Biofuels by region

The use of biofuels varies by region and with increasing oil prices there is a renewed interest in it as an energy source.

Recognizing the importance of implementing bioenergy, there are international organizations such as IEA Bioenergy,[1] established in 1978 by the OECD International Energy Agency (IEA), with the aim of improving cooperation and information exchange between countries that have national programs in bioenergy research, development and deployment. The U.N. International Biofuels Forum is formed by Brazil, China, India, South Africa, the United States and the European Commission.[2] The world leaders in biofuel development and use are Brazil, United States, France, Sweden and Germany.

Americas

Brazil

The government of Brazil hopes to build on the success of the Proálcool ethanol program by expanding the production of biodiesel which must contain 2% biodiesel by 2008, and 5% by 2013.

Canada

The government of Canada aims for 45% of the country's gasoline consumption to contain 10% ethanol by 2010.

Colombia and Venezuela

Colombia mandates the use of 10% ethanol in all gasoline sold in cities with populations exceeding 500,000.[3] In Venezuela, the state oil company is supporting the construction of 15 sugar cane distilleries over the next five years, as the government introduces an E10 (10% ethanol) blending mandate.

Four Brazilian full flex-fuel automoviles 05 2008
Typical Brazilian "flex" models from several car makers, that run on any blend of ethanol and gasoline.

United States

The Energy Policy Act of 2005 was passed by the United States Congress on July 29, 2005 and signed into law by President George W. Bush on August 8, 2005 at Sandia National Laboratories in Albuquerque, New Mexico. The Act, described by proponents as an attempt to combat growing energy problems, changed the energy policy of the United States by providing tax incentives and loan guarantees for energy production of various types. In 2006, the United States president George W. Bush said in a State of the Union speech that the US is "addicted to oil" and should replace 75% of imported oil by 2025 by alternative sources of energy including biofuels.

Essentially all ethanol fuel in the US is produced from corn. Corn is a very energy-intensive crop, which requires one unit of fossil-fuel energy to create just 0.9 to 1.3 energy units of ethanol. A senior member of the House Energy and Commerce Committee, Congressman Fred Upton introduced legislation to use at least E10 fuel by 2012 in all cars in the USA.

The 2007-12-19 US Energy Independence and Security Act of 2007 requires American "fuel producers to use at least" 36 billion US gallons (140,000,000 m3) "of biofuel in 2022. This is nearly a fivefold increase over current levels."[4] This is causing a significant shift of resources away from food production. American food exports have decreased (increasing grain prices worldwide), and US food imports have increased significantly.

Today most biofuels are not currently cost-effective without significant subsidies. "America's ethanol program is a product of government subsidies. There are more than 200 different kinds, as well as a 54 cents-a-gallon tariff on imported ethanol. This prices Brazilian ethanol out of an otherwise competitive market. Brazil makes ethanol from sugarcane rather than corn (maize), which has a better EROEI. Federal subsidies alone cost $7 billion a year (equal to around $1.90 a gallon)."[5]

General Motors is starting a project to produce E85 fuel from cellulose ethanol for a projected cost of $1 a gallon. This is optimistic, because $1/gal equates to $10/MBTU which is comparable to woodchips at $7/MBTU or cord wood at $6–$12/MBTU, and this does not account for conversion losses and plant operating and capital costs which are significant. The raw materials can be as simple as corn stalks and scrap petroleum-based vehicle tires,[6] but used tires are an expensive feedstock with other more-valuable uses. GM has over 4 million E85 cars on the road now, and by 2012 half of the production cars for the US will be capable of running on E85 fuel. But by 2012, the supply of ethanol will not even be close to supplying this much E85. Coskata Inc. is building two new plants for the ethanol fuel. Theoretically, the process is claimed to be five times more energy efficient than corn based ethanol, but it is still in development and has not been proven to be cost effective in a free market. The greenhouse gas emissions are reduced by 86% for cellulose compared to corn's 29% reduction.

The Food, Conservation, and Energy Act of 2008 is a $288 billion, five-year agricultural policy bill being considered by the United States Congress as a continuation of the 2002 Farm Bill. The bill continues the United States' long history of agricultural subsidy as well as pursuing areas such as energy, conservation, nutrition, and rural development.[1] Some specific initiatives in the bill include increases in Food Stamp benefits, increased support for the production of cellulosic ethanol, and money for the research of pests, diseases and other agricultural problems.

Asia

In 2007, the 10 ASEAN members and leaders from Australia, China, India, Japan, South Korea and New Zealand, signed the Cebu Declaration on the East Asian Energy Security Pact in the Philippines and agreed to promote the development of biofuels to reduce fossil fuel dependence and promote cleaner sources of energy. Subsequently, several Asian countries formulated policies and set targets for biofuels utilization. The Philippine government passed a law that mandates a minimum of 1% biodiesel blend within three months and at least 2% biodiesel blend within two years upon the effectiveness of the Act, and at least 5% bioethanol blend within two years upon effectiveness of the Act and 10% bioethanol fuel within four years after (Philippine Republic Act No. 9637 or also known as the Philippine Biofuels Act) .” Thailand has established a 10% target for an ethanol mix in regular gasoline, while Malaysia has set a 5% palm oil diesel blend at domestic pumps. Indonesia plans to double the palm oil acreage area over the next 30 years.[7]

