to the public with practical regulation measures.[103]

Medical use

Medical cannabis (or medical marijuana) refers to the use of cannabis and its constituent cannabinoids, to treat disease or improve symptoms. Cannabis is used to reduce nausea and vomiting during chemotherapy, to improve appetite in people with HIV/AIDS, and to treat chronic pain and muscle spasms.[104][105] Cannabinoids are under preliminary research for their potential to affect stroke.[106]

Short-term use increases both minor and major adverse effects.[105] Common side effects include dizziness, feeling tired, vomiting, and hallucinations.[105] Long-term effects of cannabis are not clear.[107] Concerns including memory and cognition problems, risk of addiction, schizophrenia in young people, and the risk of children taking it by accident.[104]

Industrial use (hemp)

ANCIENT SANSKRIT ON HEMP BASED PAPER. HEMP WAS A COMMON AND DURABLE FIBRE IN THE PRODUCTION OF "RAG" PAPER FROM 200 BCE TO THE 1850 AD
Ancient Sanskrit on hemp-based paper. Hemp fiber was commonly used in the production of paper from 200 BCE to the late 1800s.
Cannabis Sativa Querschnitt
Cannabis sativa stem longitudinal section

The term hemp is used to name the durable soft fiber from the Cannabis plant stem (stalk). Cannabis sativa cultivars are used for fibers due to their long stems; Sativa varieties may grow more than six metres tall. However, hemp can refer to any industrial or foodstuff product that is not intended for use as a drug. Many countries regulate limits for psychoactive compound (THC) concentrations in products labeled as hemp.

Cannabis for industrial uses is valuable in tens of thousands of commercial products, especially as fibre[108] ranging from paper, cordage, construction material and textiles in general, to clothing. Hemp is stronger and longer-lasting than cotton. It also is a useful source of foodstuffs (hemp milk, hemp seed, hemp oil) and biofuels. Hemp has been used by many civilizations, from China to Europe (and later North America) during the last 12,000 years.[108][109] In modern times novel applications and improvements have been explored with modest commercial success.[110][111]

Ancient and religious uses

The Cannabis plant has a history of medicinal use dating back thousands of years across many cultures.[112] The Yanghai Tombs, a vast ancient cemetery (54 000 m2) situated in the Turfan district of the Xinjiang Uyghur Autonomous Region in northwest China, have revealed the 2700-year-old grave of a shaman. He is thought to have belonged to the Jushi culture recorded in the area centuries later in the Hanshu, Chap 96B.[113] Near the head and foot of the shaman was a large leather basket and wooden bowl filled with 789g of cannabis, superbly preserved by climatic and burial conditions. An international team demonstrated that this material contained tetrahydrocannabinol, the psychoactive component of cannabis. The cannabis was presumably employed by this culture as a medicinal or psychoactive agent, or an aid to divination. This is the oldest documentation of cannabis as a pharmacologically active agent.[114]

Settlements which date from c. 2200–1700 BCE in the Bactria and Margiana contained elaborate ritual structures with rooms containing everything needed for making drinks containing extracts from poppy (opium), hemp (cannabis), and ephedra (which contains ephedrine).[115] Although there is no evidence of ephedra being used by steppe tribes, they engaged in cultic use of hemp. Cultic use ranged from Romania to the Yenisei River and had begun by 3rd millennium BC Smoking hemp has been found at Pazyryk.[116]

Cannabis is first referred to in Hindu Vedas between 2000 and 1400 BCE, in the Atharvaveda. By the 10th century CE, it has been suggested that it was referred to by some in India as "food of the gods".[117] Cannabis use eventually became a ritual part of the Hindu festival of Holi. One of the earliest to use this plant in medical purposes was Korakkar, one of the 18 Siddhas.[118][119] The plant is called Korakkar Mooli in the Tamil language, meaning Korakkar's herb.[120][121]

In Buddhism, cannabis is generally regarded as an intoxicant and may be a hindrance to development of meditation and clear awareness. In ancient Germanic culture, Cannabis was associated with the Norse love goddess, Freya.[122][123] An anointing oil mentioned in Exodus is, by some translators, said to contain Cannabis.[124] Sufis have used Cannabis in a spiritual context since the 13th century CE.[125]

In modern times, the Rastafari movement has embraced Cannabis as a sacrament.[126] Elders of the Ethiopian Zion Coptic Church, a religious movement founded in the United States in 1975 with no ties to either Ethiopia or the Coptic Church, consider Cannabis to be the Eucharist, claiming it as an oral tradition from Ethiopia dating back to the time of Christ.[127] Like the Rastafari, some modern Gnostic Christian sects have asserted that Cannabis is the Tree of Life.[128][129] Other organized religions founded in the 20th century that treat Cannabis as a sacrament are the THC Ministry,[130] Cantheism,[131] the Cannabis Assembly[132] and the Church of Cognizance. Rastafarians tend to be among the biggest consumers of modern Cannabis use.

Cannabis is frequently used among Sufis[133] – the mystical interpretation of Islam that exerts strong influence over local Muslim practices in Bangladesh, India, Indonesia, Turkey, and Pakistan. Cannabis preparations are frequently used at Sufi festivals in those countries.[133] Pakistan's Shrine of Lal Shahbaz Qalandar in Sindh province is particularly renowned for the widespread use of cannabis at the shrine's celebrations, especially its annual Urs festival and Thursday evening dhamaal sessions - or meditative dancing sessions.[134][135]

Etymology

The word cannabis is from Greek κάνναβις (kánnabis) (see Latin cannabis),[136] which was originally Scythian or Thracian.[137] It is related to the Persian kanab, the English canvas and possibly even to the English hemp (Old English hænep).[137] In modern Hebrew, קַנַּבּוֹס qannabōs (modern pronunciation: [kanaˈbos]) is used but there are those who have theorized that it was referred to in antiquity as קני בושם q'nei bosem, a component of the biblical anointing oil.[138][139] Old Akkadian qunnabtu, Neo-Assyrian and Neo-Babylonian qunnabu were used to refer to the plant meaning "a way to produce smoke".[140][141][142]

