Broadcast television systems

Terrestrial television systems (or Broadcast television systems in the US and Canada) are the encoding or formatting standards for the transmission and reception of terrestrial television signals. There were three main analog television systems in use around the world until the late 2010s (expected): NTSC, PAL, and SECAM. Now in digital terrestrial television (DTT), there are four main systems in use around the world: ATSC, DVB, ISDB and DTMB.

Analog television systems

Analog colour television encoding systems by nation

All but one analog television system began as black-and-white systems. Each country, faced with local political, technical, and economic issues, adopted a color television system which was grafted onto an existing monochrome system, using gaps in the video spectrum (explained below) to allow color transmission information to fit in the existing channels allotted. The grafting of the color transmission standards onto existing monochrome systems permitted existing monochrome television receivers predating the changeover to color television to continue to be operated as monochrome television. Because of this compatibility requirement, color standards added a second signal to the basic monochrome signal, which carries the color information. The color information is called chrominance with the symbol C, while the black and white information is called the luminance with the symbol Y. Monochrome television receivers only display the luminance, while color receivers process both signals. Though in theory any monochrome system could be adopted to a color system, in practice some of the original monochrome systems proved impractical to adapt to color and were abandoned when the switch to color broadcasting was made. All countries used one of three color systems: NTSC, PAL, or SECAM.



Ignoring color, all television systems work in essentially the same manner. The monochrome image seen by a camera (later, the luminance component of a color image) is divided into horizontal scan lines, some number of which make up a single image or frame. A monochrome image is theoretically continuous, and thus unlimited in horizontal resolution, but to make television practical, a limit had to be placed on the bandwidth of the television signal, which puts an ultimate limit on the horizontal resolution possible. When color was introduced, this necessity of limit became fixed. All analog television systems are interlaced: alternate rows of the frame are transmitted in sequence, followed by the remaining rows in their sequence. Each half of the frame is called a video field, and the rate at which field are transmitted is one of the fundamental parameters of a video system. It is related to the utility frequency at which the electricity distribution system operates, to avoid flicker resulting from the beat between the television screen deflection system and nearby mains generated magnetic fields. All digital, or "fixed pixel," displays have progressive scanning and must deinterlace an interlaced source. Use of inexpensive deinterlacing hardware is a typical difference between lower- vs. higher-priced flat panel displays (Plasma display, LCD, etc.).

All films and other filmed material shot at 24 frames per second must be transferred to video frame rates using a telecine in order to prevent severe motion jitter effects. Typically, for 25 frame/s formats (European among other countries with 50 Hz mains supply), the content is PAL speedup, while a technique known as "3:2 pulldown" is used for 30 frame/s formats (North America among other countries with 60 Hz mains supply) to match the film frame rate to the video frame rate without speeding up the play back.

Viewing technology

Analog television signal standards are designed to be displayed on a cathode ray tube (CRT), and so the physics of these devices necessarily controls the format of the video signal. The image on a CRT is painted by a moving beam of electrons which hits a phosphor coating on the front of the tube. This electron beam is steered by a magnetic field generated by powerful electromagnets close to the source of the electron beam.

In order to reorient this magnetic steering mechanism, a certain amount of time is required due to the inductance of the magnets; the greater the change, the greater the time it takes for the electron beam to settle in the new spot.

For this reason, it is necessary to shut off the electron beam (corresponding to a video signal of zero luminance) during the time it takes to reorient the beam from the end of one line to the beginning of the next (horizontal retrace) and from the bottom of the screen to the top (vertical retrace or vertical blanking interval). The horizontal retrace is accounted for in the time allotted to each scan line, but the vertical retrace is accounted for as phantom lines which are never displayed but which are included in the number of lines per frame defined for each video system. Since the electron beam must be turned off in any case, the result is gaps in the television signal, which can be used to transmit other information, such as test signals or color identification signals.

The temporal gaps translate into a comb-like frequency spectrum for the signal, where the teeth are spaced at line frequency and concentrate most of the energy; the space between the teeth can be used to insert a color subcarrier.

Hidden signaling

Broadcasters later developed mechanisms to transmit digital information on the phantom lines, used mostly for teletext and closed captioning:


Television images are unique in that they must incorporate regions of the picture with reasonable-quality content, that will never be seen by some viewers.


In a purely analog system, field order is merely a matter of convention. For digitally recorded material it becomes necessary to rearrange the field order when conversion takes place from one standard to another.