China

China has 45 listed companies doing biofuels-related businesses and is expected to grow even more because of China’s booming economy. Among the major foreign investors are Biolux Energy, Bright BioFuels (BBF), Sunshine Technology Group, and Asia Energy. As of 2008, China ranked No. 8 in Biofuels Country Attractiveness Indices commissioned by Ernst & Young. Since the late 1990s, China has set up major policies supporting the development and utilization of biofuels. In 2001, the government initially formulated the First Five-Year Plan for Bioethanol and the Special Development Plan for Denatured Fuel Ethanol and Bioethanol Gasoline for Automobiles. In early 2002, the National Development and Reform Commission (NDRC) and seven other ministries jointly issued two policy documents: the Pilot Testing Program of Bioethanol for Automobiles, and the Detail Regulations for Implementing the Pilot Testing Program of Bioethanol Gasoline for Automobiles. In 2003, a 10% ethanol (E10) blending for its automobile sector was initiated in three cities in Henan Province and in two cities in Heilongjiang Province. The following major support policies were provided to carry out the terms of the two policy documents: (i) a 5% consumption tax on all bioethanol under the E10 program was waived for all bioethanol plants; (ii) the value-added tax (normally 17%) on bioethanol production was refunded at the end of each year; (iii) all bioethanol plants received subsidized “old grain” (grains reserved in national stocks that are not suitable for human consumption) for feedstock. This subsidy was jointly provided by the central and local governments; and (iv) the government offered a subsidy to ensure a minimum profit for the bioethanol plants. This means that in the event that a bioethanol plant declares loss in production and marketing, the government will provide a subsidy equal to the gap between marketing revenues and production costs plus a reasonable profit that the firm could have obtained from an alternative investment. There are five licensed ethanol fuel producers and over 12 operational biodiesel plants and roughly 28 more under construction in China.[8] Among the licensed ethanol producers, the Jilin Fuel Alcohol Company is the largest, located in an industrial complex in the northern part of China near Jilin City, Jilin Province. The largest ethanol production facility was established in 2001 as a joint venture between PetroChina, Cofoco, and the Jilin Food Company. It has its own power station, water treatment facility, and employs about 430 employees of which 10% are at management level. All ethanol produced at this facility is blended by PetroChina, which has 20 ethanol blending stations in Jilin Province. Bioethanol plants are required by the government to sell their produced fuel ethanol only to appointed oil companies, such as PetroChina or Sinopec at a price of 0.91 or about $0.82/liter. The government subsidizes the gap between the sale price and production cost. China's potential marginal arable lands are limited and most are fragmented. In a 2003-2004 survey conducted by the Ministry of Land and Resources, potential arable lands that are not fragmented amounted only to 7.3 million hectares, accounting for 8.28% of total reserved land.

India

In India, a bioethanol program calls for E5 blends throughout most of the country targeting to raise this requirement to E10 and then E20. In 2003, the national government set a 5% mandated blending target for gasoline. Since then, petroleum with an ethanol blend has been developed and used in nine states and four territories: Andhra Pradesh, Daman, Diu, Goa, Dadra, Nagar Haveli, Gujarat, Chandigarh, Haryana, Pondicherry, Karnataka, Maharashtra, Punjab, Tamil Nadu and Uttar Pradesh.[9] In 2005, the country became the world's fourth largest producer of ethanol at 1.6 billion liters and at the same time the world's largest consumer of sugar.

The country aims to replace 20% of the country's diesel requirement with biodiesel in accordance with the National Biodiesel Mission (NBM) by 2012. The NBM has been, and will continue to be, implemented in two stages: First is a demonstration project, which was carried out over the period 2003-2007 aimed at cultivating 400,000 hectares of Jatropha expected to yield about 3.75 tons of oilseed per hectare annually. The project has also demonstrated the viability of other related activities/projects such as seed collection and oil extraction. In addition, the government will build a transesterification plant. Second, a commercialization period which started in 2007 and will proceed until 2012 will continue with Jatropha cultivation. The plan also involves the installation of more transesterification plants that will position India to meet 20 per cent of its diesel needs through biodiesel. High ethanol prices and low availability of sources has compelled the government to amend its 5% blending target with the notification that 5% bioethanol blended petrol shall be supplied in identified areas if (a) the indigenous price of ethanol offered for ethanol blended petrol programme is comparable to that offered by the indigenous ethanol industry for alternative uses, (b) the indigenous delivery price of ethanol offered for the ethanol blended petrol programme at a particular location is comparable to the import parity price of petrol at that location, and (c) there is an adequate supply of ethanol.[10] To encourage investment, there are also tax incentives and excise cuts. At the state level, the Maharashtra government offers waivers of government fee from the 1 percent turnover tax on anhydrous ethanol, INR500 per kiloliter (US$0.048 per gallon) permit fee, 4 percent sales tax, 10 percent surcharge on sales tax, INR1,500 per kiloliter (US$0.14 per gallon) import fee, INR300 per kiloliter (US$0.029 per gallon) service charges and 3 percent Octroi, which is a local tax collected on various articles brought into the district for consumption.[9] By 2030, it is expected that India will soon become the world's third largest economy due to its speedy growth. In 2005, the GDP of India was US$0.6 trillion, and it is forecasted to reach US$6.1 trillion by the year 2030 at an annual growth rate of 9%.[11]

The country has about 125 ethanol producers with a total capacity of 1.25 billion liters of ethanol. Most of these ethanol-producers are found in sugar cane growing states like Maharashtra and Uttar Pradesh, which also operate in states such as Tamil Nadu, Andhra Pradesh, Karnataka and Gujarat.[12] India ranks No. 12 in the 2008 Ernst and Young Indices [13] but may rise higher in the ranking once the country is able to coordinate tax incentives between states and state and federal legislation. At present, the country has about 11 factories in the Uttar Pradesh facilities and is expected to produce about 75 million liters of anhydrous alcohol by end-September with 7 units in Tamil Nadu (production capacity of 62.5 million liters of anhydrous alcohol); 8 in Karnataka (anhydrous alcohol production capacity of 66.5 million liters); and 4 units in Andhra Pradesh (capacity of over 40 million liters). Similar steps have also been taken by the cooperative sector units in Maharashtra, Punjab and UP.

