Barium

Barium is a chemical element with symbol Ba and atomic number 56. It is the fifth element in group 2 and is a soft, silvery alkaline earth metal. Because of its high chemical reactivity, barium is never found in nature as a free element. Its hydroxide, known in pre-modern times as baryta, does not occur as a mineral, but can be prepared by heating barium carbonate.

The most common naturally occurring minerals of barium are barite (now called baryte[5][6]) (barium sulfate, BaSO4) and witherite (barium carbonate, BaCO3), both insoluble in water. The name barium originates from the alchemical derivative "baryta", from Greek βαρύς (barys), meaning "heavy." Baric is the adjectival form of barium. Barium was identified as a new element in 1774, but not reduced to a metal until 1808 with the advent of electrolysis.

Barium has few industrial applications. Historically, it was used as a getter for vacuum tubes and in oxide form as the emissive coating on indirectly heated cathodes. It is a component of YBCO (high-temperature superconductors) and electroceramics, and is added to steel and cast iron to reduce the size of carbon grains within the microstructure. Barium compounds are added to fireworks to impart a green color. Barium sulfate is used as an insoluble additive to oil well drilling fluid, as well as in a purer form, as X-ray radiocontrast agents for imaging the human gastrointestinal tract. The soluble barium ion and soluble compounds are poisonous, and have been used as rodenticides.

Barium,  56Ba
Barium unter Argon Schutzgas Atmosphäre
Barium
Pronunciation/ˈbɛəriəm/ (BAIR-ee-əm)
Appearancesilvery gray; with a pale yellow tint[1]
Standard atomic weight Ar, std(Ba)137.327(7)[2]
Barium in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
Sr

Ba

Ra
caesiumbariumlanthanum
Atomic number (Z)56
Groupgroup 2 (alkaline earth metals)
Periodperiod 6
Blocks-block
Element category  alkaline earth metals
Electron configuration[Xe] 6s2
Electrons per shell
2, 8, 18, 18, 8, 2
Physical properties
Phase at STPsolid
Melting point1000 K ​(727 °C, ​1341 °F)
Boiling point2118 K ​(1845 °C, ​3353 °F)
Density (near r.t.)3.51 g/cm3
when liquid (at m.p.)3.338 g/cm3
Heat of fusion7.12 kJ/mol
Heat of vaporization142 kJ/mol
Molar heat capacity28.07 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 911 1038 1185 1388 1686 2170
Atomic properties
Oxidation states+1, +2 (a strongly basic oxide)
ElectronegativityPauling scale: 0.89
Ionization energies
  • 1st: 502.9 kJ/mol
  • 2nd: 965.2 kJ/mol
  • 3rd: 3600 kJ/mol
Atomic radiusempirical: 222 pm
Covalent radius215±11 pm
Van der Waals radius268 pm
Color lines in a spectral range
Spectral lines of barium
Other properties
Natural occurrenceprimordial
Crystal structurebody-centered cubic (bcc)
Body-centered cubic crystal structure for barium
Speed of sound thin rod1620 m/s (at 20 °C)
Thermal expansion20.6 µm/(m·K) (at 25 °C)
Thermal conductivity18.4 W/(m·K)
Electrical resistivity332 nΩ·m (at 20 °C)
Magnetic orderingparamagnetic[3]
Magnetic susceptibility+20.6·10−6 cm3/mol[4]
Young's modulus13 GPa
Shear modulus4.9 GPa
Bulk modulus9.6 GPa
Mohs hardness1.25
CAS Number7440-39-3
History
DiscoveryCarl Wilhelm Scheele (1772)
First isolationHumphry Davy (1808)
Main isotopes of barium
Iso­tope Abun­dance Half-life (t1/2) Decay mode Pro­duct
130Ba 0.11% (0.5–2.7)×1021 y εε 130Xe
132Ba 0.10% stable
133Ba syn 10.51 y ε 133Cs
134Ba 2.42% stable
135Ba 6.59% stable
136Ba 7.85% stable
137Ba 11.23% stable
138Ba 71.70% stable