Image polarity

Another parameter of analog television systems, minor by comparison, is the choice of whether vision modulation is positive or negative. Some of the earliest electronic television systems such as the British 405-line (system A) used positive modulation. It was also used in the two Belgian systems (system C, 625 lines, and System F, 819 lines) and the two French systems (system E, 819 lines, and system L, 625 lines). In positive modulation systems, as in the earlier white facsimile transmission standard, the maximum luminance value is represented by the maximum carrier power; in negative modulation, the maximum luminance value is represented by zero carrier power. All newer analog video systems use negative modulation with the exception of the French System L.

Impulsive noise, especially from older automotive ignition systems, caused white spots to appear on the screens of television receivers using positive modulation but they could use simple synchronization circuits. Impulsive noise in negative modulation systems appears as dark spots that are less visible, but picture synchronization was seriously degraded when using simple synchronization. The synchronization problem was overcome with the invention of phase-locked synchronization circuits. When these first appeared in Britain in the early 1950s one name used to describe them was "flywheel synchronisation."

Older televisions for positive modulation systems were sometimes equipped with a peak video signal inverter that would turn the white interference spots dark. This was usually user-adjustable with a control on the rear of the television labeled "White Spot Limiter" in Britain or "Antiparasite" in France. If adjusted incorrectly it would turn bright white picture content dark. Most of the positive modulation television systems ceased operation by the mid-1980s. The French System L continued on up to the transition to digital broadcasting. Positive modulation was one of several unique technical features that originally protected the French electronics and broadcasting industry from foreign competition and rendered French TV sets incapable of receiving broadcasts from neighboring countries.

Another advantage of negative modulation is that, since the synchronizing pulses represent maximum carrier power, it is relatively easy to arrange the receiver automatic gain control to only operate during sync pulses and thus get a constant amplitude video signal to drive the rest of the TV set. This was not possible for many years with positive modulation as the peak carrier power varied depending on picture content. Modern digital processing circuits have achieved a similar effect but using the front porch of the video signal.


Given all of these parameters, the result is a mostly-continuous analog signal which can be modulated onto a radio-frequency carrier and transmitted through an antenna. All analog television systems use vestigial sideband modulation, a form of amplitude modulation in which one sideband is partially removed. This reduces the bandwidth of the transmitted signal, enabling narrower channels to be used.


In analog television, the analog audio portion of a broadcast is invariably modulated separately from the video. Most commonly, the audio and video are combined at the transmitter before being presented to the antenna, but separate aural and visual antennas can be used. In all cases where negative video is used, FM is used for the standard monaural audio; systems with positive video use AM sound and intercarrier receiver technology cannot be incorporated. Stereo, or more generally multi-channel, audio is encoded using a number of schemes which (except in the French systems) are independent of the video system. The principal systems are NICAM, which uses a digital audio encoding; double-FM (known under a variety of names, notably Zweikanalton, A2 Stereo, West German Stereo, German Stereo or IGR Stereo), in which case each audio channel is separately modulated in FM and added to the broadcast signal; and BTSC (also known as MTS), which multiplexes additional audio channels into the FM audio carrier. All three systems are compatible with monaural FM audio, but only NICAM may be used with the French AM audio systems.


For historical reasons, some countries use a different video system on UHF than they do on the VHF bands. In a few countries, most notably the United Kingdom, television broadcasting on VHF has been entirely shut down. Note that the British 405-line system A, unlike all the other systems, suppressed the upper sideband rather than the lower—befitting its status as the oldest operating television system to survive into the color era (although was never officially broadcast with color encoding). System A was tested with all three color systems, and production equipment was designed and ready to be built; System A might have survived, as NTSC-A, had the British government not decided to harmonize with the rest of Europe on a 625-line video standard, implemented in Britain as PAL-I on UHF only.

The French 819 line system E was a post-war effort to advance France's standing in television technology. Its 819-lines were almost high definition even by today's standards. Like the British system A, it was VHF only and remained black & white until its shutdown in 1984 in France and 1985 in Monaco. It was tested with SECAM in the early stages, but later the decision was made to adopt color in 625-lines. Thus France adopted system L on UHF only and abandoned system E.

In many parts of the world, analog television broadcasting has been shut down completely, or in process of shutdown; see Digital television transition for a timeline of the analog shutdown.

List of analog television systems

Pre–World War II systems

A number of experimental and broadcast pre WW2 systems were tested. The first ones were mechanically based and of very low resolution, sometimes with no sound. Later TV systems were electronic.

  • The UK 405 line system was the first to have an allocated ITU System Letter Designation.