See also

References

  1. ^ a b Geoffrey William Guy; Brian Anthony Whittle; Philip Robson (2004). The Medicinal Uses of Cannabis and Cannabinoids. Pharmaceutical Press. pp. 74–. ISBN 978-0-85369-517-2.
  2. ^ https://www.oxfordlearnersdictionaries.com/definition/english/cannabis
  3. ^ "Classification Report". United States Department of Agriculture. Retrieved 13 February 2017.
  4. ^ "Indica, Sativa, Ruderalis – Did We Get It All Wrong?". The Leaf Online. Retrieved 13 February 2017.
  5. ^ "Species of Cannabis". GRIN Taxonomy. Retrieved 13 February 2017.
  6. ^ "Cannabis sativa L.". Plants of the World Online. Royal Botanic Gardens, Kew. Retrieved 17 January 2019.
  7. ^ A. ElSohly, Mahmoud (2007). Marijuana and the Cannabinoids. Humana Press. p. 8. ISBN 978-1-58829-456-2. Retrieved 2 May 2011.
  8. ^ M. Lambert, Didier (2009). Cannabinoids in Nature and Medicine. Wiley-VCH. p. 20. ISBN 978-3906390567. Retrieved 21 August 2018.
  9. ^ a b c Erowid. 2006. Cannabis Basics. Retrieved on 25 February 2007
  10. ^ Narcotic Drugs 2014 (PDF). INTERNATIONAL NARCOTICS CONTROL BOARD. 2015. p. 21. ISBN 9789210481571.
  11. ^ a b Crime, United Nations Office on Drugs and (May 2016). "Statistical tables" (PDF). World Drug Report 2016. Vienna, Austria. p. xiv, 43. ISBN 978-92-1-057862-2. Retrieved 1 August 2016.
  12. ^ "Leaf Terminology (Part 1)". Waynesword.palomar.edu. Retrieved 17 February 2011.
  13. ^ Watt, John Mitchell; Breyer-Brandwijk, Maria Gerdina: The Medicinal and Poisonous Plants of Southern and Eastern Africa 2nd ed Pub. E & S Livingstone 1962
  14. ^ a b c Clarke, Robert C. 1991. Marijuana Botany, 2nd ed. Ron Publishing, California. ISBN 0-914171-78-X
  15. ^ Small, Ernest (1975). "Morphological variation of achenes of Cannabis". Canadian Journal of Botany. 53 (10): 978–87. doi:10.1139/b75-117.
  16. ^ a b c d e Ainsworth, C (2000). "Boys and Girls Come Out to Play: The Molecular Biology of Dioecious Plants". Annals of Botany. 86 (2): 211–221. doi:10.1006/anbo.2000.1201.
  17. ^ Lebel-Hardenack, Sabine; Grant, Sarah R. (1997). "Genetics of sex determination in flowering plants". Trends in Plant Science. 2 (4): 130–6. doi:10.1016/S1360-1385(97)01012-1.
  18. ^ Li Hui-Lin (1973). "The Origin and Use of Cannabis in Eastern Asia: Linguistic-Cultural Implications", Economic Botany 28.3: 293–301, p. 294.
  19. ^ 13/99 and 13/133. In addition, 13/98 defined fen 蕡 "Cannabis inflorescence" and 13/159 bo 薜 "wild Cannabis".
  20. ^ Bouquet, R. J. 1950. Cannabis. United Nations Office on Drugs and Crime. Retrieved on 23 February 2007
  21. ^ de Meijer, E. P. M. 1999. Cannabis germplasm resources. In: Ranalli P. (ed.). Advances in Hemp Research, Haworth Press, Binghamton, NY, pp. 131–151. ISBN 1-56022-872-5
  22. ^ Moliterni, V. M. Cristiana; Cattivelli, Luigi; Ranalli, P.; Mandolino, Giuseppe (2004). "The sexual differentiation of Cannabis sativa L.: A morphological and molecular study". Euphytica. 140 (1–2): 95–106. doi:10.1007/s10681-004-4758-7.
  23. ^ a b "Cannabis as a licit crop: recent developments in Europe". Archived from the original on 13 March 2003. Retrieved 10 February 2008.CS1 maint: BOT: original-url status unknown (link)
  24. ^ Schumann, Erika; Peil, Andreas; Weber, Wilhelm Eberhard (1999). "Preliminary results of a German field trial with different hemp (Cannabis sativa L.) accessions". Genetic Resources and Crop Evolution. 46 (4): 399–407. doi:10.1023/A:1008696018533.
  25. ^ Ranalli, Paolo (2004). "Current status and future scenarios of hemp breeding". Euphytica. 140 (1–2): 121–131. doi:10.1007/s10681-004-4760-0.
  26. ^ a b c Mandolino, Giuseppe; Ranalli, Paolo (2002). "The Applications of Molecular Markers in Genetics and Breeding of Hemp". Journal of Industrial Hemp. 7: 7–23. doi:10.1300/J237v07n01_03.
  27. ^ a b Hirata K (1924). "Sex reversal in hemp". Journal of the Society of Agriculture and Forestry. 16: 145–168.
  28. ^ a b c Schaffner, John H. (1931). "The Fluctuation Curve of Sex Reversal in Staminate Hemp Plants Induced by Photoperiodicity". American Journal of Botany. 18 (6): 424–30. doi:10.2307/2435878. JSTOR 2435878.
  29. ^ a b Truţa, E; Gille, E; Tóth, E; Maniu, M (2002). "Biochemical differences in Cannabis sativa L. Depending on sexual phenotype". Journal of Applied Genetics. 43 (4): 451–62. PMID 12441630.
  30. ^ Bridges, Calvin B. (1925). "Sex in Relation to Chromosomes and Genes". The American Naturalist. 59 (661): 127–37. doi:10.1086/280023. JSTOR 2456354.
  31. ^ Schaffner, John H. (1929). "Heredity and sex". Ohio Journal of Science. 29 (1): 289–300. hdl:1811/2398.
  32. ^ Negrutiu, I; Vyskot, B; Barbacar, N; Georgiev, S; Moneger, F (2001). "Dioecious plants. A key to the early events of sex chromosome evolution". Plant Physiology. 127 (4): 1418–24. doi:10.1104/pp.010711. PMC 1540173. PMID 11743084.
  33. ^ Menzel, Margaret Y. (1964). "Meiotic Chromosomes of Monoecious Kentucky Hemp (Cannabis sativa)". Bulletin of the Torrey Botanical Club. 91 (3): 193–205. doi:10.2307/2483524. JSTOR 2483524.
  34. ^ Hong, Shao; Clarke, Robert C. (1996). "Taxonomic studies of Cannabis in China". Journal of the International Hemp Association. 3 (2): 55–60.
  35. ^ Peil, A; Flachowsky, H; Schumann, E; Weber, WE (2003). "Sex-linked AFLP markers indicate a pseudoautosomal region in hemp (Cannabis sativa L.)". Theoretical and Applied Genetics. 107 (1): 102–9. doi:10.1007/s00122-003-1212-5. PMID 12835935.
  36. ^ Sakamoto, K; Shimomura, K; Komeda, Y; Kamada, H; Satoh, S (1995). "A male-associated DNA sequence in a dioecious plant, Cannabis sativa L". Plant & Cell Physiology. 36 (8): 1549–54. PMID 8589931.
  37. ^ Sakamoto, Koichi; Abe, Tomoko; Matsuyama, Tomoki; Yoshida, Shigeo; Ohmido, Nobuko; Fukui, Kiichi; Satoh, Shinobu (2005). "RAPD markers encoding retrotransposable elements are linked to the male sex in Cannabis sativa". Genome. 48 (5): 931–6. doi:10.1139/g05-056. PMID 16391699.
  38. ^ a b c De Meijer, EP; Bagatta, M; Carboni, A; Crucitti, P; Moliterni, VM; Ranalli, P; Mandolino, G (2003). "The inheritance of chemical phenotype in Cannabis sativa L". Genetics. 163 (1): 335–46. PMC 1462421. PMID 12586720.
  39. ^ Törjék, Ottó; Bucherna, Nándor; Kiss, Erzsébet; Homoki, Hajnalka; Finta-Korpelová, Zsuzsanna; Bócsa, Iván; Nagy, István; Heszky, László E. (2002). "Novel male-specific molecular markers (MADC5, MADC6) in hemp". Euphytica. 127 (2): 209–218. doi:10.1023/A:1020204729122.
  40. ^ Tanurdzic, M.; Banks, JA (2004). "Sex-Determining Mechanisms in Land Plants". The Plant Cell Online. 16 (Suppl): S61–71. doi:10.1105/tpc.016667. PMC 2643385. PMID 15084718.
  41. ^ Mohan Ram, HY; Sett, R (1982). "Induction of fertile male flowers in genetically female Cannabis sativa plants by silver nitrate and silver thiosulphate anionic complex". Theoretical and Applied Genetics. 62 (4): 369–75. doi:10.1007/BF00275107. PMID 24270659.
  42. ^ Shao, Hong; Song, Shu-Juan; Clarke, Robert C. (2003). "Female-Associated DNA Polymorphisms of Hemp (Cannabis sativaL.)". Journal of Industrial Hemp. 8: 5–9. doi:10.1300/J237v08n01_02.
  43. ^ Mahlberg Paul G.; Soo Kim Eun (2001). "THC (tetrahyrdocannabinol) accumulation in glands of Cannabis (Cannabaceae)". The Hemp Report. 3 (17).
  44. ^ a b Small, Ernest (1972). "Interfertility and chromosomal uniformity in Cannabis". Canadian Journal of Botany. 50 (9): 1947–9. doi:10.1139/b72-248.
  45. ^ Van Bakel, Harm; Stout, Jake M; Cote, Atina G; Tallon, Carling M; Sharpe, Andrew G; Hughes, Timothy R; Page, Jonathan E (2011). "The draft genome and transcriptome of Cannabis sativa". Genome Biology. 12 (10): R102. doi:10.1186/gb-2011-12-10-r102. PMC 3359589. PMID 22014239.
  46. ^ Schultes, R. E., A. Hofmann, and C. Rätsch. 2001. The nectar of delight. In: Plants of the Gods 2nd ed., Healing Arts Press, Rochester, Vermont, pp. 92–101. ISBN 0-89281-979-0