Characteristics

Physical properties

Barium 1
Oxidized barium

Barium is a soft, silvery-white metal, with a slight golden shade when ultrapure.[7]:2 The silvery-white color of barium metal rapidly vanishes upon oxidation in air yielding a dark gray oxide layer. Barium has a medium specific weight and good electrical conductivity. Ultrapure barium is very difficult to prepare, and therefore many properties of barium have not been accurately measured yet.[7]:2

At room temperature and pressure, barium has a body-centered cubic structure, with a barium–barium distance of 503 picometers, expanding with heating at a rate of approximately 1.8×105/°C.[7]:2 It is a very soft metal with a Mohs hardness of 1.25.[7]:2 Its melting temperature of 1,000 K (730 °C; 1,340 °F)[8]:4–43 is intermediate between those of the lighter strontium (1,050 K or 780 °C or 1,430 °F)[8]:4–86 and heavier radium (973 K or 700 °C or 1,292 °F);[8]:4–78 however, its boiling point of 2,170 K (1,900 °C; 3,450 °F) exceeds that of strontium (1,655 K or 1,382 °C or 2,519 °F).[8]:4–86 The density (3.62 g/cm3)[8]:4–43 is again intermediate between those of strontium (2.36 g/cm3)[8]:4–86 and radium (~5 g/cm3).[8]:4–78

Chemical reactivity

Barium is chemically similar to magnesium, calcium, and strontium, but even more reactive. It always exhibits the oxidation state of +2, except in a few rare and unstable molecular species that are only characterised in the gas phase such as BaF.[7]:2 Reactions with chalcogens are highly exothermic (release energy); the reaction with oxygen or air occurs at room temperature, and therefore barium is stored under oil or in an inert atmosphere.[7]:2 Reactions with other nonmetals, such as carbon, nitrogen, phosphorus, silicon, and hydrogen, are generally exothermic and proceed upon heating.[7]:2–3 Reactions with water and alcohols are very exothermic and release hydrogen gas:[7]:3

Ba + 2 ROH → Ba(OR)2 + H2↑ (R is an alkyl group or a hydrogen atom)

Barium reacts with ammonia to form complexes such as Ba(NH3)6.[7]:3

The metal is readily attacked by most acids. Sulfuric acid is a notable exception because passivation stops the reaction by forming the insoluble barium sulfate on the surface.[9] Barium combines with several metals, including aluminium, zinc, lead, and tin, forming intermetallic phases and alloys.[10]

Compounds

Selected alkaline earth and zinc salts densities, g/cm3
O2−
S2−
F
Cl
SO2−
4
CO2−
3
O2−
2
H
Ca2+
[8]:4–48–50
3.34 2.59 3.18 2.15 2.96 2.83 2.9 1.7
Sr2+
[8]:4–86–88
5.1 3.7 4.24 3.05 3.96 3.5 4.78 3.26
Ba2+
[8]:4–43–45
5.72 4.3 4.89 3.89 4.49 4.29 4.96 4.16
Zn2+
[8]:4–95–96
5.6 4.09 4.95 2.09 3.54 4.4 1.57

Barium salts are typically white when solid and colorless when dissolved, and barium ions provide no specific coloring.[11] They are denser than the strontium or calcium analogs, except for the halides (see table; zinc is given for comparison).

Barium hydroxide ("baryta") was known to alchemists, who produced it by heating barium carbonate. Unlike calcium hydroxide, it absorbs very little CO2 in aqueous solutions and is therefore insensitive to atmospheric fluctuations. This property is used in calibrating pH equipment.

Volatile barium compounds burn with a green to pale green flame, which is an efficient test to detect a barium compound. The color results from spectral lines at 455.4, 493.4, 553.6, and 611.1 nm.[7]:3

Organobarium compounds are a growing field of knowledge: recently discovered are dialkylbariums and alkylhalobariums.[7]:3

Isotopes

Barium found in the Earth's crust is a mixture of seven primordial nuclides, barium-130, 132, and 134 through 138.[12] Barium-130 undergoes very slow radioactive decay to xenon-130 by double beta plus decay, and barium-132 theoretically decays similarly to xenon-132, with half-lives a thousand times greater than the age of the Universe.[13] The abundance is ~0.1% that of natural barium.[12] The radioactivity of these isotopes is so weak that they pose no danger to life.