ITU standards

On an international conference in Stockholm in 1961, the International Telecommunication Union designated standards for broadcast television systems.[1] Each standard is designated a letter (A-M); in combination with a color system (NTSC, PAL, SECAM), this completely specifies all of the monaural analog television systems in the world (for example, PAL-B, NTSC-M, etc.).

The following table gives the principal characteristics of each standard. Defunct TV systems are shown in grey text, previous ones never designated by ITU are not yet shown. Except for lines and frame rates, other units are megahertz (MHz).

World analog television systems
Standard Introduced Lines  Frame rate Channel bandwidth Video bandwidth (MHz) Vision sound carrier separation (MHz) Vestigial sideband (MHz) Vision modulation Sound modulation Frequency of chrominance subcarrier (MHz) Vision/sound power ratio Usual color
A 1936 405 25 5 3 −3.5 0.75 pos. AM 4:1 none
B 1950 625 25 7 5 +5.5 0.75 neg. FM 4.43 PAL/SECAM
C 1953 625 25 7 5 +5.5 0.75 pos. AM none
D 1948 625 25 8 6 +6.5 0.75 neg. FM 4.43 SECAM/PAL
E 1949 819 25 14 10 ±11.15 2.00 pos. AM none
F 819 25 7 5 +5.5 0.75 pos. AM none
G 625 25 8 5 +5.5 0.75 neg. FM 4.43 5:1 PAL/SECAM
H 625 25 8 5 +5.5 1.25 neg. FM 4.43 5:1 PAL
I 1962 625 25 8 5.5 +5.9996 1.25 neg. FM 4.43 5:1 PAL
J 1953 525 30 6 4.2 +4.5 0.75 neg. FM 3.58 NTSC
K 625 25 8 6 +6.5 0.75 neg. FM 4.43 5:1 SECAM/PAL
K' 625 25 8 6 +6.5 1.25 neg. FM 4.43 SECAM
L 1970s 625 25 8 6 -6.5 1.25 pos. AM 4.43 8:1 SECAM
M 1941 525 30 6 4.2 +4.5 0.75 neg. FM 3.58 NTSC
N 1951 625 25 6 4.2 +4.5 0.75 neg. FM PAL

Notes by system

Early United Kingdom and Ireland VHF system (B&W only). First electronic TV system, introduced in 1936. Vestigal sideband filtering introduced in 1949. Discontinued on 23 November 1982 in Ireland and on 2 January 1985 in the UK. [1] [2]
VHF only in most Western European countries (combined with system G and H on UHF); VHF and UHF in Australia. Originally known as the Gerber standard # [3].
Early VHF system; used only in Belgium, Italy, the Netherlands and Luxembourg, as a compromise between Systems B and L. Discontinued in 1977. [4]
The first 625-line system. Used on VHF only in most countries (combined with system K on UHF). Used in the People's Republic of China (PAL-D) on both VHF and UHF.
Early French VHF system (B&W only); very good (near HDTV) picture quality but uneconomical use of bandwidth. Sound carrier separation +11.15 MHz on odd numbered channels, -11.15 MHz on even numbered channels. Discontinued in 1984 (France) and 1985 (Monaco). [5]
Early VHF system used only in Belgium, Italy, the Netherlands and Luxembourg; allowed French 819-line television programming to be broadcast on the 7 MHz VHF channels used in those countries, at a substantial cost in horizontal resolution. Discontinued in 1969. [6]
UHF only; used in countries with System B on VHF, except Australia.
UHF only; used only in Belgium, Luxembourg, Netherlands and Former Yugoslavia. Similar to System G with a 1.25 MHz vestigal sideband.
Used in the UK, Ireland, Southern Africa, Macau, Hong Kong and Falkland Islands.
Used in Japan (see system M below). Identical to system M except that a different black level of 0 IRE is used instead of 7.5 IRE. Although the ITU specified a frame rate of 30 fields, 29.97 was adopted with the introduction of NTSC color to minimize visual artifacts. Discontinued in 2012, when Japan transitioned to digital.
UHF only; used in countries with system D on VHF, and identical to it in most respects.
Used only in French overseas departments and territories.
Used only in France. On VHF Band 1 only, the audio is at −6.5 MHz. Discontinued in 2011, when France transitioned to digital. It was the last system to use positive video modulation and AM sound.
Used in most of the Americas and Caribbean (Except Argentina, Paraguay, Uruguay and French Guiana), Myanmar, South Korea, Taiwan, Philippines (all NTSC-M), Brazil (PAL-M) and Laos (SECAM-M). Although the ITU specified a frame rate of 30 fields, 29.97 was adopted with the introduction of NTSC color to minimize visual artifacts. PAL-M, unaffected by color encoding, continues to use a frame rate of 30.
Originally developed for Japan but not taken up. Adopted by Argentina, Paraguay and Uruguay (since 1980) (all PAL-N), and used briefly in Brazil and Venezuela. Allows 625-line, 50-frame/s video to be broadcast in a 6-MHz channel, at some cost in horizontal resolution.

