A borehole is a narrow shaft bored in the ground, either vertically or horizontally. A borehole may be constructed for many different purposes, including the extraction of water, other liquids (such as petroleum) or gases (such as natural gas), as part of a geotechnical investigation, environmental site assessment, mineral exploration, temperature measurement, as a pilot hole for installing piers or underground utilities, for geothermal installations, or for underground storage of unwanted substances, e.g. in carbon capture and storage.

Borewell digging
Drilling boreholes for clean water (9084603915)
A woman in Uganda collects water from a borehole.


A water resources borehole into the chalk aquifer under the North Downs, England at Albury

Engineers and environmental consultants use the term borehole to collectively describe all of the various types of holes drilled as part of a geotechnical investigation or environmental site assessment (a so-called Phase II ESA). This includes holes advanced to collect soil samples, water samples or rock cores, to advance in situ sampling equipment, or to install monitoring wells or piezometers. Samples collected from boreholes are often tested in a laboratory to determine their physical properties, or to assess levels of various chemical constituents or contaminants.

Typically, a borehole used as a water well is completed by installing a vertical pipe (casing) and well screen to keep the borehole from caving. This also helps prevent surface contaminants from entering the borehole and protects any installed pump from drawing in sand and sediment. Oil and natural gas wells are completed in a similar, albeit usually more complex, manner.

As detailed in proxy (climate), borehole temperature measurements at a series of different depths can be effectively "inverted" (a mathematical formula to solve a matrix equation) to help estimate historic surface temperatures.

Clusters of small-diameter boreholes equipped with heat exhangers made of plastic PEX pipe can be used to store heat or cold between opposing seasons in a mass of native rock. The technique is called seasonal thermal energy storage. Media that can be used for this technique range from gravel to bedrock. There can be a few to several hundred boreholes, and in practice, depths have ranged from 150 to 1000 feet.[1][2]


Borehole drilling has a long history. By at least the Han Dynasty (202 BC – 220 AD), the Chinese used deep borehole drilling for mining and other projects. The British sinologist and historian Michael Loewe states that borehole sites could reach as deep as 600 m (2000 ft).[3] K.S. Tom describes the drilling process: "The Chinese method of deep drilling was accomplished by a team of men jumping on and off a beam to impact the drilling bit while the boring tool was rotated by buffalo and oxen."[4] This was the same method used for extracting petroleum in California during the 1860s (i.e. "Kicking Her Down").[4][5] A Western Han Dynasty bronze foundry discovered in Xinglong, Hebei had nearby mining shafts which reached depths of 100 m (328 ft) with spacious mining areas; the shafts and rooms were complete with a timber frame, ladders and iron tools.[6][7] By the first century BC, Chinese craftsmen cast iron drill bits and drillers were able to drill boreholes up to 4800 feet (1500 m) deep.[8][9][10] By the eleventh century AD, the Chinese were able to drill boreholes up to 3000 feet in depth. Drilling for boreholes was time consuming and long. As the depth of the holes varied, the drilling of a single well could last nearly one full decade.[4] It wasn't up until the 19th century that Europe and the West would catch up and rival ancient Chinese borehole drilling technology.[10][5]

For many years, the world's longest borehole was the Kola Superdeep Borehole in Russia. From 2011 until August 2012 the record was held by the 12,345-metre (40,502 ft) long Sakhalin-I Odoptu OP-11 Well, offshore the Russian island Sakhalin.[11] The Chayvo Z-44 extended-reach well took the title of the world's longest borehole on 27 August 2012. Z-44's total measured depth is 12,376 m (40,604 ft). However, ERD wells are more shallow than Kola Superdeep Borehole, owing to a large horizontal displacement.


Borewell digging
Borewell digging

Drillers may sink a borehole using a drilling rig or a hand-operated rig. The machinery and techniques to advance a borehole vary considerably according to manufacturer, geological conditions, and the intended purpose. For offshore drilling floating units or platforms supported by the seafloor are used for the drilling rig.