Indonesia

On January 25, 2006, the government of Indonesia issued Presidential Instruction (Instruksi Presiden RI) No 1/2006 regarding “Provision and Utilisation of Biofuel as Alternative Fuel” as the legal framework for biofuels development in the country. Accordingly, 10% of bioethanol and biodiesel are allowed to blend with gasoline and diesel. To attract more investors, the government provides investment tax incentives through Government Regulation No. 62/2008, which has the following salient features: (i) 30% reduction of net income from the total investment, applied for 6 yrs, or 5% every year; (ii) expediting depreciation and amortization method; (iii) lower income tax (10%) compared to (15%) in the past for royalties earned by foreign tax payers; and (iv) a longer period of compensation of loss—more than 5 yrs but less than 10 years. To help small farmers, the Ministry of Finance issued Regulation No. 117/PMK.06/2006 or Credit for the Development of Bio-fuel Energy and Plantation Revitalization. This is a subsidized credit scheme for farmers involving several government owned banks—PT. BRI, PT. Bank Mandiri, PT. Bank Bukopin, PT. Bank Sumut, and BPD Sumbar. An interest rate subsidy was also allocated. For example, the market rate for cassava is 18%, while for farmers it is only 9%. Likewise, the market rate for sugar cane where it is 18% but the rate charged to farmers is only 12%. During the initial period, there were only two biodiesel plants in Indonesia: PPKS in Medan and Eterindo in Gresik. At present, there are nine ethanol plants with a total production capacity of 133,632 kiloliters, and some of them began to produce as early as 2007 with oil palm plantation among others like PT Musimas with a capacity of 100,000 tons per year in North Sumatra and PT Prajona Nelayan with a capacity of 60,000 tons per year in Riau. Dumai, also in Riau, was identified by the Indonesian government as the largest biodiesel development center in Indonesia, considering its abundant supply of raw materials including, oil palm in this area, supported by the availability of port facilities and the existence of the largest biofuel processing plant (PT Wilmar Bioenergi with production capacity of 350,000 tons per day). As of 2009, Indonesia has 32 listed companies that are involved in the biofuels industry utilizing sugarcane, cassava, and coconut (according to a presentation delivered by the Directorate General of Electricity and Energy Utilization of the Ministry of Energy and Mineral Resources, Republic of Indonesia in the 2nd Asia Biomass Energy workshop, Biofuels Database in East Asia held last December 8–10, 2009 in Kyoto, Japan).[14] Of these 32 companies, nine of them are ethanol producers with a total production capacity of 133,632 kiloliters. Of nine of these companies, only two of them produce ethanol with specifications for fuel or bioethanol. These companies are PT Bukitmanikam Subur Persada in Lampung and PT Indo Acidama Chemical in Surabaya. Total production capacity of these companies reached 93,282 kiloliter per year. Due to Indonesia's initiatives to increase the cultivation of natural resources in terms of biofuel production in coordination with ethanol producers, the country was able to rank No. 14 in the Ernst and Young's Biofuels Indices in 2008.

Israel

IC Green Energy, a subsidiary of Israel Corp., aims by 2012 to process 4-5% of the global biofuel market (~4 million tons). It is focused solely on non-edible feedstock such as jatropha, castor, cellulosic biomass and algae.[15] In June 2008, Tel Aviv-based Seambiotic and Seattle-based Inventure Chemical announced a joint venture to use CO2 emissions-fed algae to make ethanol and biodiesel at a biofuel plant in Israel.[16]

Malaysia

Beginning in 1982, Malaysia developed a comprehensive biofuels programme where palm methyl esthers and a 5% blend of processed palm oil were the primary additives to 95% petroleum diesel as transport fuels. At present, Malaysia Energy Centre forecasted that for the next 25 years the country's energy requirements would be tripled from its present consumption levels and expand at a 5.2% annual rate. According to Malaysia's national oil company Petronas, the country's reserves of 5.2 billion barrels of crude oil may only last for another 20 years at the present rate of extraction unless new oil fields are explored or new sources of energy emerge. In pursuit of energy security through diversification, Malaysia passed the Five Fuel Diversification Strategy. Under this strategy, the Malaysian government enacted the National Biofuel Policy (NBP) in August 2005 to develop a framework for biofuels. The NBP aims to supplement the diminishing supply of fossil fuels with renewable resources and has mobilized local resources for biofuel production. This effort involves the exploitation of local technology to generate energy for the transportation and industrial sectors and to pave the way for the export of biofuels. The NBP operates through five strategic objectives:

  • Objective 1: Biofuel for Transport. Diesel for land and sea transport will be a blend of 5% processed palm oil and 95% petroleum diesel. This ‘B5’ would be made available throughout the country.
  • Objective 2: Biofuel for Industry. Supply B5 diesel to the industrial sector, to be used as fuel in industrial boilers, construction machinery, and diesel-powered generators.
  • Objective 3: Biofuel Technologies. Promote research, development, and commercialization of biofuel technologies.
  • Objective 4: Biofuel for Export. Encourage and facilitate the establishment of plants for producing biofuels for export.
  • Objective 5: Biofuel for a Cleaner Environment. Enhance the quality of the ambient air, reduce the use of fossil fuels, and minimize emissions of greenhouse gases (mainly carbon dioxide), carbon monoxide, sulphur dioxide and particulates through the increased use of biofuels.