Digital television systems

The situation with worldwide digital television is much simpler by comparison. Most digital television systems are based on the MPEG transport stream standard, and use the H.262/MPEG-2 Part 2 video codec. They differ significantly in the details of how the transport stream is converted into a broadcast signal, in the video format prior to encoding (or alternatively, after decoding), and in the audio format. This has not prevented the creation of an international standard that includes both major systems, even though they are incompatible in almost every respect.

The two principal digital broadcasting systems are ATSC standards, developed by the Advanced Television Systems Committee and adopted as a standard in most of North America, and DVB-T, the Digital Video Broadcast – Terrestrial system used in most of the rest of the world. DVB-T was designed for format compatibility with existing direct broadcast satellite services in Europe (which use the DVB-S standard, and also sees some use in direct-to-home satellite dish providers in North America), and there is also a DVB-C version for cable television. While the ATSC standard also includes support for satellite and cable television systems, operators of those systems have chosen other technologies (principally DVB-S or proprietary systems for satellite and 256QAM replacing VSB for cable). Japan uses a third system, closely related to DVB-T, called ISDB-T, which is compatible with Brazil's SBTVD. The People's Republic of China has developed a fourth system, named DMB-T/H.

Digital terrestrial television standards
DTT broadcasting systems.[2]


The terrestrial ATSC system (unofficially ATSC-T) uses a proprietary Zenith-developed modulation called 8-VSB; as the name implies, it is a vestigial sideband technique. Essentially, analog VSB is to regular amplitude modulation as 8VSB is to eight-way quadrature amplitude modulation. This system was chosen specifically to provide for maximum spectral compatibility between existing analog TV and new digital stations in the United States' already-crowded television allocations system, although it is inferior to the other digital systems in dealing with multipath interference; however, it is better at dealing with impulse noise which is especially present on the VHF bands that other countries have discontinued from TV use, but are still used in the U.S. There is also no hierarchical modulation. After demodulation and error-correction, the 8-VSB modulation supports a digital data stream of about 19.39 Mbit/s, enough for one high-definition video stream or several standard-definition services. See Digital subchannel: Technical considerations for more information.

On November 17, 2017, the FCC voted 3-2 in favor of authorizing voluntary deployments of ATSC 3.0, which was designed as the successor to the original ATSC "1.0", and issued a Report and Order to that effect. Full-power stations will be required to maintain a simulcast of their channels on an ATSC 1.0-compatible signal if they decide to deploy an ATSC 3.0 service.[3]

On cable, ATSC usually uses 256QAM, although some use 16VSB. Both of these double the throughput to 38.78 Mbit/s within the same 6 MHz bandwidth. ATSC is also used over satellite. While these are logically called ATSC-C and ATSC-S, these terms were never officially defined.


DTMB is the digital television broadcasting standard of the People's Republic of China, Hong Kong and Macau. This is a fusion system, which is a compromise of different competing proposing standards from different Chinese Universities, which incorporates elements from DMB-T, ADTB-T and TiMi 3.


DVB-T uses coded orthogonal frequency division multiplexing (COFDM), which uses as many as 8000 independent carriers, each transmitting data at a comparatively low rate. This system was designed to provide superior immunity from multipath interference, and has a choice of system variants which allow data rates from 4 MBit/s up to 24 MBit/s. One US broadcaster, Sinclair Broadcasting, petitioned the Federal Communications Commission to permit the use of COFDM instead of 8-VSB, on the theory that this would improve prospects for digital TV reception by households without outside antennas (a majority in the US), but this request was denied. (However, one US digital station, WNYE-DT in New York, was temporarily converted to COFDM modulation on an emergency basis for datacasting information to emergency services personnel in lower Manhattan in the aftermath of the September 11 terrorist attacks).

DVB-S is the original Digital Video Broadcasting forward error coding and modulation standard for satellite television and dates back to 1995. It is used via satellites serving every continent of the world, including North America. DVB-S is used in both MCPC and SCPC modes for broadcast network feeds, as well as for direct broadcast satellite services like Sky and Freesat in the British Isles, Sky Deutschland and HD+ in Germany and Austria, TNT SAT/FRANSAT and CanalSat in France, Dish Network in the US, and Bell TV in Canada. The MPEG transport stream delivered by DVB-S is mandated as MPEG-2.