See also


  1. ^ Hellström G. (2008). Large-Scale Applications of Ground-Source Heat Pumps in Sweden. IEA HP Annex 29 Workshop, Zurich, May 19, 2008.
  2. ^ Stiles L. (1998). Underground Thermal Energy Storage in the US. IEA Heat Pump Centre Newsletter. 16:2:pp.22-23.
  3. ^ Loewe (1968), 194.
  4. ^ a b c Tom (1989), 103.
  5. ^ a b Hobson, John M. (2004). The Eastern Origins of Western Civilisation. Cambridge University Press. p. 215. ISBN 978-0521547246.
  6. ^ Loewe (1968), 191.
  7. ^ Wang (1982), 105.
  8. ^ Hossain, M. E.; Abdullah Al-Majed, Abdulaziz (2015). Fundamentals of Sustainable Drilling Engineering. Wiley-Scrivener (published March 2, 2015). ISBN 978-0470878170.
  9. ^ Rezende, Lisa (2007). Chronology of Science. Checkmark Books (published April 1, 2007). p. 40. ISBN 978-0816071197.
  10. ^ a b Conner, Clifford D. (2005). A People's History of Science: Miners, Midwives, and Low Mechanicks. Nation Books. p. 175. ISBN 978-1560257486.
  11. ^ Sakhalin-1 Project Drills World's Longest Extended-Reach Well Archived 2011-01-31 at the Wayback Machine

External links

Boreholes: Swiss Geological Survey

Borehole mining

Borehole Mining (BHM) is a remote operated method of extraction (mining) of mineral resources through boreholes based on in-situ conversion of ores into a mobile form (slurry) by means of high pressure water jets (hydraulicking). This process can be carried-out from land surface, open pit floor, underground mine or floating platform or vessel through pre-drilled boreholes.

Boring (earth)

Boring is drilling a hole, tunnel, or well in the earth.

Boring is used for various applications in geology, agriculture, hydrology, civil engineering, and mineral exploration. Today, most earth drilling serves one of the following purposes:

return samples of the soil and/or rock through which the drill passes

access rocks from which material can be extracted

access rocks which can then be measured

provide access to rock for purposes of providing engineering supportUnlike drilling in other materials where the aim is to create a hole for some purpose, often the case of drilling or coring is to get an understanding of the ground/lithology. This may be done for prospecting to identify and quantify an ore body for mining, or to determining the type of foundations needed for a building or raised structure, or for underground structures, including tunnels and deep basements where an understanding of the ground is vital to determining how to excavate and the support philosophy. Drilling is also used in vertical and inclined shaft construction.

Casing (borehole)

Casing is large diameter pipe that is assembled and inserted into a recently drilled section of a borehole. Similar to the bones of a spine protecting the spinal cord, casing is set inside the drilled borehole to protect and support the wellstream. The lower portion (and sometimes the entirety) is typically held in place with cement. Deeper strings usually are not cemented all the way to the surface, so the weight of the pipe must be partially supported by a casing hanger in the wellhead.

Core sample

A core sample is a cylindrical section of (usually) a naturally occurring substance. Most core samples are obtained by drilling with special drills into the substance, for example sediment or rock, with a hollow steel tube called a core drill. The hole made for the core sample is called the "core bowling". A variety of core samplers exist to sample different media under different conditions. More continue to be invented on a regular basis. In the coring process, the sample is pushed more or less intact into the tube. Removed from the tube in the laboratory, it is inspected and analyzed by different techniques and equipment depending on the type of data desired.

Core samples can be taken to test the properties of manmade materials, such as concrete, ceramics, some metals and alloys, especially the softer ones. Core samples can also be taken of living things, including human beings, especially of a person's bones for microscopic examination to help diagnose diseases.

Formation evaluation

In petroleum exploration and development, formation evaluation is used to determine the ability of a borehole to produce petroleum. Essentially, it is the process of "recognizing a commercial well when you drill one".

Modern rotary drilling usually uses a heavy mud as a lubricant and as a means of producing a confining pressure against the formation face in the borehole, preventing blowouts. Only in rare and catastrophic cases, do oil and gas wells come in with a fountain of gushing oil. In real life, that is a blowout—and usually also a financial and environmental disaster. But controlling blowouts has drawbacks—mud filtrate soaks into the formation around the borehole and a mud cake plasters the sides of the hole. These factors obscure the possible presence of oil or gas in even very porous formations. Further complicating the problem is the widespread occurrence of small amounts of petroleum in the rocks of many sedimentary provinces. In fact, if a sedimentary province is absolutely barren of traces of petroleum, it is not feasible to continue drilling there.

The formation evaluation problem is a matter of answering two questions:

What are the lower limits for porosity, permeability and upper limits for water saturation that permit profitable production from a particular formation or pay zone; in a particular geographic area; in a particular economic climate.

Do any of the formations in the well under consideration exceed these lower limits.It is complicated by the impossibility of directly examining the formation. It is, in short, the problem of looking at the formation indirectly.