  47. ^ Song, B.-H.; Wang, X.-Q.; Li, F.-Z.; Hong, D.-Y. (2001). "Further evidence for paraphyly of the Celtidaceae from the chloroplast gene mat K". Plant Systematics and Evolution. 228 (1–2): 107–15. doi:10.1007/s006060170041.
  48. ^ Sytsma, K. J.; Morawetz, J.; Pires, J. C.; Nepokroeff, M.; Conti, E.; Zjhra, M.; Hall, J. C.; Chase, M. W. (2002). "Urticalean rosids: Circumscription, rosid ancestry, and phylogenetics based on rbcL, trnL-F, and ndhF sequences". American Journal of Botany. 89 (9): 1531–46. doi:10.3732/ajb.89.9.1531. PMID 21665755.
  49. ^ a b c Small, E (1975). "American law and the species problem in Cannabis: Science and semantics". Bulletin on Narcotics. 27 (3): 1–20. PMID 1041693.
  50. ^ "What chemicals are in marijuana and its byproducts?". ProCon.org. 2009. Retrieved 13 January 2013.
  51. ^ El-Alfy, Abir T.; Ivey, Kelly; Robinson, Keisha; Ahmed, Safwat; Radwan, Mohamed; Slade, Desmond; Khan, Ikhlas; Elsohly, Mahmoud; Ross, Samir (2010). "Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L". Pharmacology Biochemistry and Behavior. 95 (4): 573–82. doi:10.1016/j.pbb.2010.03.004. PMC 2866040. PMID 20332000.
  52. ^ a b Ahrens J, Demir R, Leuwer M, et al. (2009). "The nonpsychotropic cannabinoid cannabidiol modulates and directly activates alpha-1 and alpha-1-Beta glycine receptor function". Pharmacology. 83 (4): 217–222. doi:10.1159/000201556. PMID 19204413. Retrieved 4 August 2009.
  53. ^ a b c Small, E; Beckstead, HD (1973). "Common cannabinoid phenotypes in 350 stocks of Cannabis". Lloydia. 36 (2): 144–65. PMID 4744553.
  54. ^ a b c Hillig, K. W.; Mahlberg, P. G. (2004). "A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae)". American Journal of Botany. 91 (6): 966–75. doi:10.3732/ajb.91.6.966. PMID 21653452.
  55. ^ Small, E. 1979. Fundamental aspects of the species problem in biology. In: The Species Problem in Cannabis, vol. 1: Science. Corpus Information Services, Toronto, Canada, pp. 5–63. ISBN 0-919217-11-7
  56. ^ a b Rieger, R., A. Michaelis, and M. M. Green. 1991. Glossary of Genetics, 5th ed. Springer-Verlag, pp. 458–459. ISBN 0-387-52054-6
  57. ^ a b Hillig, Karl W. (2005). "Genetic evidence for speciation in Cannabis (Cannabaceae)". Genetic Resources and Crop Evolution. 52 (2): 161–80. doi:10.1007/s10722-003-4452-y.
  58. ^ a b Small, E (1975). "On toadstool soup and legal species of marihuana". Plant Science Bulletin. 21 (3): 34–9.
  59. ^ a b Emboden, William A. (1981). "The Genus Cannabis and the Correct Use of Taxonomic Categories". Journal of Psychoactive Drugs. 13 (1): 15–21. doi:10.1080/02791072.1981.10471446. PMID 7024491.
  60. ^ Schultes, R. E., and A. Hofmann. 1980. Botany and Chemistry of Hallucinogens. C. C. Thomas, Springfield, Illinois, pp. 82–116. ISBN 0-398-03863-5
  61. ^ Linnaeus, C. 1753. Species Plantarum 2: 1027. Salvius, Stockholm. [Facsimile edition, 1957–1959. Ray Society, London, U.K.]
  62. ^ de Lamarck, J.B. 1785. Encyclopédie Méthodique de Botanique, vol. 1, pt. 2. Paris, France, pp. 694–695
  63. ^ a b c d Small, Ernest; Cronquist, Arthur (1976). "A Practical and Natural Taxonomy for Cannabis". Taxon. 25 (4): 405–35. doi:10.2307/1220524. JSTOR 1220524.
  64. ^ Winek, Charles L. (1977). "Some Historical Aspects of Marijuana". Clinical Toxicology. 10 (2): 243–53. doi:10.3109/15563657708987969. PMID 322936.
  65. ^ Serebriakova T. Ya. and I. A. Sizov. 1940. Cannabinaceae Lindl. In: Vavilov N. I. (ed.), Kulturnaya Flora SSSR, vol. 5, Moscow-Leningrad, USSR, pp. 1–53. [in Russian]
  66. ^ Watts, G. (2006). "Cannabis confusions". BMJ. 332 (7534): 175–6. doi:10.1136/bmj.332.7534.175. PMC 1336775. PMID 16424501.
  67. ^ Ernest Small (biography) Archived 11 February 2007 at the Wayback Machine. National Research Council Canada. Retrieved on 23 February 2007
  68. ^ Small, Ernest; Jui, Perry Y.; Lefkovitch, L. P. (1976). "A Numerical Taxonomic Analysis of Cannabis with Special Reference to Species Delimitation". Systematic Botany. 1 (1): 67–84. doi:10.2307/2418840. JSTOR 2418840.
  69. ^ Schultes R. E.; Klein W. M.; Plowman T.; Lockwood T. E. (1974). "Cannabis: an example of taxonomic neglect". Harvard University Botanical Museum Leaflets. 23: 337–367.
  70. ^ Anderson, L. C. 1974. A study of systematic wood anatomy in Cannabis. Harvard University Botanical Museum Leaflets 24: 29–36. Retrieved on 23 February 2007
  71. ^ Anderson, L. C. 1980. Leaf variation among Cannabis species from a controlled garden. Harvard University Botanical Museum Leaflets 28: 61–69. Retrieved on 23 February 2007
  72. ^ Emboden, William A. (1974). "Cannabis — a polytypic genus". Economic Botany. 28 (3): 304–310. doi:10.1007/BF02861427.
  73. ^ Schultes, R. E. 1970. Random thoughts and queries on the botany of Cannabis. In: Joyce, C. R. B. and Curry, S. H. (eds), The Botany and Chemistry of Cannabis. J. & A. Churchill, London, pp. 11–38.
  74. ^ Interview with Robert Connell Clarke. 1 January 2005. NORML, New Zealand. Retrieved on 19 February 2007
  75. ^ Mandolino, G.; Carboni, A.; Forapani, S.; Faeti, V.; Ranalli, P. (1999). "Identification of DNA markers linked to the male sex in dioecious hemp (Cannabis sativa L.)". Theoretical and Applied Genetics. 98: 86–92. doi:10.1007/s001220051043.
  76. ^ Forapani, Silvia; Carboni, Andrea; Paoletti, Claudia; Moliterni, V. M. Cristiana; Ranalli, Paolo; Mandolino, Giuseppe (2001). "Comparison of Hemp Varieties Using Random Amplified Polymorphic DNA Markers". Crop Science. 41 (6): 1682. doi:10.2135/cropsci2001.1682.
  77. ^ Gilmore, Simon; Peakall, Rod; Robertson, James (2003). "Short tandem repeat (STR) DNA markers are hypervariable and informative in Cannabis sativa: Implications for forensic investigations". Forensic Science International. 131 (1): 65–74. doi:10.1016/S0379-0738(02)00397-3. PMID 12505473.
  78. ^ Kojoma, Mareshige; Iida, Osamu; Makino, Yukiko; Sekita, Setsuko; Satake, Motoyoshi (2002). "DNA Fingerprinting of Cannabis sativa Using Inter-Simple Sequence Repeat (ISSR) Amplification". Planta Medica. 68 (1): 60–3. doi:10.1055/s-2002-19875. PMID 11842329.
  79. ^ Dr. Paul G. Mahlberg's Cannabis Research. North American Industrial Hemp Council. Retrieved on 23 February 2007
  80. ^ Hillig, Karl William. 2005. A systematic investigation of Cannabis. Doctoral Dissertation. Department of Biology, Indiana University. Bloomington, Indiana. Published by UMI. Retrieved on 23 February 2007 Archived 21 November 2008 at the Wayback Machine
  81. ^ Hillig, Karl W (2004). "A chemotaxonomic analysis of terpenoid variation in Cannabis". Biochemical Systematics and Ecology. 32 (10): 875–891. doi:10.1016/j.bse.2004.04.004.
  82. ^ 2005. Rasta lends its name to a third type of Cannabis. New Scientist 2517: 12. Retrieved on 24 February 2007
  83. ^ Gilmore, Simon; Peakall, Rod; Robertson, James (2007). "Organelle DNA haplotypes reflect crop-use characteristics and geographic origins of Cannabis sativa". Forensic Science International. 172 (2–3): 179–90. doi:10.1016/j.forsciint.2006.10.025. PMID 17293071.
  84. ^ Ormiston, Susan (17 January 2018). "What's in your weed: Why cannabis strains don't all live up to their billing". CBC. Retrieved 2 October 2018.
  85. ^ "Will Craft Cannabis Growers in Canada Succeed Like Craft Brewers?". Licensed Producers Canada. Retrieved 2 October 2018.
  86. ^ Ernest Abel, Marijuana, The First 12,000 years (Plenum Press, New York 1980)
  87. ^ Butrica James L (2002). "The Medical Use of Cannabis Among the Greeks and Romans". Journal of Cannabis Therapeutics. 2 (2): 51–70. doi:10.1300/j175v02n02_04.
  88. ^ Herodotus (translated by George Rawlinson) (1994–2009). "The History of Herodotus". The Internet Classics Archive. Daniel C. Stevenson, Web Atomics. Retrieved 13 August 2014.
  89. ^ "Cannabis: History". deamuseum.org.