Of the stable isotopes, barium-138 composes 71.7% of all barium; other isotopes have decreasing abundance with decreasing mass number.[12]

In total, barium has about 40 known isotopes, ranging in mass between 114 and 153. The most stable artificial radioisotope is barium-133 with a half-life of approximately 10.51 years. Five other isotopes have half-lives longer than a day.[13] Barium also has 10 meta states, of which barium-133m1 is the most stable with a half-life of about 39 hours.[13]

History

Humphry Davy Engraving 1830
Sir Humphry Davy, who first isolated barium metal

Alchemists in the early Middle Ages knew about some barium minerals. Smooth pebble-like stones of mineral baryte were found in volcanic rock near Bologna, Italy, and so were called "Bologna stones." Alchemists were attracted to them because after exposure to light they would glow for years.[14] The phosphorescent properties of baryte heated with organics were described by V. Casciorolus in 1602.[7]:5

Carl Scheele determined that baryte contained a new element in 1774, but could not isolate barium, only barium oxide. Johan Gottlieb Gahn also isolated barium oxide two years later in similar studies. Oxidized barium was at first called "barote" by Guyton de Morveau, a name that was changed by Antoine Lavoisier to baryta. Also in the 18th century, English mineralogist William Withering noted a heavy mineral in the lead mines of Cumberland, now known to be witherite. Barium was first isolated by electrolysis of molten barium salts in 1808 by Sir Humphry Davy in England.[15] Davy, by analogy with calcium, named "barium" after baryta, with the "-ium" ending signifying a metallic element.[14] Robert Bunsen and Augustus Matthiessen obtained pure barium by electrolysis of a molten mixture of barium chloride and ammonium chloride.[16][17]

The production of pure oxygen in the Brin process was a large-scale application of barium peroxide in the 1880s, before it was replaced by electrolysis and fractional distillation of liquefied air in the early 1900s. In this process barium oxide reacts at 500–600 °C (932–1,112 °F) with air to form barium peroxide, which decomposes above 700 °C (1,292 °F) by releasing oxygen:[18][19]

2 BaO + O2 ⇌ 2 BaO2

Barium sulfate was first applied as a radiocontrast agent in X-ray imaging of the digestive system in 1908.[20]

Occurrence and production

The abundance of barium is 0.0425% in the Earth's crust and 13 µg/L in sea water. The primary commercial source of barium is baryte (also called barytes or heavy spar), a barium sulfate mineral.[7]:5 with deposits in many parts of the world. Another commercial source, far less important than baryte, is witherite, a barium carbonate mineral. The main deposits are located in England, Romania, and the former USSR.[7]:5

Barite, left to right: appearance, graph showing trends in production over time, and the map showing shares of the most important producer countries in 2010.

Barite
BariteWorldProductionUSGS
World Baryte Production 2010

The baryte reserves are estimated between 0.7 and 2 billion tonnes. The maximum production, 8.3 million tonnes, was produced in 1981, but only 7–8% was used for barium metal or compounds.[7]:5 Baryte production has risen since the second half of the 1990s from 5.6 million tonnes in 1996 to 7.6 in 2005 and 7.8 in 2011. China accounts for more than 50% of this output, followed by India (14% in 2011), Morocco (8.3%), US (8.2%), Turkey (2.5%), Iran and Kazakhstan (2.6% each).[21]

The mined ore is washed, crushed, classified, and separated from quartz. If the quartz penetrates too deeply into the ore, or the iron, zinc, or lead content is abnormally high, then froth flotation is used. The product is a 98% pure baryte (by mass); the purity should be no less than 95%, with a minimal content of iron and silicon dioxide.[7]:7 It is then reduced by carbon to barium sulfide:[7]:6