Geosteering is the optimal placement of a wellbore based on the results of realtime downhole geological and geophysical logging measurements rather than three-dimensional targets in space. The objective is usually to keep a directional wellbore within a hydrocarbon pay zone defined in terms of its resistivity, density or even biostratigraphy. In mature areas, geosteering may be used to keep a wellbore in a particular section of a reservoir to minimize gas or water breakthrough and maximize economic production from the well. In the process of drilling a borehole, geosteering is the act of adjusting the borehole position (inclination and azimuth angles) on the fly to reach one or more geological targets. These changes are based on geological information gathered while drilling.

Originally only a projected target would be aimed for with crude directional tools. Now the advent of rotary steerable tools and an ever-increasing arsenal of geophysical tools enables well placement with ever-increasing accuracy. Typically a basic tool configuration will have directional and inclination sensors, along with a gamma ray tool. Other options are neutron density, look ahead seismic, downhole pressure readings et al. Due to the vast volume of data generated, especially by imaging tools, the data transmitted to surface is a carefully selected fraction of what is available. Data is collected in memory for a data dump when back on surface with the tool.

Ice drilling

Ice drilling allows scientists studying glaciers and ice sheets to gain access to what is beneath the ice, to take measurements along the interior of the ice, and to retrieve samples. Instruments can be placed in the drilled holes to record temperature, pressure, speed, direction of movement, and for other scientific research, such as neutrino detection.

Many different methods have been used since 1840, when the first scientific ice drilling expedition attempted to drill through the Unteraargletscher in the Alps. Two early methods were percussion, in which the ice is fractured and pulverized, and rotary drilling, a method often used in mineral exploration for rock drilling. In the 1940s, thermal drills began to be used; these drills melt the ice by heating the drill. Drills that use jets of hot water or steam to bore through ice soon followed. A growing interest in ice cores, used for palaeoclimatological research, led to ice coring drills being developed in the 1950s and 1960s, and there are now many different coring drills in use. For obtaining ice cores from deep holes, most investigators use cable-suspended electromechanical drills, which use an armoured cable to carry electrical power to a mechanical drill at the bottom of the borehole.

In 1966, a US team successfully drilled through the Greenland ice sheet at Camp Century, at a depth of 1,387 metres (4,551 ft). Since then many other groups have succeeded in reaching bedrock through the two largest ice sheets, in Greenland and Antarctica. Recent projects have focused on finding drilling locations that will give scientists access to very old undisturbed ice at the bottom of the borehole, since an undisturbed stratigraphic sequence is required to accurately date the information obtained from the ice.

Japan Trench Fast Drilling Project

The Japan Trench Fast Drilling Project (JFAST) was a rapid-response scientific expedition that drilled oceanfloor boreholes through the fault-zone of the 2011 Tohoku earthquake. JFAST gathered important data about the rupture mechanism and physical properties of the fault that caused the huge earthquake and tsunami which devastated much of northeast Japan.

Kola Superdeep Borehole

The Kola Superdeep Borehole (Russian: Кольская сверхглубокая скважина) is the result of a scientific drilling project of the Soviet Union in the Pechengsky District, on the Kola Peninsula. The project attempted to drill as deep as possible into the Earth's crust. Drilling began on 24 May 1970 using the Uralmash-4E, and later the Uralmash-15000 series drilling rig. Boreholes were drilled by branching from a central hole. The deepest, SG-3, reached 12,262 metres (40,230 ft; 7.619 mi) in 1989 and is the deepest artificial point on Earth, as of September 2019. The borehole is 23 centimetres (9 in) in diameter.In terms of true vertical depth, it is the deepest borehole in the world. For two decades it was also the world's longest borehole in terms of measured depth along the well bore, until it was surpassed in 2008 by the 12,289-metre-long (40,318 ft) Al Shaheen oil well in Qatar, and in 2011 by the 12,345-metre-long (40,502 ft) Sakhalin-I Odoptu OP-11 Well (offshore from the Russian island of Sakhalin).

Lake Vostok

Lake Vostok (Russian: Озеро Восток, Ozero Vostok, lit. "Lake East") is the largest of Antarctica's almost 400 known subglacial lakes.

Lake Vostok is located at the southern Pole of Cold, beneath Russia's Vostok Station under the surface of the central East Antarctic Ice Sheet, which is at 3,488 m (11,444 ft) above mean sea level. The surface of this fresh water lake is approximately 4,000 m (13,100 ft) under the surface of the ice, which places it at approximately 500 m (1,600 ft) below sea level.

Measuring 250 km (160 mi) long by 50 km (30 mi) wide at its widest point, it covers an area of 12,500 km2 (4,830 sq mi) making it the 16th largest lake by surface area. With an average depth of 432 m (1,417 ft), it has an estimated volume of 5,400 km3 (1,300 cu mi), making it the 6th largest lake by volume.