  90. ^ Chris Conrad, HEMP, Lifeline to the Future (ISBN 0-9639754-1-2)
  91. ^ Jack Herer, The Emperor Wears No Clothes (ISBN 1-878125-00-1)
  92. ^ Peter Stratford, Psychedelics Encyclopaedia (ISBN 0-914171-51-8)
  93. ^ "Drug Toxicity". Web.cgu.edu. Archived from the original on 25 March 2008. Retrieved 17 February 2011.
  94. ^ "Introduction". NORML. Retrieved 17 February 2011.
  95. ^ a b c Cannabis. "Erowid Cannabis (Marijuana) Vault : Effects". Erowid.org. Retrieved 17 February 2011.
  96. ^ Block, R (1998). "Sedative, Stimulant, and Other Subjective Effects of Marijuana: Relationships to Smoking Techniques". Pharmacology Biochemistry and Behavior. 59 (2): 405–412. doi:10.1016/S0091-3057(97)00453-X.
  97. ^ Zuardi, A. W.; Shirakawa, I.; Finkelfarb, E.; Karniol, I. G. (1982). "Action of cannabidiol on the anxiety and other effects produced by ?9-THC in normal subjects". Psychopharmacology. 76 (3): 245–50. doi:10.1007/BF00432554. PMID 6285406.
  98. ^ Fusar-Poli, Paolo; Crippa, José A.; Bhattacharyya, Sagnik; Borgwardt, Stefan J.; Allen, Paul; Martin-Santos, Rocio; Seal, Marc; Surguladze, Simon A.; O'Carrol, Colin; Atakan, Zerrin; Zuardi, Antonio W.; McGuire, Philip K. (2009). "Distinct Effects of Δ9-Tetrahydrocannabinol and Cannabidiol on Neural Activation During Emotional Processing". Archives of General Psychiatry. 66 (1): 95–105. doi:10.1001/archgenpsychiatry.2008.519. PMID 19124693.
  99. ^ Nutt, David; King, Leslie A; Saulsbury, William; Blakemore, Colin (2007). "Development of a rational scale to assess the harm of drugs of potential misuse". The Lancet. 369 (9566): 1047–53. doi:10.1016/S0140-6736(07)60464-4. PMID 17382831.
  100. ^ "Marijuana Detection Times Influenced By Stress, Dieting". NORML. Retrieved 17 February 2011.
  101. ^ "Cannabis use and panic disorder". Cannabis.net. Archived from the original on 20 May 2011. Retrieved 17 February 2011.
  102. ^ "Myths and Facts About Marijuana". Drugpolicy.org. Archived from the original on 16 February 2011. Retrieved 17 February 2011.
  103. ^ Fischer, B; Russell, C; Sabioni, P; Van Den Brink, W; Le Foll, B; Hall, W; Rehm, J; Room, R (2017). "Lower-Risk Cannabis Use Guidelines: A Comprehensive Update of Evidence and Recommendations". American Journal of Public Health. 107 (8): e1–e12. doi:10.2105/AJPH.2017.303818. PMID 28644037.
  104. ^ a b Borgelt LM, Franson KL, Nussbaum AM, Wang GS (February 2013). "The pharmacologic and clinical effects of medical cannabis". Pharmacotherapy (Review). 33 (2): 195–209. CiteSeerX 10.1.1.1017.1935. doi:10.1002/phar.1187. PMID 23386598.
  105. ^ a b c Whiting, PF; Wolff, RF; Deshpande, S; Di Nisio, M; Duffy, S; Hernandez, AV; Keurentjes, JC; Lang, S; Misso, K; Ryder, S; Schmidlkofer, S; Westwood, M; Kleijnen, J (23 June 2015). "Cannabinoids for Medical Use: A Systematic Review and Meta-analysis" (PDF). JAMA. 313 (24): 2456–2473. doi:10.1001/jama.2015.6358. hdl:10757/558499. PMID 26103030.
  106. ^ England, TJ; Hind, WH; Rasid, NA; O'Sullivan, SE (March 2015). "Cannabinoids in experimental stroke: a systematic review and meta-analysis". Journal of Cerebral Blood Flow and Metabolism. 35 (3): 348–58. doi:10.1038/jcbfm.2014.218. PMC 4348386. PMID 25492113.
  107. ^ Wang, T.; Collet, J.-P.; Shapiro, S.; Ware, M. A. (2008). "Adverse effects of medical cannabinoids: A systematic review". Canadian Medical Association Journal. 178 (13): 1669–78. doi:10.1503/cmaj.071178. PMC 2413308. PMID 18559804.
  108. ^ a b "Hemp Facts". Naihc.org. Retrieved 17 February 2011.
  109. ^ "The cultivation and use of hemp in ancient China". Hempfood.com. Retrieved 17 February 2011.
  110. ^ Van Roekel; Gerjan J. (1994). "Hemp Pulp and Paper Production". Journal of the International Hemp Association.
  111. ^ Atkinson, Gail (2011). "Industrial Hemp Production in Alberta". CA: Government of Alberta, Agriculture and Rural Development.
  112. ^ Ben Amar M (2006). "Cannabinoids in medicine: a review of their therapeutic potential" (PDF). Journal of Ethnopharmacology (Review). 105 (1–2): 1–25. CiteSeerX 10.1.1.180.308. doi:10.1016/j.jep.2006.02.001. PMID 16540272. Archived from the original (PDF) on 24 May 2010.
  113. ^ Hulsewé (1979), p. 183.
  114. ^ Russo, E. B.; Jiang, H.-E.; Li, X.; Sutton, A.; Carboni, A.; Del Bianco, F.; Mandolino, G.; Potter, D. J.; Zhao, Y.-X.; Bera, S.; Zhang, Y.-B.; Lü, E.-G.; Ferguson, D. K.; Hueber, F.; Zhao, L.-C.; Liu, C.-J.; Wang, Y.-F.; Li, C.-S. (2008). "Phytochemical and genetic analyses of ancient cannabis from Central Asia". Journal of Experimental Botany. 59 (15): 4171–82. doi:10.1093/jxb/ern260. PMC 2639026. PMID 19036842.
  115. ^ Mallory and Mair (2000), p. 262.
  116. ^ Mallory and Mair (2000), p. 306.
  117. ^ Abel, Ernest L. (1980). "Marijuana – The First Twelve Thousand Years". Chapter 1: Cannabis in the Ancient World. India: The First Marijuana-Oriented Culture.
  118. ^ Murdoch, John (1 January 1865). Classified Catalogue of Tamil Printed Books: With Introductory Notices. Christian vernacular education society.
  119. ^ Jayaprasad, Vasu. Parkinson's Disease Dravidian Cure Chintarmony System. Lulu.com. ISBN 9781105917882.
  120. ^ Karthigayan, P. (1 August 2016). History of Medical and Spiritual Sciences of Siddhas of Tamil Nadu. Notion Press. ISBN 9789352065523.
  121. ^ Pillai, M. S. Purnalingam (1 January 1904). A Primer of Tamil Literature. Ananda Press.
  122. ^ Pilcher, Tim (2005). Spliffs 3: The Last Word in Cannabis Culture?. Collins & Brown Publishers. p. 34. ISBN 978-1-84340-310-4. ISBN 978-1-84340-310-4.
  123. ^ Vindheim, Jan Bojer. "The History of Hemp in Norway". The Journal of Industrial Hemp. International Hemp Association.
  124. ^ Kaplan, Aryeh (1981). The Living Torah. New York. p. 442. ISBN 978-0-940118-35-5.
  125. ^ Ernest, Abel (1979). A Comprehensive Guide to Cannabis Literature. Greenwood Press. p. 14. ISBN 978-0-313-20721-1.
  126. ^ Joseph Owens (1982). Dread, The Rastafarians of Jamaica. London: Heinemann. ISBN 978-0-435-98650-6.
  127. ^ The Ethiopian Zion Coptic Church. "Marijuana and the Bible". Schaffer Library of Drug Policy. Retrieved 13 September 2007.
  128. ^ "Zion Light Ministry". Retrieved 20 August 2007.
  129. ^ Chris Bennett, Lynn; Osburn, Judy Osburn (1938). Green Gold: the Tree of LifeMarijuana in Magic & Religion. Access Unlimited. p. 418. ISBN 978-0-9629872-2-9.
  130. ^ "The Hawai'i Cannabis Ministry". Retrieved 13 September 2007.
  131. ^ "Cantheism". Retrieved 13 September 2007.
  132. ^ "Cannabis Assembly". Retrieved 13 September 2007.
  133. ^ a b Ferrara, Mark S. (20 October 2016). Sacred Bliss: A Spiritual History of Cannabis. Rowman & Littlefield. ISBN 9781442271920.
  134. ^ Chapple, Amos (17 February 2017). "Music, Dancing, And Tolerance -- Pakistan's Embattled Sufi Minority". RFERL. Retrieved 8 April 2017. During the festival the air is heavy with drumbeats, chanting and cannabis smoke.
  135. ^ Osella, Filippo; Osella, Caroline (2013). Islamic Reform in South Asia. Cambridge University Press. pp. 65, 509. ISBN 9781107031753.
  136. ^ "cannabis" OED Online. July 2009. Oxford University Press. 2009. [1]
  137. ^ a b "Online Etymology Dictionary". Etymonline.com. Retrieved 17 February 2011.
  138. ^ "Judaism and the Legalization of Marijuana?". Algemeiner.com.
  139. ^ "Is there a place in religious life for marijuana? Ask Yoseph Needelman – Religion". Jewish Journal.
  140. ^ Reinhard K. Sprenger (2004). Die Entscheidung liegt bei dir!: Wege aus der alltäglichen Unzufriedenheit. Campus Verlag. p. 305. ISBN 978-3-593-37442-0.
  141. ^ Rubin, Vera D. (1975). Cannabis and culture. The Hague: Mouton. p. 305. ISBN 978-90-279-7669-7.
  142. ^ Black, Jeremy; George, Andrew; Nicholas, Postgate, eds. (1999). A Concise Dictionary of Akkadian. SANTAG. 5 (2 ed.). Wiesbaden: Harrassowitz Verlag. ISBN 9783447042642.