BaSO4 + 2 C → BaS + 2 CO2

The water-soluble barium sulfide is the starting point for other compounds: reacting BaS with oxygen produces the sulfate, with nitric acid the nitrate, with carbon dioxide the carbonate, and so on.[7]:6 The nitrate can be thermally decomposed to yield the oxide.[7]:6 Barium metal is produced by reduction with aluminium at 1,100 °C (2,010 °F). The intermetallic compound BaAl4 is produced first:[7]:3

3 BaO + 14 Al → 3 BaAl4 + Al2O3

BaAl4 is an intermediate reacted with barium oxide to produce the metal. Note that not all barium is reduced.[7]:3

8 BaO + BaAl4 → Ba↓ + 7 BaAl2O4

The remaining barium oxide reacts with the formed aluminium oxide:[7]:3

BaO + Al2O3 → BaAl2O4

and the overall reaction is[7]:3

4 BaO + 2 Al → 3 Ba↓ + BaAl2O4

Barium vapor is condensed and packed into molds in an atmosphere of argon.[7]:3 This method is used commercially, yielding ultrapure barium.[7]:3 Commonly sold barium is about 99% pure, with main impurities being strontium and calcium (up to 0.8% and 0.25%) and other contaminants contributing less than 0.1%.[7]:4

A similar reaction with silicon at 1,200 °C (2,190 °F) yields barium and barium metasilicate.[7]:3 Electrolysis is not used because barium readily dissolves in molten halides and the product is rather impure.[7]:3

Benitoite HD
Benitoite crystals on natrolite. The mineral is named for the San Benito River in San Benito County where it was first found.

Gemstone

The barium mineral, benitoite (barium titanium silicate), occurs as a very rare blue fluorescent gemstone, and is the official state gem of California.

Applications

Metal and alloys

Barium, as a metal or when alloyed with aluminium, is used to remove unwanted gases (gettering) from vacuum tubes, such as TV picture tubes.[7]:4 Barium is suitable for this purpose because of its low vapor pressure and reactivity towards oxygen, nitrogen, carbon dioxide, and water; it can even partly remove noble gases by dissolving them in the crystal lattice. This application is gradually disappearing due to the rising popularity of the tubeless LCD and plasma sets.[7]:4

Other uses of elemental barium are minor and include an additive to silumin (aluminium–silicon alloys) that refines their structure, as well as[7]:4

  • bearing alloys;
  • lead–tin soldering alloys – to increase the creep resistance;
  • alloy with nickel for spark plugs;
  • additive to steel and cast iron as an inoculant;
  • alloys with calcium, manganese, silicon, and aluminium as high-grade steel deoxidizers.

Barium sulfate and baryte

BariumXray
Amoebiasis as seen in a radiograph of a barium-filled colon

Barium sulfate (the mineral baryte, BaSO4) is important to the petroleum industry as a drilling fluid in oil and gas wells.[8]:4–5 The precipitate of the compound (called "blanc fixe", from the French for "permanent white") is used in paints and varnishes; as a filler in ringing ink, plastics, and rubbers; as a paper coating pigment; and in nanoparticles, to improve physical properties of some polymers, such as epoxies.[7]:9

Barium sulfate has a low toxicity and relatively high density of ca. 4.5 g/cm3 (and thus opacity to X-rays). For this reason it is used as a radiocontrast agent in X-ray imaging of the digestive system ("barium meals" and "barium enemas").[8]:4–5 Lithopone, a pigment that contains barium sulfate and zinc sulfide, is a permanent white with good covering power that does not darken when exposed to sulfides.[22]

Other barium compounds

2006 Fireworks 1
Green barium fireworks

Other compounds of barium find only niche applications, limited by the toxicity of Ba2+ ions (barium carbonate is a rat poison), which is not a problem for the insoluble BaSO4.