The lake is divided into two deep basins by a ridge. The liquid water depth over the ridge is about 200 m (700 ft), compared to roughly 400 m (1,300 ft) deep in the northern basin and 800 m (2,600 ft) deep in the southern.

The lake is named after Vostok Station, which in turn is named after the Vostok (Восток), a sloop-of-war ship, which means "East" in Russian. The existence of a subglacial lake in the Vostok region was first suggested by Russian geographer Andrey Kapitsa based on seismic soundings made during the Soviet Antarctic Expeditions in 1959 and 1964 to measure the thickness of the ice sheet. The continued research by Russian and British scientists led by 1993 to the final confirmation of the existence of the lake by J. P. Ridley using ERS-1 laser altimetry.The overlying ice provides a continuous paleoclimatic record of 400,000 years, although the lake water itself may have been isolated for 15 to 25 million years. On 5 February 2012, a team of Russian scientists completed the longest ever ice core of 3,768 m (12,400 ft) and pierced the ice shield to the surface of the lake.The first core of freshly frozen lake ice was obtained on 10 January 2013 at a depth of 3,406 m (11,175 ft). However, as soon as the ice was pierced, water from the underlying lake gushed up the borehole, mixing it with the Freon and kerosene used to keep the borehole from freezing. A new borehole was drilled and an allegedly pristine water sample was obtained in January 2015. The Russian team plans to eventually lower a probe into the lake to collect water samples and sediments from the bottom. It is hypothesized that unusual forms of life could be found in the lake's liquid layer, a fossil water reserve. Because Lake Vostok may contain an environment sealed off below the ice for millions of years, the conditions could resemble those of ice-covered oceans hypothesized to exist on Jupiter's moon Europa, and Saturn's moon Enceladus.

Logging while drilling

Logging while drilling (LWD) is a technique of conveying well logging tools into the well borehole downhole as part of the bottom hole assembly (BHA).

Although the terms Measurement while drilling (MWD) and LWD are related, within the context of this section, the term MWD refers to directional-drilling measurements, e.g., for decision support for the smooth operation of the drilling, while LWD refers to measurements concerning the geological formation made while drilling.[1]LWD tools work with its measurement while drilling (MWD) system to transmit partial or complete measurement results to the surface via typically a drilling mud pulser or other improved techniques, while LWD tools are still in the borehole, which is called "real-time data". Complete measurement results can be downloaded from LWD tools after they are pulled out of hole, which is called "memory data".

LWD, while sometimes risky and expensive, has the advantage of measuring properties of a formation before drilling fluids invade deeply. Further, many wellbores prove to be difficult or even impossible to measure with conventional wireline tools, especially highly deviated wells. In these situations, the LWD measurement ensures that some measurement of the subsurface is captured in the event that wireline operations are not possible. Timely LWD data can also be used to guide well placement so that the wellbore remains within the zone of interest or in the most productive portion of a reservoir, such as in highly variable shale reservoirs.LWD technology was developed originally as an enhancement to the earlier MWD technology to completely or partially replace wireline logging operation. With the improvement of the technology in the past decades, LWD is now widely used for drilling (including geosteering), and formation evaluation (especially for real time and high angle wells).

Mud logging

Mud logging is the creation of a detailed record (well log) of a borehole by examining the cuttings of rock brought to the surface by the circulating drilling medium (most commonly drilling mud). Mud logging is usually performed by a third-party mud logging company. This provides well owners and producers with information about the lithology and fluid content of the borehole while drilling. Historically it is the earliest type of well log. Under some circumstances compressed air is employed as a circulating fluid, rather than mud. Although most commonly used in petroleum exploration, mud logging is also sometimes used when drilling water wells and in other mineral exploration, where drilling fluid is the circulating medium used to lift cuttings out of the hole. In hydrocarbon exploration, hydrocarbon surface gas detectors record the level of natural gas brought up in the mud. A mobile laboratory is situated by the mud logging company near the drilling rig or on deck of an offshore drilling rig, or on a drill ship.


Petrology (from the Ancient Greek: πέτρος, romanized: pétros, lit. 'rock' and λόγος, lógos) is the branch of geology that studies rocks and the conditions under which they form. Petrology has three subdivisions: igneous, metamorphic, and sedimentary petrology. Igneous and metamorphic petrology are commonly taught together because they both contain heavy use of chemistry, chemical methods, and phase diagrams. Sedimentary petrology is, on the other hand, commonly taught together with stratigraphy because it deals with the processes that form sedimentary rock.Lithology was once approximately synonymous with petrography, but in current usage, lithology focuses on macroscopic hand-sample or outcrop-scale description of rocks while petrography is the speciality that deals with microscopic details.