In August 2006, Malaysia's pioneer commercial biodiesel plant started its initial operations. A total of 55,000 tons of biodiesel were produced between August and December 2006, and in 2007 production, escalated to 130,000 tons. RBD palm oil was the primary feedstock used, which accounted for 94% of the total processed palm oil for biodiesel. To regulate the biofuel industry and promote its further development, the Lower House of the Parliament passed the Biofuel Industries Act in April 2007. This statute provides for the mandatory use of biofuels and the licensing of biofuel-related activities; it also allows the licensing authority to revoke or suspend any license if the licensee has ceased to produce, operate or carry out any activity for which the license was issued. The Malaysian government also approved in the same year a total of 92 biodiesel projects, 57 which were installed in Peninsular Malaysia and 35 located in East Malaysia, with a combined annual production capacity of 10.4 million tons or 11.7 billion liters. But at that time, there were only five plants in operation with combined production capacities of 400,000 tons per year. Therefore, an additional seven plants with production capacities of 615,000 tons were constructed during that year. As of September 2008, there were 14 functional biodiesel plants, but only eight were in operation while the other four had suspended operations due to incessant price increases of biodiesel feedstock. From January to September 2008, the estimated total production capacity was 130,000 tons of biodiesel.

Philippines

In 2004, demand for imported fossil fuel products in the Philippines reached approximately 106.5 million barrels of fuel oil, equivalent (MBFOE) to roughly 39% of the total primary energy supply mix. This volume was 96% of the total petroleum supply, reflecting the country's tremendous dependence on imported fossil fuel. The Philippines’ total indigenous local energy production (including coal, oil, natural gas, geothermal, hydropower, biomass, solar and wind) was 139.72 MMBFOE, which in 2004 translated to energy self-sufficiency level of 51%. In terms of foreign exchange, the importations volume has reach an equivalent to roughly US$3.8 billion of currency outflow on an annual basis, the transportation sector representing the largest consumer. Accordingly, they utilized at least 56 MBFOE, equivalent to 28.7% of the country's total consumption. In response to this foreseen dilemma, the Philippine government formulated a national policy that would reduce the country's dependence on imported fossil fuel, protect public health, the environment, and the country's natural ecosystem. This initiative would also generate opportunities for the livelihoods of people, particularly in the countryside. On January 12, 2007, Republic Act No. 9367, or the Biofuels Act, was enacted to develop and utilize indigenous, renewable, and sustainable clean energy sources. The statute mandates the use of bioethanol, biodiesel, and other fuels made from biomass as alternative forms of energy. Two of the salient features of the law include a 5% minimum ethanol blend to gasoline within two years of the Biofuels Act and a 10% minimum blend two years thereafter. Based on the Philippine Energy Plan (2007-2014), a 5% minimum blend was required amounting to 208.11 million liters of ethanol by 2009. With a 10% blend, 460.63 million liters (inclusive of consumption growth rate) will be needed by 2011.

On December 16, 2008, the Renewable Energy Act of 2008 was signed into law to accelerate the exploration, development, and utilization of renewable energy resources, including biofuels and to provide a legal and institutional framework to harmonize the fragmented policies for renewable energy in the country. One salient feature of the policy is to create an environment conducive to investments through the provision of the following incentives: (a) duty-free importation of renewable energy (RE) machinery, equipment and materials over the initial 10 years through the issuance of certifications to RE developers; (b) duty-free importation of farm machinery and agricultural inputs during the initial 10 years from the effectivity of the Renewable Energy law; (c) income tax holidays over the first seven years of commercial operation; (d) accelerated depreciation if an RE fails to receive an ITH before full operation; (e) cash incentives from RE Developers for Missionary Electrification, i.e., 50% of the universal charge for power needed to service missionary areas; (f) corporate tax rates of 10% on its net taxable income after the initial seven-year ITH period; (g) tax exemptions for carbon credits; (h) special realty tax rates of not more than 1.5% on equipment and machinery, civil works, and other improvements; and (i) net operating loss carry-over (NOLCO) during the first three years of commercial operation will be deductible from gross income over the next seven years of operation. As of 2009, the Department of Energy has accredited 12 producers of Coconut Methyl Ester (CME) for biodiesel with a total production capacity of 395,620,165 liters. The Sugar Regulatory Administration (SRA) has accredited two producers of bioethanol (from sugarcane) with a total production capacity of 39 million liters per year.

Thailand

The Thai government instituted the use of gasohol in government vehicles to set an example and to ensure public confidence in biofuels. In 2000, a biomass ethanol project was approved by the Cabinet to encourage investors from the ethanol and biodiesel industries. As a result, 24 investment permits were issued to producers, resulting in a combined production capacity of 4,115,000 liters per day, The following year, three investment permits with a total production capacity of 595,000 liters per day were issued but allegedly, due to uncertainties involving the price of ethanol, construction of the ethanol plants was delayed. To encourage more investors and ensure a sufficient ethanol supply, the government lifted the ceiling on investment permits. Additionally, the Thai government provides zero taxes on imported equipment and machinery and zero income tax for eight years. On September 14, 2006, 18 more permits were granted to ethanol producers enabling the country to reach a total production capacity of 5,730,000 liters per day. The Thai government has a policy of non-intervention for biodiesel production, and interested parties are encouraged to apply for permits to the Department of Industrial Plants, Ministry of Industry. Two sub-committees were appointed by the Energy Policy Committee to oversee ethanol and biodiesel production.