Further reading

External links

420 (cannabis culture)

420, 4:20, or 4/20 (pronounced four-twenty) is slang in cannabis culture for the consumption of cannabis, especially smoking cannabis around the time 4:20 p.m. and also refers to cannabis-oriented celebrations that take place annually on April 20 (which is 4/20 in U.S. form).

Cannabidiol

Cannabidiol (CBD) is a phytocannabinoid discovered in 1940. It is one of some 113 identified cannabinoids in cannabis plants and accounts for up to 40% of the plant's extract. As of 2018, preliminary clinical research on cannabidiol included studies of anxiety, cognition, movement disorders, and pain.Cannabidiol can be taken into the body in multiple ways, including by inhalation of cannabis smoke or vapor, as an aerosol spray into the cheek, and by mouth. It may be supplied as CBD oil containing only CBD as the active ingredient (no added tetrahydrocannabinol [THC] or terpenes), a full-plant CBD-dominant hemp extract oil, capsules, dried cannabis, or as a prescription liquid solution. CBD does not have the same psychoactivity as THC, and may affect the actions of THC. Although in vitro studies indicate CBD may interact with different biological targets, including cannabinoid receptors and other neurotransmitter receptors, as of 2018 the mechanism of action for its biological effects has not been determined.In the United States, the cannabidiol drug Epidiolex has been approved by the Food and Drug Administration for treatment of two epilepsy disorders. The side effects of long-term use of the drug include somnolence, decreased appetite, diarrhea, fatigue, malaise, weakness, and sleeping problems.The U.S. Drug Enforcement Administration has assigned Epidiolex a Schedule V classification, while non-Epidiolex CBD remains a Schedule I drug prohibited for any use. Cannabidiol is not scheduled under any United Nations drug control treaties, and in 2018 the World Health Organization recommended that it remain unscheduled.