In the petroleum industry, lithology, or more specifically mud logging, is the graphic representation of geological formations being drilled through, and drawn on a log called a mud log. As the cuttings are circulated out of the borehole they are sampled, examined (typically under a 10× microscope) and tested chemically when needed.

Proxy (climate)

In the study of past climates ("paleoclimatology"), climate proxies are preserved physical characteristics of the past that stand in for direct meteorological measurements and enable scientists to reconstruct the climatic conditions over a longer fraction of the Earth's history. Reliable global records of climate only began in the 1880s, and proxies provide the only means for scientists to determine climatic patterns before record-keeping began.

Examples of proxies include ice cores, tree rings, sub-fossil pollen, boreholes, corals, lake and ocean sediments, and carbonate speleothems. The character of deposition or rate of growth of the proxies' material has been influenced by the climatic conditions of the time in which they were laid down or grew. Chemical traces produced by climatic changes, such as quantities of particular isotopes, can be recovered from proxies. Some proxies, such as gas bubbles trapped in ice, enable traces of the ancient atmosphere to be recovered and measured directly to provide a history of fluctuations in the composition of the Earth's atmosphere. To produce the most precise results, systematic cross-verification between proxy indicators is necessary for accuracy in readings and record-keeping.Proxies can be combined to produce temperature reconstructions longer than the instrumental temperature record and can inform discussions of global warming and climate history. The distribution of proxy records, just like the instrumental record, is not at all uniform, with more records in the northern hemisphere.

Redgrave and Lopham Fens

Redgrave and Lopham Fens is a 127 hectare biological Site of Special Scientific Interest between Thelnetham in Suffolk and Diss in Norfolk. It is a National Nature Reserve, a Ramsar internationally important wetland site, a Nature Conservation Review site, Grade I, and part of the Waveney and Little Ouse Valley Fens Special Area of Conservation. It is managed by the Suffolk Wildlife Trust.It is the largest remaining area of river valley fen in England and consists of a number of different fen types, including saw-sedge beds, as well as having areas of open water, heathland, scrub and woodland. It is also one of only three sites in the UK where the fen raft spider Dolomedes plantarius is known to be found.

Seasonal thermal energy storage

Seasonal thermal energy storage (or STES) is the storage of heat or cold for periods of up to several months. The thermal energy can be collected whenever it is available and be used whenever needed, such as in the opposing season. For example, heat from solar collectors or waste heat from air conditioning equipment can be gathered in hot months for space heating use when needed, including during winter months. Waste heat from industrial process can similarly be stored and be used much later.

Or the natural cold of winter air can be stored for summertime air conditioning.

STES stores can serve district heating systems, as well as single buildings or complexes. Among seasonal storages used for heating, the design peak annual temperatures generally are in the range of 27 to 80 °C (81 to 180 °F), and the temperature difference occurring in the storage over the course of a year can be several tens of degrees. Some systems use a heat pump to help charge and discharge the storage during part or all of the cycle. For cooling applications, often only circulation pumps are used. A less common term for STES technologies is interseasonal thermal energy storage.Examples for district heating include Drake Landing Solar Community where ground storage provides 97% of yearly consumption without heat pumps, and Danish pond storage with boosting.

South Waratah Colliery

The South Waratah Colliery (later just Waratah Colliery) was a coal mine located at Charlestown, in New South Wales Australia.


Totalán is a village and municipality in the province of Málaga, part of the autonomous community of Andalusia in southern Spain. It is located in the comarca of La Axarquía. The municipality is situated approximately 22 kilometres from the provincial capital of Málaga and 13 from Rincón de la Victoria. It has a population of approximately 650 residents. The natives are called Totalatenses or Totalateños and the nickname is Rebotaos.

Well logging

Well logging, also known as borehole logging is the practice of making a detailed record (a well log) of the geologic formations penetrated by a borehole. The log may be based either on visual inspection of samples brought to the surface (geological logs) or on physical measurements made by instruments lowered into the hole (geophysical logs). Some types of geophysical well logs can be done during any phase of a well's history: drilling, completing, producing, or abandoning. Well logging is performed in boreholes drilled for the oil and gas, groundwater, mineral and geothermal exploration, as well as part of environmental and geotechnical studies.

Retaining walls
Numerical analysis


This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.