In 2006, the Ministry of Energy (MOE) placed a target on ethanol use as a substitute for methyl tertiary butyl ether mixed with 95 octane gasoline and also to substitute a portion of 91 octane gasoline at the rate of 1.00 million liters per day. However, due to an economic slowdown and price effect of gasoline consumption, the MOE reduced its target to 2.40 million liters per day. The blending target for biodiesel for the whole country is 5% or 3.96 million liters per day of B100. The initial intention was to increase by 10% or 8.50 million liters per day in 2012, but for the same reasons mentioned above, the 2011 target was revised and slashed to 3.02 million liters per day of B100. On November 22, 2007, the MOE and Bank of Agriculture and Agricultural Cooperatives (BAAC) decided to provide low-interest, B7,000 million loans to farmers to grow palm oil for 10 years at a minimum return rate of -0.5% as a support to their livelihood. To formulate a comprehensive framework for oil palm development, the cabinet approved on January 15, 2008 a government order to set up a National Oil Palm Policy. The Department of Alternative Energy Development and Efficiency under the Ministry of Energy reported that Thailand has at least 48 registered number ethanol companies and 14 biodiesel producers as of 2009.

Europe

European Union

The European Union in its biofuels directive (updated 2006) has set the goal that for 2010 that each member state should achieve at least 5.75% biofuel usage of all used traffic fuel. By 2020 the figure should be 10%. These targets were reduced in 2015 in light of certain environmental and social concerns associated with biofuels such as rising food prices and deforestation.[17]

See also BioenergyWiki: EU biofuel policy tracker, Renewable Energy Directive and Fuel Quality Directive

France

France is the second largest biofuel consumer among the EU States in 2006. According to the Ministry of Industry, France's consumption increased by 62.7% to reach 682,000 toe (i.e. 1.6% of French fuel consumption). Biodiesel represents the largest share of this (78%, far ahead of bioethanol with 22%). The unquestionable biodiesel leader in Europe is the French company Diester Industrie producing of 2 million tons of biodiesel.[18] In bioethanol, the French agro-industrial group Téréos is increasing its production capacities. Although France is bound by the EU Renewable Energy Directive and Fuel Quality Directive, the country has not yet implemented any legislation promoting the use of renewable energies to date.

Germany

Germany remained the largest European biofuel consumer in 2006, with a consumption estimate of 2.8 million tons of biodiesel (equivalent to 2,408,000 toe), 0.71 million ton of vegetable oil (628.492 toe) and 0.48 million ton of bioethanol (307,200 toe). The biggest German biodiesel company is ADM Ölmühle Hamburg AG, subsidiary of the American group Archer Daniels Midland Company. Among the other large German producers, MUW (Mitteldeutsche Umesterungswerke GmbH & Co KG) and EOP Biodiesel AG. A major contender in terms of bioethanol production is the German sugar corporation, Südzucker.[19] Germany has enacted legislation to promote the use of biofuels in transport through 2014 in partial compliance with the Renewable Energy Directive and Fuel Quality Directive.

Spain

The Spanish group Abengoa, via its American subsidiary Abengoa Bioenergy, is the European leader in production of bioethanol. Spain has enacted legislation to promote the use of biofuels in transport through 2013 in partial compliance with the RED and FQD.

Sweden

The government of Sweden and the national association of auto makers, BIL Sweden, have started work to end oil dependency. One-fifth of cars in Stockholm can run on alternative fuels, mostly ethanol fuel. Stockholm is to introduce a fleet of Swedish-made hybrid ethanol-electric buses.

United Kingdom

In the United Kingdom, the Renewable Transport Fuel Obligation (RTFO) (announced 2005) is the requirement that by 2010 5% of all road vehicle fuel is renewable. In 2008 a critical report by the Royal Society stated that biofuels risk failing to deliver significant reductions in greenhouse gas emissions from transport and could even be environmentally damaging unless the Government puts the right policies in place.[20][21]

Developing countries

Biofuel industries are becoming established in many developing countries. Many developing countries have extensive biomass resources that are becoming more valuable as demand for biomass and biofuels increases. The approaches to biofuel development in different parts of the world varies. Countries such as India and China are developing both bioethanol and biodiesel programs. India is extending plantations of jatropha, an oil-producing tree that is used in biodiesel production. The Indian sugar ethanol program sets a target of 5% bioethanol incorporation into transport fuel.[22] China is a major bioethanol producer and aims to incorporate 15% bioethanol into transport fuels by 2010. Costs of biofuel promotion programs can be very high, though.[23]

In rural populations in developing countries, biomass provides the majority of fuel for heat and cooking. Wood, animal dung and crop residues are commonly burned. Figures from the International Energy Agency (IEA) show that biomass energy provides around 30% of the total primary energy supply in developing countries; over 2 billion people depend on biomass fuels as their primary energy source.[24]

The use of biomass fuels for cooking indoors is a source of health problems and pollution. 1.3 million deaths were attributed to the use of biomass fuels with inadequate ventilation by the International Energy Agency in its World Energy Outlook 2006. Proposed solutions include improved stoves and alternative fuels. However, fuels are easily damaged, and alternative fuels tend to be expensive. Very low cost, fuel efficient, low pollution biomass stove designs have existed since 1980 or earlier.[25] Issues are a lack of education, distribution, corruption, and very low levels of foreign aid. People in developing countries often cannot afford these solutions without assistance or financing such as microloans. Organizations such as Intermediate Technology Development Group work to make improved facilities for biofuel use and better alternatives accessible to those who cannot get them.