Cannabis (drug)

Cannabis, also known as marijuana among other names, is a psychoactive drug from the Cannabis plant used for medical or recreational purposes. The main psychoactive part of cannabis is tetrahydrocannabinol (THC), one of 483 known compounds in the plant, including at least 65 other cannabinoids. Cannabis can be used by smoking, vaporizing, within food, or as an extract.Cannabis has mental and physical effects, such as creating a "high" or "stoned" feeling, a general change in perception, heightened mood, and an increase in appetite. Onset of effects is within minutes when smoked, and about 30 to 60 minutes when cooked and eaten. They last for between two and six hours. Short-term side effects may include a decrease in short-term memory, dry mouth, impaired motor skills, red eyes, and feelings of paranoia or anxiety. Long-term side effects may include addiction, decreased mental ability in those who started as teenagers, and behavioral problems in children whose mothers used cannabis during pregnancy. There is a strong relation between cannabis use and the risk of psychosis, though the cause-and-effect is debated.Cannabis is mostly used for recreation or as a medicinal drug, although it may also be used for spiritual purposes. In 2013, between 128 and 232 million people used cannabis (2.7% to 4.9% of the global population between the ages of 15 and 65). It is the most commonly used illegal drug both in the world and the United States. The countries with the highest use among adults as of 2018 are Zambia, the United States, Canada, and Nigeria. In 2016, 51% of people in the United States had used cannabis in their lifetime. About 12% had used it in the past year, and 7.3% had used it in the past month.The earliest recorded uses date from the 3rd millennium BC. Since the early 20th century, cannabis has been subject to legal restrictions. The possession, use, and sale of cannabis is illegal in most countries of the world. Medical cannabis refers to the physician-recommended use of cannabis, which takes place in Canada, Belgium, Australia, the Netherlands, Germany, Spain, and 33 U.S. states. In September 2018, cannabis was legalized in South Africa while Canada legalized recreational use of cannabis in October 2018.

Cannabis culture

Cannabis culture describes a social atmosphere or series of associated social behaviors that depends heavily upon cannabis consumption, particularly as an entheogen, recreational drug and medicine.

Historically cannabis has been used an entheogen to induce spiritual experiences - most notably in the Indian subcontinent since the Vedic period dating back to approximately 1500 BCE, but perhaps as far back as 2000 BCE. Its entheogenic use was also recorded in Ancient China, the Germanic peoples, the Celts, Ancient Central Asia, and Africa. In modern times, spiritual use of the drug is mostly associated with the Rastafari movement of Jamaica. Several Western subcultures have had marijuana consumption as an idiosyncratic feature, such as hippies, beatniks, hipsters (both the 1940s subculture and the contemporary subculture), ravers and hip hop.

Cannabis has now "evolved its own language, humour, etiquette, art, literature and music." Nick Brownlee writes: "Perhaps because of its ancient mystical and spiritual roots, because of the psychotherapeutic effects of the drug and because it is illegal, even the very act of smoking a joint has deep symbolism." However, the culture of cannabis as "the manifestation of introspection and bodily passivity" — which has generated a negative "slacker" stereotype around its consumers — is a relatively modern concept, as cannabis has been consumed in various forms for almost 5,000 years.The counterculture of the 1960s has been identified as the era that "sums up the glory years of modern cannabis culture," with the Woodstock Festival serving as "the pinnacle of the hippie revolution in the USA, and in many people's opinion the ultimate example of cannabis culture at work". The influence of cannabis has encompassed holidays (most notably 4/20), cinema (such as the exploitation and stoner film genres), music (particularly jazz, reggae, psychedelia and rap music), and magazines including High Times and Cannabis Culture.

Cannabis edible

A cannabis edible, also known as a cannabis-infused food or simply an edible, is a food product that contains cannabinoids, especially tetrahydrocannabinol (THC). Although edible may refer to either a food or a drink, a cannabis-infused drink may be referred to more specifically as a liquid edible or drinkable.

Most edibles contain a significant amount of THC, which can induce a wide range of effects, including relaxation, euphoria, increased appetite, fatigue, and anxiety. THC-dominant edibles are consumed for recreational and medical purposes. Some edibles contain a negligible amount of THC and are instead dominant in other cannabinoids, most commonly cannabidiol (CBD). These edibles are primarily used for medical purposes only.Foods and beverages made from non-psychoactive cannabis products are known as hemp foods.

Cannabis in Canada

Cannabis in Canada is legal for both recreational and medicinal purposes. Medicinal use of cannabis was legalized nationwide on 30 July 2001 under conditions outlined in the Marihuana for Medical Purposes Regulations, later superseded by the Access to Cannabis for Medical Purposes Regulations, issued by Health Canada and seed, grain, and fibre production was permitted under licence by Health Canada. The federal Cannabis Act came into effect on 17 October 2018 and made Canada the second country in the world, after Uruguay, to formally legalize the cultivation, possession, acquisition and consumption of cannabis and its by-products. Canada is the first G7 and G20 nation to do so.Cannabis was banned in Canada from 1923 until regulated medical cannabis became legal on 30 July 2001. In response to popular opinion, the legislation to legalize cannabis for recreational use (Cannabis Act, Bill C-45) was passed by the House of Commons of Canada on 27 November 2017; it passed second reading in the Senate of Canada on 22 March 2018. On 18 June 2018, the House passed the bill with most, but not all, of the Senate's amendments. The Senate accepted this version of the Act the following day.Prime Minister Justin Trudeau announced that recreational use of cannabis would no longer violate criminal law as of 17 October 2018. This legalization comes with regulation similar to that of alcohol in Canada, limiting home production, distribution, consumption areas and sale times. The process removed cannabis possession for personal consumption from the Controlled Drugs and Substances Act; while implementing taxation and strengthen punishment of those convicted of either supplying cannabis to minors, or of impairment while driving a motor vehicle.As of January 2019, on-line sales of cannabis for recreational use were well underway across Canada, via the provincial or territorial governments. Most provinces also had storefront operations selling cannabis, either operated by the government or private enterprise. The number of retailers is likely to remain limited.

Cannabis in the United Kingdom

Cannabis in the United Kingdom is illegal for recreational use and is classified as a Class B drug. In 2004, cannabis was made a Class C drug with less severe penalties but it was moved back to Class B in 2009. Medical use of cannabis when prescribed by a registered specialist doctor was legalised in November 2018.

Cannabis is widely used as an illegal drug in the UK, while other strains lower in THC (commonly called hemp) have been used industrially for over a thousand years for fibre, oil and seeds. Cannabis has been restricted as a drug in the United Kingdom since 1928, though its usage as a recreational drug was limited until the 1960s, when increasing popularity led to stricter 1971 classification.

Despite the fact that cannabis is illegal in the UK, with limited availability for medical use, the United Kingdom is the world's largest exporter of legal cannabis. The United Kingdom is also home to GW Pharmaceuticals, one of the world's largest producers of medical cannabis and the company behind the first cannabis derived products approved in major markets—Sativex and Epidiolex.