Toxicity

Barium
Hazards
GHS pictograms The flame pictogram in the Globally Harmonized System of Classification and Labelling of Chemicals (GHS)
GHS signal word Danger
H261
P231+232, P335+334, P370+378, P402+404[28]
NFPA 704
Flammability code 3: Liquids and solids that can be ignited under almost all ambient temperature conditions. Flash point between 23 and 38 °C (73 and 100 °F). E.g., gasolineHealth code 0: Exposure under fire conditions would offer no hazard beyond that of ordinary combustible material. E.g., sodium chlorideReactivity code 1: Normally stable, but can become unstable at elevated temperatures and pressures. E.g., calciumSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g., cesium, sodiumNFPA 704 four-colored diamond
3
0
1

Because of the high reactivity of the metal, toxicological data are available only for compounds.[29] Soluble barium compounds are poisonous. In low doses, barium ions act as a muscle stimulant, and higher doses affect the nervous system, causing cardiac irregularities, tremors, weakness, anxiety, shortness of breath, and paralysis. This toxicity may be caused by Ba2+ blocking potassium ion channels, which are critical to the proper function of the nervous system.[30] Other organs damaged by water-soluble barium compounds (i.e., barium ions) are the eyes, immune system, heart, respiratory system, and skin[29] causing, for example, blindness and sensitization.[29]

Barium is not carcinogenic[29] and does not bioaccumulate.[31][32] Inhaled dust containing insoluble barium compounds can accumulate in the lungs, causing a benign condition called baritosis.[33] The insoluble sulfate is nontoxic and is not classified as a dangerous goods in transport regulations.[7]:9

To avoid a potentially vigorous chemical reaction, barium metal is kept in an argon atmosphere or under mineral oils. Contact with air is dangerous and may cause ignition. Moisture, friction, heat, sparks, flames, shocks, static electricity, and exposure to oxidizers and acids should be avoided. Anything that may contact with barium should be electrically grounded. Anyone who works with the metal should wear pre-cleaned non-sparking shoes, flame-resistant rubber clothes, rubber gloves, apron, goggles, and a gas mask. Smoking in the working area is forbidden. Thorough washing is required after handling barium.[29]