See also

References

  1. ^ IEA bioenergy Archived 2010-05-26 at the Wayback Machine
  2. ^ "Press Conference Launching International Biofuels Forum". United Nations Department of Public Information. 2007-03-02. Retrieved 2008-01-15.
  3. ^ Press release from the Presidencia De La República de Colombia "COLOMBIA SE ALISTA PARA ENTRAR A LA ERA DEL ETANOL"
  4. ^ "Bush Signs Energy Independence and Security Act of 2007".
  5. ^ "Food Prices: Cheap No More". The Economist. 2007-12-06.
  6. ^ "G.M. Buys Stake in Ethanol Made From Waste" By MATTHEW L. WALD Published: January 14, 2008 The New York Times ei=5070&en=8461e0f658455111&ex=1200978000&adxnnl=1&emc=eta1&adxnnlx=1200428791-KwYo2SIqRNjzFuH/Aw1/3g Link
  7. ^ http://www.abc.net.au/news/newsitems/200701/s1827310.htm.
  8. ^ http://rightsite.asia/en/article/china-biofuel-industry-provides-opportunities-agribusiness
  9. ^ a b "Ethanol Producer Magazine – The Latest News and Data About Ethanol Production". www.ethanolproducer.com.
  10. ^ http://www.unctad.org/en/docs/ditcted20066_en.pdf
  11. ^ "Gateway to the Biofuel Industry in India". www.renewableenergyworld.com.
  12. ^ pdf.usaid.gov/pdf_docs/PNADJ690.pdf
  13. ^ "Archived copy". Archived from the original on 2013-03-05. Retrieved 2014-03-13.CS1 maint: Archived copy as title (link)
  14. ^ “Biofuel Program in Indonesia.” Powerpoint lecture presented in 2nd Asia Biomass Energy in Kyoto, Japan
  15. ^ "IC Green Energy and Yom Tov Samia". Cleantech Investing in Israel. 2008-05-23. Retrieved 2008-06-20.
  16. ^ "Seambiotic to build algae-based biofuel plant in Israel". Cleantech Investing in Israel. 2008-06-20. Retrieved 2008-06-20.
  17. ^ Roger Harrabin (2008-01-14). "EU rethinks biofuels guidelines". BBC News.
  18. ^ "FACTBOX-Biodiesel plants across Europe". Reuters. 2007-05-30. Retrieved 2009-12-09.
  19. ^ "EU biofuels barometer: Germany & France in the lead". 2007-07-30. Retrieved 2008-01-15.
  20. ^ Richard Black (2008-01-14). "Biofuels 'are not a magic bullet'". BBC News. Retrieved 2008-01-15.
  21. ^ "Sustainable biofuels: prospects and challenges". The Royal Society. 2008-01-14. Retrieved 2008-01-15.
  22. ^ "Ethanol India : Useful information and resources for ethanol in india". www.ethanolindia.net.
  23. ^ See Jörg Peters and Sascha Thielmann (2008) Promoting Biofuels: Implications for Developing Countries, Ruhr Economic Papers #38 ([1] for download)
  24. ^ world resources institute document on wood fuels (PDF)
  25. ^ Scientific American

External links

Biodiesel by region

This article. biodiesel by region, describes the use and availability of biodiesel in various countries around the world.

Bioenergy in China

China has set the goal of attaining one percent of its renewable energy generation through bioenergy in 2020.

The development of bioenergy in China is needed to meet the rising energy demand.Several institutions are involved in this development, most notably the Asian Development Bank and China's Ministry of Agriculture. There is also an added incentive to develop the bioenergy sector which is to increase the development of the rural agricultural sector.

As of 2005, bioenergy use has reached more than 20 million households in the rural areas, with methane gas as the main biofuel. Also more than 4000 bioenergy facilities produce 8 billion cubic metres every year of methane gas. By 2006 20% of "gasoline" consumed was actually a 10% ethanol-gasoline blend. (People's Daily Online) As of 2010, electricity generation by bioenergy is expected to reach 5 GW, and 30 GW by 2020. The annual use of methane gas is expected to be 19 cubic kilometers by 2010, and 40 cubic kilometers by 2020.

China is the world's third-largest producer of ethanol, after Brazil and the United States.(RFA)

Although only 0.71% of the country's grain yield (3.366 million tons of grain) in 2006 was used for production of ethanol, concern has been expressed over potential conflicts between demands for food and fuel, as crop prices rose in late 2006.[1]

Biofuel in Australia

Biofuel is fuel that is produced from organic matter (biomass), including plant materials and animal waste. It is considered a renewable source of energy that can assist in reducing carbon emissions. The two main types of biofuel currently being produced in Australia are biodiesel and bioethanol, used as replacements for diesel and petrol (gasoline) respectively. As of 2017 Australia is a relatively small producer of biofuels, accounting for 0.2% of world bioethanol production and 0.1% of world biodiesel production.In 2016-17, biofuels contributed only 0.5% of the total liquid and gaseous transport fuel energy mix in Australia.Total commercial biofuel production for 2018 is estimated at 290 million liters (ML): 250ML of ethanol and 40ML of biodiesel.This article mainly deals with biofuels for personal vehicles, though cooking, heating and electricity generation can also use biofuel. Historically in Australia cooking and home heating have been accomplished by burning wood, a biofuel. 909,000 households in Australia still used firewood as their main heating method in 2005, with a further 300,000 using firewood occasionally.