Cannabis in the United States

The use, sale, and possession of cannabis over 0.3% THC in the United States is illegal under federal law. As a Schedule I drug under the federal Controlled Substances Act of 1970, cannabis over 0.3% THC (legal term marijuana) is considered to have "no accepted medical use" and have a high potential for abuse and physical or psychological dependence. Cannabis use is illegal for any reason, with the exception of FDA-approved research programs. However, individual states have enacted legislation permitting exemptions for various uses, mainly for medical and industrial use but also including recreational use.Cannabis for industrial uses (hemp) was made illegal to grow without a permit under the Controlled Substances Act because of its relation to cannabis as a drug, and any imported products must adhere to a zero tolerance policy. The Agricultural Act of 2014 allows for universities and state-level departments of agriculture to cultivate cannabis for research into its industrial potential.As a psychoactive drug, cannabis continues to find extensive favor among recreational and medical users in the United States. As of 2019, ten states, two U.S. territories, and the District of Columbia have legalized recreational use of cannabis. Thirty-three states, four U.S. territories, and D.C. have legalized medical use of the drug. Multiple efforts to reschedule cannabis under the Controlled Substances Act have failed, and the United States Supreme Court has ruled in United States v. Oakland Cannabis Buyers' Cooperative (2001) and Gonzales v. Raich (2005) that the federal government has a right to regulate and criminalize cannabis, whether medical or recreational. As a result, cannabis dispensaries are licensed by each state; these businesses sell cannabis products that have not been approved by the U.S. Food and Drug Administration, nor are they legally registered with the federal government to sell controlled substances. Although cannabis has not been approved, the FDA recognizes the potential benefits and has approved two drugs that contain components of marijuana.The ability of states to implement cannabis legalization policies was weakened after US Attorney General Jeff Sessions rescinded the Cole Memorandum on January 4, 2018 and issued a new memo instructing US Attorneys to enforce federal law related to marijuana. The Cole memo, issued by former Deputy Attorney General James Cole in 2013, urged federal prosecutors to refrain from targeting state-legal marijuana operations. Regarding the medical use of cannabis, the Rohrabacher–Farr amendment still remains in effect to protect state-legal medical cannabis activities from enforcement of federal law.

Cannabis sativa

Cannabis sativa is an annual herbaceous flowering plant indigenous to eastern Asia but now of cosmopolitan distribution due to widespread cultivation. It has been cultivated throughout recorded history, used as a source of industrial fiber, seed oil, food, recreation, religious and spiritual moods and medicine. Each part of the plant is harvested differently, depending on the purpose of its use. The species was first classified by Carl Linnaeus in 1753. The word "sativa" means things that are cultivated.

Cannabis strains

Cannabis strains are either pure or hybrid varieties of the plant genus Cannabis, which encompasses the species C. sativa, C. indica and C. ruderalis.

Varieties are developed to intensify specific characteristics of the plant, or to differentiate the strain for the purposes of marketing or to make it more effective as a drug. Variety names are typically chosen by their growers, and often reflect properties of the plant such as taste, color, smell, or the origin of the variety. Cannabis strains commonly refer to those varieties with recreational and medicinal use. These varieties have been cultivated to contain a high percentage of cannabinoids. Several varieties of Cannabis, known as hemp, have a very low cannabinoid content, and are instead grown for their fiber and seed.

Effects of cannabis

Chemical compounds in the Cannabis plant, including 400 different cannabinoids such as tetrahydrocannabinol (THC), allow its drug to have various psychological and physiological effects on the human body. Different plants of the genus Cannabis contain different and often unpredictable concentrations of THC and other cannabinoids and hundreds of other molecules that have a pharmacological effect, so that the final net effect cannot reliably be foreseen.

Acute effects while under the influence can include euphoria and anxiety. Although some assert that Cannabidiol (CBD), another cannabinoid found in cannabis in varying amounts, may alleviate the adverse effects of THC that some users experience, little is known about CBD's effects on humans. The well-controlled studies with humans have a hard time showing that CBD can be distinguished from a placebo, or that it has any systematic effect on the adverse effects of cannabis. When ingested orally, THC can produce stronger psychotropic effects than when inhaled. At doses exceeding the psychotropic threshold, users may experience adverse side effects such as anxiety and panic attacks that can result in increased heart rate and changes in blood pressure.

In the United States research about medical cannabis has been hindered by federal law. Smoking any substance could possibly carry similar risks as smoking tobacco due to carcinogens in all smoke, and the ultimate conclusions on these factors are disputed.Cannabis use disorder is defined as a medical diagnosis in the fifth revision of the Diagnostic and Statistical Manual of Mental Disorders (DSM-5).

Hashish

Hashish, or hash, is a drug made from the resin of the cannabis plant. It is consumed by smoking a small piece, typically in a pipe, bong, vaporizer or joint, or via oral ingestion (after decarboxylation). As pure hashish will not burn if rolled alone in a joint, it is typically mixed with herbal cannabis, tobacco or another type of herb for this method of consumption.

Depending on region or country, multiple synonyms and alternative names exist.Hash is an extracted cannabis product composed of compressed or purified preparations of stalked resin glands, called trichomes, from the plant. It is defined by the 1961 UN Single Convention on Narcotic Drugs (Schedule I and IV) as "the separated resin, whether crude or purified, obtained from the cannabis plant". The resin contains ingredients such as tetrahydrocannabinol (THC) and other cannabinoids—but often in higher concentrations than the unsifted or unprocessed cannabis flower. Purities of confiscated hashish in Europe (2011) range between 4-15%. Between 2000 and 2005 the percentage of hashish in cannabis end product seizures was at 18%.Hashish may be solid or resinous depending on both preparation and room temperature; pressed hashish is usually solid, whereas water-purified hashish—often called "bubble melt hash", or simply "bubble hash"—is often a paste-like substance with varying hardness and pliability; its color, most commonly light to dark brown, can vary from transparent to yellow, tan, black, or red. This all depends on the process and amount of leftover plant material (i.e. chlorophyl) Hashish was the primary form of cannabis used in Europe in 2008. Herbal cannabis is more widely used in Northern America.

Hemp

Hemp, or industrial hemp (from Old English hænep), typically found in the northern hemisphere, is a strain of the Cannabis sativa plant species that is grown specifically for the industrial uses of its derived products. It is one of the fastest growing plants and was one of the first plants to be spun into usable fiber 10,000 years ago. It can be refined into a variety of commercial items including paper, textiles, clothing, biodegradable plastics, paint, insulation, biofuel, food, and animal feed.Although cannabis as a drug and industrial hemp both derive from the species Cannabis sativa and contain the psychoactive component tetrahydrocannabinol (THC), they are distinct strains with unique phytochemical compositions and uses. Hemp has lower concentrations of THC and higher concentrations of cannabidiol (CBD), which decreases or eliminates its psychoactive effects. The legality of industrial hemp varies widely between countries. Some governments regulate the concentration of THC and permit only hemp that is bred with an especially low THC content.

Legal history of cannabis in the United States

The legal history of cannabis in the United States pertains to the regulation of cannabis (legal term marijuana or marihuana) for medical, recreational, and industrial purposes in the United States. Increased restrictions and labeling of cannabis as a poison began in many states from 1906 onward, and outright prohibitions began in the 1920s. By the mid-1930s cannabis was regulated as a drug in every state, including 35 states that adopted the Uniform State Narcotic Drug Act. The first national regulation was the Marihuana Tax Act of 1937.Cannabis was officially outlawed for any use (medical included) with the passage of the Controlled Substances Act (CSA) of 1970. Multiple efforts to reschedule cannabis under the CSA have failed, and the U.S. Supreme Court has ruled in United States v. Oakland Cannabis Buyers' Cooperative and Gonzales v. Raich that the federal government has a right to regulate and criminalize cannabis, even for medical purposes. Despite this, states and other jurisdictions have continued to implement policies that conflict with federal law, beginning with the passage of California's Proposition 215 in 1996. By 2016 a majority of states had legalized medical cannabis, and in 2012 the first states legalized recreational use.