DVB-C stands for Digital Video Broadcasting - Cable and it is the DVB European consortium standard for the broadcast transmission of digital television over cable. This system transmits an MPEG-2 family digital audio/video stream, using a QAM modulation with channel coding.


ISDB is very similar to DVB, however it is broken into 13 subchannels. Twelve are used for TV, while the last serves either as a guard band, or for the 1seg (ISDB-H) service. Like the other DTV systems, the ISDB types differ mainly in the modulations used, due to the requirements of different frequency bands. The 12 GHz band ISDB-S uses PSK modulation, 2.6 GHz band digital sound broadcasting uses CDM and ISDB-T (in VHF and/or UHF band) uses COFDM with PSK/QAM. It was developed in Japan with MPEG-2, and is now used in Brazil with MPEG-4. Unlike other digital broadcast systems, ISDB includes digital rights management to restrict recording of programming.

Line count

As interlaced systems require accurate positioning of scanning lines, it is important to make sure that the horizontal and vertical timebase are in a precise ratio. This is accomplished by passing the one through a series of electronic divider circuits to produce the other. Each division is by a prime number.

Therefore, there has to be a straightforward mathematical relationship between the line and field frequencies, the latter being derived by dividing down from the former. Technology constraints of the 1930s meant that this division process could only be done using small integers, preferably no greater than 7, for good stability. The number of lines was odd because of 2:1 interlace. The 405 line system used a vertical frequency of 50 Hz (Standard AC mains supply frequency in Britain) and a horizontal one of 10,125 Hz (50 × 405 ÷ 2)

  • 2 × 3 × 3 × 5 gives 90 lines (non interlaced)
  • 2 × 2 × 2 × 2 × 2 × 3 gives 96 lines (non interlaced)
  • 2 × 2 × 3 × 3 × 5 gives 180 lines (non interlaced) (used in Germany in mid-1930s before switch to 441-line system)
  • 2 × 2 × 2 × 2 × 3 × 5 gives 240 lines (used for the experimental Baird transmissions in Britain [See Note 1])
  • 3 × 3 × 3 × 3 × 3 gives 243 lines
  • 7 × 7 × 7 gives 343 lines (early North American system also used in Poland and in Soviet Union before WW2)
  • 3 × 5 × 5 × 5 gives 375 lines
  • 3 × 3 × 3 × 3 × 5 gives 405 lines System A (used in Britain, Ireland and Hong Kong before 1985)
  • 2 × 2 × 2 × 5 × 11 gives 440 lines (non interlaced)
  • 3 × 3 × 7 × 7 gives 441 lines (used by RCA in North America before the 525-lines NTSC standard was adopted and widely used before WW2 in Continental Europe with different frame rates)
  • 2 × 3 × 3 × 5 × 5 gives 450 lines (non interlaced)
  • 5 × 7 × 13 gives 455 lines (used in France before WW2)
  • 3 × 5 × 5 × 7 gives 525 lines System M (a compromise between the RCA and Philco systems. Still used today in most of the Americas and parts of Asia)
  • 3 × 3 × 3 × 3 × 7 gives 567 lines (used for a while after WW2 in the Netherlands)
  • 5 × 11 × 11 gives 605 lines (proposed by Philco in North America before the 525 standard was adopted)
  • 5 × 5 × 5 × 5 gives 625 lines (576i) (developed independently by German [7] [8] and Soviet[4][5][6] engineers during the mid-late 1940s. Still used today in most parts of the world)
  • 2 × 3 × 5 × 5 × 5 gives 750 lines at 50 frames (used for 720p50 [See Note 2])
  • 2 × 2 × 2 × 2 × 3 × 3 × 5 gives 720 lines at 60 frames (used for 720p60 [See Note 2])
  • 3 × 3 × 7 × 13 gives 819 lines (737i) (used in France in the 1950s)
  • 3 × 7 × 7 × 7 gives 1029 lines (proposed but never adopted around 1948 in France)
  • 3 × 3 × 5 × 5 x 5 gives 1125 lines at 25 frames (used for 1080i25 but not 1080p25 [See Note 2])
  • 3 × 3 × 5 × 5 x 5 gives 1125 lines at 30 frames (used for 1080i30 but not 1080p30 [See Note 2])
  1. The division of the 240-line system is academic as the scan ratio was determined entirely by the construction of the mechanical scanning system used with the cameras used with this transmission system.
  2. The division ratio though relevant to CRT-based systems is largely academic today because modern LCD and plasma displays are not constrained to having the scanning in precise ratios. The 1080p high definition system requires 1126-lines in a CRT display.
  3. The System I version of the 625 line standard originally used 582 active lines before later changing to 576 in line with other 625 line systems.