See also

References

  1. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. p. 112. ISBN 0-08-037941-9.
  2. ^ Meija, J.; et al. (2016). "Atomic weights of the elements 2013 (IUPAC Technical Report)". Pure and Applied Chemistry. 88 (3): 265–91. doi:10.1515/pac-2015-0305.
  3. ^ Lide, D. R., ed. (2005). "Magnetic susceptibility of the elements and inorganic compounds". CRC Handbook of Chemistry and Physics (PDF) (86th ed.). Boca Raton (FL): CRC Press. ISBN 0-8493-0486-5.
  4. ^ Weast, Robert (1984). CRC, Handbook of Chemistry and Physics. Boca Raton, Florida: Chemical Rubber Company Publishing. pp. E110. ISBN 0-8493-0464-4.
  5. ^ "Baryte: Baryte mineral information and data". www.mindat.org.
  6. ^ "International Mineralogical Association - Commission on New Minerals, Nomenclature and Classification".
  7. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah Kresse, Robert; Baudis, Ulrich; Jäger, Paul; Riechers, H. Hermann; Wagner, Heinz; Winkler, Jocher; Wolf, Hans Uwe (2007). "Barium and Barium Compounds". In Ullman, Franz. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. CiteSeerX 10.1.1.150.8925. doi:10.1002/14356007.a03_325.pub2. ISBN 978-3527306732.
  8. ^ a b c d e f g h i j k l m n Lide, D. R. (2004). CRC Handbook of Chemistry and Physics (84th ed.). Boca Raton (FL): CRC Press. ISBN 978-0-8493-0484-2.
  9. ^ Müller, Hermann (2007). "Sulfuric Acid and Sulfur Trioxide". In Ullman, Franz. Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH. CiteSeerX 10.1.1.150.8925. doi:10.1002/14356007.a03_325.pub2. ISBN 978-3527306732.
  10. ^ Ferro, Riccardo & Saccone, Adriana (2008). Intermetallic Chemistry. Elsevier. p. 355. ISBN 978-0-08-044099-6.
  11. ^ Slowinski, Emil J.; Masterton, William L. (1990). Qualitative analysis and the properties of ions in aqueous solution (2nd ed.). Saunders. p. 87. ISBN 978-0-03-031234-2.
  12. ^ a b c De Laeter, J. R.; Böhlke, J. K.; De Bièvre, P.; Hidaka, H.; Peiser, H. S.; Rosman, K. J. R.; Taylor, P. D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
  13. ^ a b c Georges, Audi; Bersillon, O.; Blachot, J.; Wapstra, A. H. (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A. 729 (1): 3–128. Bibcode:2003NuPhA.729....3A. CiteSeerX 10.1.1.615.5152. doi:10.1016/j.nuclphysa.2003.11.001.
  14. ^ a b Krebs, Robert E. (2006). The history and use of our earth's chemical elements: a reference guide. Greenwood Publishing Group. p. 80. ISBN 978-0-313-33438-2.
  15. ^ Davy, H. (1808) "Electro-chemical researches on the decomposition of the earths; with observations on the metals obtained from the alkaline earths, and on the amalgam procured from ammonia," Philosophical Transactions of the Royal Society of London, vol. 98, pp. 333–370.
  16. ^ "Masthead". Annalen der Chemie und Pharmacie. 93 (3): fmi. 1855. doi:10.1002/jlac.18550930301.
  17. ^ Wagner, Rud; Neubauer, C.; Deville, H. Sainte-Claire; Sorel; Wagenmann, L.; Techniker; Girard, Aimé (1856). "Notizen". Journal für Praktische Chemie. 67: 490–508. doi:10.1002/prac.18560670194.
  18. ^ Jensen, William B. (2009). "The Origin of the Brin Process for the Manufacture of Oxygen". Journal of Chemical Education. 86 (11): 1266. Bibcode:2009JChEd..86.1266J. doi:10.1021/ed086p1266.
  19. ^ Ihde, Aaron John (1984-04-01). The development of modern chemistry. p. 681. ISBN 978-0-486-64235-2.
  20. ^ Schott, G. D. (1974). "Some Observations on the History of the Use of Barium Salts in Medicine". Med. Hist. 18 (1): 9–21. doi:10.1017/S0025727300019190. PMC 1081520. PMID 4618587.
  21. ^ Miller, M. M. Barite. USGS.gov
  22. ^ Jones, Chris J. & Thornback, John (2007). Medicinal applications of coordination chemistry. Royal Society of Chemistry. p. 102. ISBN 978-0-85404-596-9.
  23. ^ Russell, Michael S. & Svrcula, Kurt (2008). Chemistry of Fireworks. Royal Society of Chemistry. p. 110. ISBN 978-0-85404-127-5.
  24. ^ Brent, G. F.; Harding, M. D. (1995). "Surfactant coatings for the stabilization of barium peroxide and lead dioxide in pyrotechnic compositions". Propellants, Explosives, Pyrotechnics. 20 (6): 300. doi:10.1002/prep.19950200604.
  25. ^ Wadhawan, Vinod K. (2000). Introduction to ferroic materials. CRC Press. p. 740. ISBN 978-90-5699-286-6.
  26. ^ "Crystran Ltd. Optical Component Materials". crystran.co.uk. Retrieved 2010-12-29.
  27. ^ Wu, M.; Ashburn, J.; Torng, C.; Hor, P.; Meng, R.; Gao, L.; Huang, Z.; Wang, Y.; Chu, C. (1987). "Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure". Physical Review Letters. 58 (9): 908–910. Bibcode:1987PhRvL..58..908W. doi:10.1103/PhysRevLett.58.908. PMID 10035069.
  28. ^ "Barium 237094".
  29. ^ a b c d e Barium. ESPI Metals. Retrieved 2012-06-11.
  30. ^ Patnaik, Pradyot (2003). Handbook of inorganic chemicals. pp. 77–78. ISBN 978-0-07-049439-8.
  31. ^ "Toxicity Profiles, Ecological Risk Assessment". US EPA. Archived from the original on 2010-01-10. Retrieved 2012-06-16.
  32. ^ Moore, J. W. (1991). Inorganic Contaminants of Surface Waters, Research and Monitoring Priorities. New York: Springer-Verlag.
  33. ^ Doig, A. T. (1976). "Baritosis: a benign pneumoconiosis". Thorax. 31 (1): 30–9. doi:10.1136/thx.31.1.30. PMC 470358. PMID 1257935.