Legality of cannabis

The legality of cannabis for medical and recreational use varies by country, in terms of its possession, distribution, and cultivation, and (in regards to medical) how it can be consumed and what medical conditions it can be used for. These policies in most countries are regulated by the United Nations Single Convention on Narcotic Drugs that was ratified in 1961, along with the 1971 Convention on Psychotropic Substances and the 1988 Convention against Illicit Traffic in Narcotic Drugs and Psychotropic Substances.The use of cannabis for recreational purposes is prohibited in most countries; however, many have adopted a policy of decriminalization to make simple possession a non-criminal offense (often similar to a minor traffic violation). Others have much more severe penalties such as some Asian and Middle Eastern countries where possession of even small amounts is punished by imprisonment for several years.Uruguay and Canada are the only sovereign states that have fully legalized the consumption and sale of recreational cannabis nationwide. In the United States, ten states and the District of Columbia have legalized the recreational use of cannabis although it remains federally illegal. Laws vary from state to state when it comes to the commercial sale. Court rulings in Georgia and South Africa have led to the legalization of cannabis consumption, but not legal sales. A policy of limited enforcement has also been adopted in many countries, in particular Spain and the Netherlands where the sale of cannabis is tolerated at licensed establishments.Countries that have legalized the medical use of cannabis include Argentina, Australia, Canada, Chile, Colombia, Croatia, Cyprus, Finland, Germany, Greece, Israel, Italy, Luxembourg, North Macedonia, Norway, the Netherlands, New Zealand, Peru, Poland, and Thailand. Others have more restrictive laws that only allow the use of certain cannabis-derived pharmaceutical drugs, such as Sativex, Marinol, or Epidiolex. In the United States, 33 states and the District of Columbia have legalized the medical use of cannabis, but at the federal level its use remains prohibited for any purpose.

Legality of cannabis by U.S. jurisdiction

In the United States, the use and possession of cannabis is illegal under federal law for any purpose, by way of the Controlled Substances Act of 1970. Under the CSA, cannabis is classified as a Schedule I substance, determined to have a high potential for abuse and no accepted medical use – thereby prohibiting even medical use of the drug. At the state level, however, policies regarding the medical and recreational use of cannabis vary greatly, and in many states conflict significantly with federal law.

The medical use of cannabis is legal (with a doctor's recommendation) in 33 states, four out of five permanently inhabited U.S. territories, and the District of Columbia. Fourteen other states have laws that limit THC content, for the purpose of allowing access to products that are rich in cannabidiol (CBD), a non-psychoactive component of cannabis. Although cannabis remains a Schedule I drug, the Rohrabacher–Farr amendment prohibits federal prosecution of individuals complying with state medical cannabis laws.The recreational use of cannabis is legal in 10 states (Alaska, California, Colorado, Maine, Massachusetts, Michigan, Nevada, Oregon, Vermont, and Washington), the District of Columbia, the Northern Mariana Islands, and Guam. Another 14 states plus the U.S. Virgin Islands have decriminalized. Commercial distribution of cannabis is allowed in all jurisdictions where cannabis has been legalized, except Vermont and the District of Columbia. Prior to January 2018, the Cole Memorandum provided some protection against the enforcement of federal law in states that have legalized, but it was rescinded by Attorney General Jeff Sessions.Although the use of cannabis remains federally illegal, some of its derivative compounds have been approved by the Food and Drug Administration for prescription use. Cannabinoid drugs which have received FDA approval are Marinol, Syndros, Cesamet, and Epidiolex. Cannabidiol is also sold by numerous online retailers who claim their products are derived from industrial hemp and therefore legal. Although the Drug Enforcement Administration considers non-Epidiolex CBD a Schedule I drug, it has so far not taken action to shut down these sales.

Long-term effects of cannabis

The long-term effects of cannabis have been the subject of ongoing debate. Because cannabis is illegal in most countries, research presents a challenge; as such, there remains much to be concluded.

Medical cannabis

Medical cannabis, or medical marijuana, is cannabis and cannabinoids that are prescribed by physicians for their patients. The use of cannabis as medicine has not been rigorously tested due to production and governmental restrictions, resulting in limited clinical research to define the safety and efficacy of using cannabis to treat diseases. Preliminary evidence suggests that cannabis can reduce nausea and vomiting during chemotherapy, improve appetite in people with HIV/AIDS, and reduce chronic pain and muscle spasms.Short-term use increases the risk of minor and major adverse effects. Common side effects include dizziness, feeling tired, vomiting, and hallucinations. Long-term effects of cannabis are not clear. Concerns include memory and cognition problems, risk of addiction, schizophrenia in young people, and the risk of children taking it by accident.The Cannabis plant has a history of medicinal use dating back thousands of years in many cultures. Some medical organizations have requested removal of cannabis from the list of Schedule I controlled substances, followed by regulatory and scientific review. Others oppose its legalization, such as the American Academy of Pediatrics.Medical cannabis can be administered through various methods, including capsules, lozenges, tinctures, dermal patches, oral or dermal sprays, cannabis edibles, and vaporizing or smoking dried buds. Synthetic cannabinoids are available for prescription use in some countries, such as dronabinol and nabilone. Countries that allow the medical use of whole-plant cannabis include Australia, Canada, Chile, Colombia, Germany, Greece, Israel, Italy, the Netherlands, Peru, Poland, Portugal, and Uruguay. In the United States, 33 states and the District of Columbia have legalized cannabis for medical purposes, beginning with the passage of California's Proposition 215 in 1996. Although cannabis remains prohibited for any use at the federal level, the Rohrabacher–Farr amendment was enacted in December 2014, limiting the ability of federal law to be enforced in states where medical cannabis has been legalized.

Tetrahydrocannabinol

Tetrahydrocannabinol (THC) is one of at least 113 cannabinoids identified in cannabis. THC is the principal psychoactive constituent of cannabis. With chemical name (−)-trans-Δ⁹-tetrahydrocannabinol, the term THC also refers to cannabinoid isomers.

Like most pharmacologically-active secondary metabolites of plants, THC is a lipid found in cannabis, assumed to be involved in the plant's self-defense, putatively against insect predation, ultraviolet light, and environmental stress.THC, along with its double bond isomers and their stereoisomers, is one of only three cannabinoids scheduled by the UN Convention on Psychotropic Substances (the other two are dimethylheptylpyran and parahexyl). It was listed under Schedule I in 1971, but reclassified to Schedule II in 1991 following a recommendation from the WHO. Based on subsequent studies, the WHO has recommended the reclassification to the less-stringent Schedule III. Cannabis as a plant is scheduled by the Single Convention on Narcotic Drugs (Schedule I and IV). It is specifically still listed under Schedule I by US federal law under the Controlled Substances Act for having "no accepted medical use" and "lack of accepted safety". However, dronabinol is a synthetic form of THC approved by the FDA as an appetite stimulant for people with AIDS and antiemetic for people receiving chemotherapy. The pharmaceutical formulation dronabinol is an oily resin provided in capsules available by prescription in the United States, Canada, Germany, and New Zealand.

Cannabis plant
General
Usage
Variants
Effects
Culture
Pro-cannabis
organizations
Use demographics
Politics

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.