Biofuel in New Zealand

There are a number of biofuels used in New Zealand.

Biofuel in Sweden

Biofuels are renewable fuels that are produced by living organisms (biomass). Biofuels can be solid, gaseous or liquid, which comes in two forms: ethanol and biodiesel and often replace fossil fuels. Many countries now use biofuels as energy sources, including Sweden. Sweden has one of the highest usages of biofuel in all of Europe, at 32%, primarily due to the wide-spread commitment to E85, bioheating and bioelectricity.

Sweden's energy usage is divided into three sectors: housing and services, industry, and transport and is used in three different ways: to produce heating, electricity and vehicle fuels. In 2014 Sweden has used 555 TWh of energy, 130 of which came from biofuels.Increased biofuel usage is the main reason why Sweden has managed to decrease greenhouse gas emissions by 25% between 1990 and 2014.

Biofuel in the European Union

Strict sustainability standards for biofuel in the European Union (EU) are set by the European Commissioner on Energy. Biofuels are considered a renewable alternative to fossil fuels in the transportation sector for the EU. The EU has played a large role in increasing the use of biofuels in member states; however, it has also aimed, to some extent, to mitigate the potential negative impacts of biofuel production. Current EU legislation on biofuels includes a goal to increase renewable energy consumption by 20%, eliminate biofuel feedstock sourced from carbon-rich land, accounting for emissions caused from land use change as well as solely biofuel usage, and reducing greenhouse gas intensities from fuels used in transport and machinery.

Biofuel in the United States

The United States produces mainly biodiesel and ethanol fuel, which uses corn as the main feedstock. The US is the world's largest producer of ethanol, having produced nearly 16 billion gallons in 2017 alone. The United States, together with Brazil accounted for 85 percent of all ethanol production, with total world production of 27.05 billion gallons. Biodiesel is commercially available in most oilseed-producing states. As of 2005, it was somewhat more expensive than fossil diesel, though it is still commonly produced in relatively small quantities (in comparison to petroleum products and ethanol fuel). Due to increasing pollution control and climate change requirements and tax relief, the U.S. market is expected to grow to 1 to 2 billion US gallons (3.8×10^6 to 7.6×10^6 m3) by 2010.

Biofuels are mainly used mixed with fossil fuels. They are also used as additives. The largest biodiesel consumer is the U.S. Army. Most light vehicles on the road today in the US can run on blends of up to 10% ethanol, and motor vehicle manufacturers already produce vehicles designed to run on much higher ethanol blends. The demand for bioethanol fuel in the United States was stimulated by the discovery in the late 90s that methyl tertiary butyl ether (MTBE), an oxygenate additive in gasoline, was contaminating groundwater. Cellulosic biofuels are under development, to avoid upward pressure on food prices and land use changes that would be expected to result from a major increase in use of food biofuels.Biofuels are not just limited to liquid fuels. One of the often overlooked uses of biomass in the United States is in the gasification of biomass. There is a small, but growing number of people using woodgas to fuel cars and trucks all across America.The challenge is to expand the market for biofuels beyond the farm states where they have been most popular to date. Flex-fuel vehicles are assisting in this transition because they allow drivers to choose different fuels based on price and availability.

It should also be noted that the growing ethanol and biodiesel industries are providing jobs in plant construction, operations, and maintenance, mostly in rural communities. According to the Renewable Fuels Association, the ethanol industry created almost 154,000 U.S. jobs in 2005 alone, boosting household income by $5.7 billion. It also contributed about $3.5 billion in tax revenues at the local, state, and federal levels. On the other hand, in 2010, the industry received $6.646 billion in federal support (not counting state and local support).Based upon average U.S. corn yields for the years 2007 through 2012, conversion of the entire US corn crop would yield 34.4 billion gallons of ethanol which is approximately 25% of 2012 finished motor fuel demand.

Ethanol fuel in Brazil

Brazil is the world's second largest producer of ethanol fuel. Brazil and the United States have led the industrial production of ethanol fuel for several years, together accounting for 85 percent of the world's production in 2017. Brazil produced 26.72 billion liters (7.06 billion U.S. liquid gallons), representing 26.1 percent of the world's total ethanol used as fuel in 2017.Between 2006-2008, Brazil was considered to have the world's first "sustainable" biofuels economy and the biofuel industry leader, a policy model for other countries; and its sugarcane ethanol "the most successful alternative fuel to date." However, some authors consider that the successful Brazilian ethanol model is sustainable only in Brazil due to its advanced agri-industrial technology and its enormous amount of arable land available; while according to other authors it is a solution only for some countries in the tropical zone of Latin America, the Caribbean, and Africa.

In recent years however, later-generation biofuels have sprung up which don't use food crops that are explicitly grown for fuel production.

Brazil's 40-year-old ethanol fuel program is based on the most efficient agricultural technology for sugarcane cultivation in the world, uses modern equipment and cheap sugar cane as feedstock, the residual cane-waste (bagasse) is used to produce heat and power, which results in a very competitive price and also in a high energy balance (output energy/input energy), which varies from 8.3 for average conditions to 10.2 for best practice production. In 2010, the U.S. EPA designated Brazilian sugarcane ethanol as an advanced biofuel due to its 61% reduction of total life cycle greenhouse gas emissions, including direct indirect land use change emissions.