External links

Alkaline earth metal

The alkaline earth metals are six chemical elements in group 2 of the periodic table. They are beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra). The elements have very similar properties: they are all shiny, silvery-white, somewhat reactive metals at standard temperature and pressure.Structurally, they have in common an outer s- electron shell which is full;

that is, this orbital contains its full complement of two electrons, which these elements readily lose to form cations with charge +2, and an oxidation state of +2.All the discovered alkaline earth metals occur in nature, although radium occurs only through the decay chain of uranium and thorium and not as a primordial element. Experiments have been conducted to attempt the synthesis of element 120, the next potential member of the group, but they have all met with failure.

Barium chloride

Barium chloride is the inorganic compound with the formula BaCl2. It is one of the most common water-soluble salts of barium. Like most other barium salts, it is white, toxic, and imparts a yellow-green coloration to a flame. It is also hygroscopic, converting first to the dihydrate BaCl2(H2O)2. It has limited use in the laboratory and industry.

Barium fluoride

Barium fluoride (BaF2) is a chemical compound of barium and fluorine and is a salt. It is a solid which can be a transparent crystal. It occurs in nature as the mineral frankdicksonite.

Barium nitrate

Barium nitrate is the inorganic compound with the chemical formula Ba(NO3)2. It, like most barium salts, is colorless, toxic, and water-soluble. It burns with a green flame and is an oxidizer; the compound is commonly used in pyrotechnics.

Barium oxide

Barium oxide, BaO, is a white hygroscopic non-flammable compound. It has a cubic structure and is used in cathode ray tubes, crown glass, and catalysts. It is harmful to human skin and if swallowed in large quantity causes irritation. Excessive quantities of barium oxide may lead to death.

It is prepared by heating barium carbonate with coke, carbon black or tar or by thermal decomposition of barium nitrate.

Barium star

Barium stars are spectral class G to K giants, whose spectra indicate an overabundance of s-process elements by the presence of singly ionized barium, Ba II, at λ 455.4 nm. Barium stars also show enhanced spectral features of carbon, the bands of the molecules CH, CN and C2. The class was originally recognized and defined by William P. Bidelman and Philip Keenan.Observational studies of their radial velocity suggested that all barium stars are binary stars Observations in the ultraviolet using International Ultraviolet Explorer detected white dwarfs in some barium star systems.

Barium stars are believed to be the result of mass transfer in a binary star system. The mass transfer occurred when the now-observed giant star was on the main sequence. Its companion, the donor star, was a carbon star on the asymptotic giant branch (AGB), and had produced carbon and s-process elements in its interior. These nuclear fusion products were mixed by convection to its surface. Some of that matter "polluted" the surface layers of the main-sequence star as the donor star lost mass at the end of its AGB evolution, and it subsequently evolved to become a white dwarf. These systems are being observed at an indeterminate amount of time after the mass transfer event, when the donor star has long been a white dwarf, and the "polluted" recipient star has evolved to become a red giant.During its evolution, the barium star will at times be larger and cooler than the limits of the spectral types G or K. When this happens, ordinarily such a star is spectral type M, but its s-process excesses may cause it to show its altered composition as another spectral peculiarity. While the star's surface temperature is in the M-type regime, the star may show molecular features of the s-process element zirconium, zirconium oxide (ZrO) bands. When this happens, the star will appear as an "extrinsic" S star.

Historically, barium stars posed a puzzle, because in standard stellar evolution theory G and K giants are not far enough along in their evolution to have synthesized carbon and s-process elements and mix them to their surfaces. The discovery of the stars' binary nature resolved the puzzle, putting the source of their spectral peculiarities into a companion star which should have produced such material. The mass transfer episode is believed to be quite brief on an astronomical timescale. The mass transfer hypothesis predicts that there should be main-sequence stars with barium star spectral peculiarities. At least one such star, HR 107, is known.Prototypical barium stars include zeta Capricorni, HR 774, and HR 4474.

The CH stars are Population II stars with similar evolutionary state, spectral peculiarities, and orbital statistics, and are believed to be the older, metal-poor analogs of the barium stars.