Conversion from one system to another system

Converting between different numbers of lines and different frequencies of fields/frames in video pictures is not an easy task. Perhaps the most technically challenging conversion to make is from any of the 625-line, 25-frame/s systems to system M, which has 525-lines at 29.97 frames per second. Historically this required a frame store to hold those parts of the picture not actually being output (since the scanning of any point was not time coincident). In more recent times, conversion of standards is a relatively easy task for a computer.

Aside from the line count being different, it's easy to see that generating 59.94 fields every second from a format that has only 50 fields might pose some interesting problems. Every second, an additional 10 fields must be generated seemingly from nothing. The conversion has to create new frames (from the existing input) in real time.

There are several methods used to do this, depending on the desired cost and conversion quality. The simplest possible converters simply drop every 5th line from every frame (when converting from 625 to 525) or duplicate every 4th line (when converting from 525 to 625), and then duplicate or drop some of those frames to make up the difference in frame rate. More complex systems include inter-field interpolation, adaptive interpolation, and phase correlation.

See also

Transmission technology standards

Defunct analog systems

Analog television systems

Analog television system audio

  • BTSC
  • NICAM (digital, analog pre-emphasis curve)
  • Zweiton
  • The defunct MUSE system had a very unusual digital audio subsystem completely unrelated to NICAM.

Digital television systems



  1. ^ Final acts of the European Broadcasting Conference in the VHF and UHF bands. Stockholm, 1961.
  2. ^, Official information taken from the DVB website
  3. ^ "FCC Authorizes Next Gen TV Broadcast Standard". Federal Communications Commission. Retrieved 2017-11-18.
  4. ^ On the beginning of broadcast in 625-lines 60 year s ago, 625 magazine (in Russian). Archived 2016-03-04 at the Wayback Machine
  5. ^ M.I. Krivocheev – an engineer's engineer, EBU's technical review.

External links

Analog television

Analog television or analogue television is the original television technology that uses analog signals to transmit video and audio. In an analog television broadcast, the brightness, colors and sound are represented by rapid variations of either the amplitude, frequency or phase of the signal.

Analog signals vary over a continuous range of possible values which means that electronic noise and interference becomes reproduced by the receiver. Thus with analog, a moderately weak signal becomes snowy and subject to interference. In contrast, a moderately weak digital signal and a very strong digital signal transmit equal picture quality. Analog television may be wireless (terrestrial television and satellite television) or can be distributed over a cable network using cable converters (cable television).

All broadcast television systems used analog signals before the arrival of digital television (DTV). Motivated by the lower bandwidth requirements of compressed digital signals, since the 2000s a digital television transition is proceeding in most countries of the world, with different deadlines for cessation of analog broadcasts.


Bosch-Halle is an indoor sporting arena located in Wels, Austria. The capacity of the arena is 9.060 people.

Broadcast Television Systems Inc.

Broadcast Television Systems was a joint venture between Robert Bosch GmbH's Fernseh Division and Philips Broadcast in Breda, Netherlands formed in 1986.

Fontana Records

Fontana Records is a record label which was started in the 1950s as a subsidiary of the Dutch Philips Records. The independent label distributor Fontana Distribution takes its name from the label.

Gee Broadcast

Gee Broadcast Systems Ltd was founded in the UK in early 1987 by Keith and Sarah Gee. The company was initially set up to provide a design and installation service for broadcast Television systems but expanded to equipment sales and distribution, including videographics and "engineering" products. Later the 'Geevs' (Gee Video Server) family of video servers was developed and led to growth particularly in exports. Exports of Geevs have reached over 50 countries and formed the largest part of the Gee Broadcast business.

In 2004, Gee Broadcast acquired Lightworks in order to provide a tapeless production system with multichannel servers and editing systems.

In 2007, Gee Broadcast Systems with Lightworks had a team of engineers based in Basingstoke, Hampshire, UK with 5,000 sq ft (460 m2) of office and workshop space, flexibly configured to allow the manufacturing and testing of large and small Geevs and Lightworks systems, together with a range of distributed products.

In 2009, Gee Broadcast Systems Ltd went into administration, and was dissolved in November 2010. Prior to this, certain assets of the company were acquired by EditShare.

List of Canadian television channels

Television in Canada has many individual stations and networks and systems.

Multichannel television sound

Multichannel television sound, better known as MTS (often still as BTSC, for the Broadcast Television Systems Committee that created it), is the method of encoding three additional channels of audio into an analog NTSC-format audio carrier.