There are no longer any light vehicles in Brazil running on pure gasoline. Since 1976 the government made it mandatory to blend anhydrous ethanol with gasoline, fluctuating between 10% to 22%. and requiring just a minor adjustment on regular gasoline engines. In 1993 the mandatory blend was fixed by law at 22% anhydrous ethanol (E22) by volume in the entire country, but with leeway to the Executive to set different percentages of ethanol within pre-established boundaries. In 2003 these limits were set at a minimum of 20% and a maximum of 25%. Since July 1, 2007 the mandatory blend is 25% of anhydrous ethanol and 75% gasoline or E25 blend. The lower limit was reduced to 18% in April 2011 due to recurring ethanol supply shortages and high prices that take place between harvest seasons. By mid March 2015 the government raised temporarily the ethanol blend in regular gasoline from 25% to 27%.The Brazilian car manufacturing industry developed flexible-fuel vehicles that can run on any proportion of gasoline (E20-E25 blend) and hydrous ethanol (E100). Introduced in the market in 2003, flex vehicles became a commercial success, dominating the passenger vehicle market with a 94% market share of all new cars and light vehicles sold in 2013. By mid-2010 there were 70 flex models available in the market, and as of December 2013, a total of 15 car manufacturers produce flex-fuel engines, dominating all light vehicle segments except sports cars, off-road vehicles and minivans. The cumulative production of flex-fuel cars and light commercial vehicles reached the milestone of 10 million vehicles in March 2010, and the 20 million-unit milestone was reached in June 2013. As of June 2015, flex-fuel light-duty vehicle cumulative sales totaled 25.5 million units, and production of flex motorcycles totaled 4 million in March 2015.The success of "flex" vehicles, together with the mandatory E25 blend throughout the country, allowed ethanol fuel consumption in the country to achieve a 50% market share of the gasoline-powered fleet in February 2008. In terms of energy equivalent, sugarcane ethanol represented 17.6% of the country's total energy consumption by the transport sector in 2008.

Husk Power Systems

Husk Power Systems is a startup company based in Bihar, India, that provides power to thousands of rural Indians using proprietary technology that has been developed by the firm that cost-effectively generates electricity using a biomass gasifier that creates fuel from rice husks, a waste product of the rice hullers that separate the husks as chaff from the rice, a staple food in the region. The company was co-founded by Gyanesh Pandey, Manoj Sinha, and Ratnesh Yadav, and the Chairman of the Board is Brad Mattson.

Indirect land use change impacts of biofuels

The indirect land use change impacts of biofuels, also known as ILUC, relates to the unintended consequence of releasing more carbon emissions due to land-use changes around the world induced by the expansion of croplands for ethanol or biodiesel production in response to the increased global demand for biofuels.As farmers worldwide respond to higher crop prices in order to maintain the global food supply-and-demand balance, pristine lands are cleared to replace the food crops that were diverted elsewhere to biofuels' production. Because natural lands, such as rainforests and grasslands, store carbon in their soil and biomass as plants grow each year, clearance of wilderness for new farms translates to a net increase in greenhouse gas emissions. Due to this change in the carbon stock of the soil and the biomass, indirect land use change has consequences in the greenhouse gas (GHG) balance of a biofuel.Other authors have also argued that indirect land use changes produce other significant social and environmental impacts, affecting biodiversity, water quality, food prices and supply, land tenure, worker migration, and community and cultural stability.

Jatropha biodiesel in India

Biofuel development in India centres mainly around the cultivation and processing of Jatropha plant seeds which are very rich in oil (40%). The drivers for this are historic, functional, economic, environmental, moral and political. Jatropha oil has been used in India for several decades as biodiesel for the diesel fuel requirements of remote rural and forest communities; jatropha oil can be used directly after extraction (i.e. without refining) in diesel generators and engines. Jatropha has the potential to provide economic benefits at the local level since under suitable management it has the potential to grow in dry marginal non-agricultural lands, thereby allowing villagers and farmers to leverage non-farm land for income generation. As well, increased Jatropha oil production delivers economic benefits to India on the macroeconomic or national level as it reduces the nation's fossil fuel import bill for diesel production (the main transportation fuel used in the country); minimising the expenditure of India's foreign-currency reserves for fuel allowing India to increase its growing foreign currency reserves (which can be better spent on capital expenditures for industrial inputs and production). And since Jatropha oil is carbon-neutral, large-scale production will improve the country's carbon emissions profile. Finally, since no food producing farmland is required for producing this biofuel (unlike corn or sugar cane ethanol, or palm oil diesel), it is considered the most politically and morally acceptable choice among India's current biofuel options; it has no known negative impact on the production of the massive amounts grains and other vital agriculture goods India produces to meet the food requirements of its massive population (circa 1.1 Billion people as of 2008). Other biofuels which displace food crops from viable agricultural land such as corn ethanol or palm biodiesel have caused serious price increases for basic food grains and edible oils in other countries.

India's total biodiesel requirement is projected to grow to 3.6 million tonnes in 2011–12, with the positive performance of the domestic automobile industry. Analysis from Frost & Sullivan, Strategic Analysis of the Indian Biofuels Industry, reveals that the market is an emerging one and has a long way to go before it catches up with global competitors.The Government is currently implementing an ethanol-blending program and considering initiatives in the form of mandates for biodiesel. Due to these strategies, the rising population, and the growing energy demand from the transport sector, biofuels can be assured of a significant market in India. On 12 September 2008, the Indian Government announced its 'National Biofuel Policy'. It aims to meet 20% of India's diesel demand with fuel derived from plants. That will mean setting aside 140,000 square kilometres of land. Presently fuel yielding plants cover less than 5,000 square kilometres.

Africa
Asia
Europe
North America
Oceania
South America

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.