Norelco is the American brand name for electric shavers and other personal care products made by the Consumer Lifestyle division of Philips.

For personal care products marketed outside the United States, Philips used the Philishave trademark until 2006. Philips then dropped that name and began using the Philips name.


Phase Alternating Line (PAL) is a colour encoding system for analogue television used in broadcast television systems in most countries broadcasting at 625-line / 50 field (25 frame) per second (576i). Other common colour encoding systems are NTSC National Television Standards Committee, ATSC Advanced Television Systems Committee, and SECAM.

All the countries using PAL are currently in process of conversion or have already converted standards to DVB, ISDB or DTMB.

This page primarily discusses the PAL colour encoding system. The articles on broadcast television systems and analogue television further describe frame rates, image resolution and audio modulation.

Prewar television stations

This is a list of pre-World War 2 television stations of the 1920s and 1930s. Most of these experimental stations were located in Europe (notably in the United Kingdom, France, Germany, Italy, Poland, The Netherlands, and Russia), Australia, Canada and the United States. Some present-day broadcasters trace their origins to these early stations.

All television licenses in the United States were officially "experimental" before July 1941, as the NTSC television standard had yet to be developed, and some American television broadcasters continued operating under experimental licenses as late as 1947, although by then they were using the same technical standards as their commercial brethren.


Quadra may refer to:

Juan Francisco de la Bodega y Quadra (1743–1794), Spanish explorer

Quadra Island, an island in British Columbia, Canada, named after the explorer

Quadra's and Vancouver's Island, the original name of Vancouver Island

Quadra, São Paulo, a municipality in Brazil

Quadra Blu, a character from Max Rep comics by illustrator Lyman Dally

Vancouver Quadra, a federal electoral district in British Columbia, Canada

Macintosh Quadra, a line of computers made by Apple Computer

Quadra, Telecine introduced by Broadcast Television Systems Inc. in 1993

Quadra, a group of four psychological types in the theory of socionics

The fighting style of several characters in the anime manga and light novel Aria the Scarlet Ammo, which involves fighting with two pistols and two blades


Respironics is a medical supply company that specializes in products that improve respiratory functions. It is based in the Pittsburgh suburb of Murrysville.

Sanjeev Nag

Sanjeev Nag is an Indian film editor.

Sanjeev Nag edited the documentary film Head On Air Crash (aka Head On!) (2003), regarding the fatal 1996 Charkhi Dadri mid-air collision at Delhi's IGI Airport. The film was telecast on the National Geographic Channel and has won Best Editing & technical awards. He recently edited the documentary Inside: Mumbai Terror Attack, regarding the 2008 Mumbai attacks.

He had been awarded by Indian Television Academy Award 2010 for Best Editor, Special Jury Award by IDPA.

This documentary had won 3 National Awards in 2010.

He receive Best Editor (Non Fiction) 8th City of DelhiOne of his finest work, a documentary on crime investigation "The Jars Murderers"

Foremost role in launch of Food First, Food Channel.

Presently working with National Geographic Channel.

Launched first Lifestyle HD channel of FOX in India.

Currently running Technical Broadcast Operations for NGC and Fox Traveller.

Extensive command of Broadcast Television Systems and technology. New Media, HD workflow.

Post Studio and Play Out systems design, realistic workflow concepts.

System requirements and infrastructure advice and 3rd party components compatibility for broadcast environment.

Sanjeev Nag recently had been awarded by Indian Television Academy award for Best TV Documentary 2018 for his latest work as director, Winds of Change for National Geographic Channel.

Winds of Change had been nominated for Best Documentary under Best Current Affair and Best Social Awareness category, Asian Television Academy Awards 2018.

Sanjeev Nag is actively involved to create some of the best creative solutions in Indian Film Industry.


Sony HDVS is a range of high-definition video equipment developed in the 1980s to support an early analog high-definition television system thought to be the broadcast television systems that would be in use today. The line included professional video cameras, video monitors and linear video editing systems.

Television channel frequencies

The following tables show the frequencies assigned to broadcast television channels in various regions of the world, along with the ITU letter designator for the system used. The frequencies shown are for the analogue video and audio carriers. The channel itself occupies several megahertz of bandwidth. For example, North American channel 2 occupies the spectrum from 54 to 60 MHz. See Broadcast television systems for a table of signal characteristics, including bandwidth, by ITU letter designator.

Television station

A television station is a set of equipment managed by a business, organisation or other entity, such as an amateur television (ATV) operator, that transmits video content via radio waves directly from a transmitter on the earth's surface to a receiver on earth. Most often the term refers to a station which broadcasts structured content to an audience or it refers to the organization that operates the station. A terrestrial television transmission can occur via analog television signals or, more recently, via digital television signals. Television stations are differentiated from cable television or other video providers in that their content is broadcast via terrestrial radio waves. A group of television stations with common ownership or affiliation are known as a TV network and an individual station within the network is referred to as O&O or affiliate, respectively.

Because television station signals use the electromagnetic spectrum, which in the past has been a common, scarce resource, governments often claim authority to regulate them. Broadcast television systems standards vary around the world. Television stations broadcasting over an analog system were typically limited to one television channel, but digital television enables broadcasting via subchannels as well. Television stations usually require a broadcast license from a government agency which sets the requirements and limitations on the station. In the United States, for example, a television license defines the broadcast range, or geographic area, that the station is limited to, allocates the broadcast frequency of the radio spectrum for that station's transmissions, sets limits on what types of television programs can be programmed for broadcast and requires a station to broadcast a minimum amount of certain programs types, such as public affairs messages.

Another form a television station may take is non-commercial educational (NCE) and considered public broadcasting. To avoid concentration of media ownership of television stations, government regulations in most countries generally limit the ownership of television stations by television networks or other media operators, but these regulations vary considerably. Some countries have set up nationwide television networks, in which individual television stations act as mere repeaters of nationwide programs. In those countries, the local television station has no station identification and, from a consumer's point of view, there is no practical distinction between a network and a station, with only small regional changes in programming, such as local television news.

Television systems before 1940

A number of experimental and broadcast pre World War II television systems were tested. The first ones were mechanical based (mechanical television) and of very low resolution, sometimes with no sound. Later TV systems were electronic (electronic television).

VF bandwidth

In broadcast television systems, VF bandwidth, video bandwidth or more formally video frequency bandwidth is the range of frequencies between 0 and the highest frequency used to transmit a live television image. The maximum frequency can be found by multiplying three figures; the number of frames (images) per second, number of lines per frame and maximum number of sine periods per line. In the table below number of frames per second, number of lines per frame and the video band width in different systems are shown.

World television systems
System Digital Modulation Resolution
Frame rate Data rate Hierarchical Mod. Ch. B/W (MHz) Video B/W Audio offset Video Coding Audio Coding Interactive TV Digital subchannels Single-Frequency Network Predecessor format(s) Mobile?
ATSC 1.0 8VSB, A-VSB and E-VSB in the works 1080 up to 60p 19.39 Mbit/s No 6 4.25?
digital carrier at 1.31 MHz
? H.262 Dolby Digital, AC3,
MPEG-1 Layer II
Yes Partial NTSC Not yet, ATSC-M/H in the works
(QPSK, 4096QAM)
2160p/4K up to 120p 57 Mbit/s Yes 6 4.5 ? H.265/Scalable HEVC Dolby AC-4, MPEG-H Yes Yes Yes NTSC, ATSC 1.0 Yes
1080 up to 50p Up to 31.668 Mbit/s Yes 5, 6, 7, or 8 ? ? H.262, H.264 MPEG-1 Layer II,
Yes Yes PAL, SECAM Yes (DVB-H)
(QPSK, 16QAM, 64QAM, 256QAM)
1080 up to 50p Up to 50.34 Mbit/s Yes 1.7, 5, 6, 7, 8, or 10 ? ? H.264, H.262 MPEG-1 Layer II,
DTMB TDS-OFDM 1080 up to 50p ? ? 6, 7, or 8 ? ? MPEG-2, H.264/MPEG-4 AVC, AVS MPEG-1 Audio Layer II, AC3, DRA Yes ? Yes PAL Yes
1080? up to 60p 23 Mbit/s Yes 6 (5.572 + 428 kHz guard band) ? ? H.262/
H.264 (1seg)
AAC No Yes Yes NTSC Yes, ISDB-Tmm/1seg
BST-OFDM 1080? ? ? Yes 6 ? ? H.264 HE-AAC Yes, Ginga Yes Yes PAL-M, PAL-N, PAL-Nc, NTSC Yes, 1seg
MediaFLO OFDM (QPSK/16QAM) ? ? ? ? 5.55 ? ? ? ? Yes ? ? NTSC (Channel 55) Yes
T-DMB OFDM-DQPSK ? ? ? ? ? ? ? H.262/
HE-AAC ? ? ? NTSC Yes
SMPTE standards
Related articles
Related standards organizations
Color systems
Frequencies & Bands
Network topology
and switching

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.