Barium sulfate

Barium sulfate (or sulphate) is the inorganic compound with the chemical formula BaSO4. It is a white crystalline solid that is odorless and insoluble in water. It occurs as the mineral barite, which is the main commercial source of barium and materials prepared from it. The white opaque appearance and its high density are exploited in its main applications.

Barium sulfide

Barium sulfide is the inorganic compound with the formula BaS. BaS is an important precursor to other barium compounds including BaCO3 and the pigment lithopone, ZnS/BaSO4. Like other chalcogenides of the alkaline earth metals, BaS is a short wavelength emitter for electronic displays. It is colorless, although like many sulfides, it is commonly obtained in impure colored forms.

Barium titanate

Barium titanate is an inorganic compound with chemical formula BaTiO3. Barium titanate appears white as a powder and is transparent when prepared as large crystals. It is a ferroelectric ceramic material that exhibits the photorefractive effect and piezoelectric properties. It is used in capacitors, electromechanical transducers and nonlinear optics.

Baryte

Baryte or barite (UK: , ) is a mineral consisting of barium sulfate (BaSO4). Baryte is generally white or colorless, and is the main source of barium. The baryte group consists of baryte, celestine (strontium sulfate), anglesite (lead sulfate), and anhydrite (calcium sulfate). Baryte and celestine form a solid solution (Ba,Sr)SO4.

Double-contrast barium enema

A double-contrast barium enema is a form of contrast radiography in which x-rays of the colon and rectum are taken using two forms of contrast to make the structures easier to see. A liquid containing barium (that is, a radiocontrast agent) is put into the rectum. Barium is a silver-white metallic compound that outlines the colon and rectum on an x-ray and helps show abnormalities. Air is also put into the rectum and colon to further enhance the x-ray.

Double-contrast barium enemas are less invasive than a colonoscopy and have comparatively fewer issues in a viable large bowel.

Feldspar

Feldspars (KAlSi3O8 – NaAlSi3O8 – CaAl2Si2O8) are a group of rock-forming tectosilicate minerals that make up about 41% of the Earth's continental crust by weight.Feldspars crystallize from magma as veins in both intrusive and extrusive igneous rocks and are also present in many types of metamorphic rock. Rock formed almost entirely of calcic plagioclase feldspar is known as anorthosite. Feldspars are also found in many types of sedimentary rocks.

Glossary of chemical formulas

This is a list of common chemical compounds with chemical formulas and CAS numbers, indexed by formula. This complements alternative listing at inorganic compounds by element. There is no complete list of chemical compounds since by nature the list would be infinite.

Note: There are elements for which spellings may differ, such as aluminum/ aluminium, sulfur/ sulphur, and caesium/ cesium.

Isotopes of barium

Naturally occurring barium (56Ba) is a mix of six stable isotopes and one very long-lived radioactive primordial isotope, barium-130, recently identified as being unstable by geochemical means (from analysis of the presence of its daughter xenon-130 in rocks). This nuclide decays by double-electron capture (absorbing two electrons and emitting two neutrinos); with a half-life of (0.5–2.7)×1021 years (about 1011 times the age of the universe).

There are a total of thirty-three known radioisotopes in addition to 130Ba, but most of these are highly radioactive with half-lives in the several millisecond to several minute range. The only notable exceptions are 133Ba, which has a half-life of 10.51 years, 131Ba (11.5 days), and 137mBa (2.55 minutes), which is the decay product of 137Cs (30.17 years, and a common fission product).

Barium-114 is predicted to undergo cluster decay, emitting a nucleus of stable 12C to produce 102Sn. However this decay is not yet observed; the upper limit on the branching ratio of such decay is 0.0034%.

Lower gastrointestinal series

A lower gastrointestinal series is a medical procedure used to examine and diagnose problems with the human colon (large intestine). Radiographs (X-ray pictures) are taken while barium sulfate, a radiocontrast agent, fills the colon via an enema through the rectum.

The term barium enema usually refers to a lower gastrointestinal series, although enteroclysis (an upper gastrointestinal series) is often called a small bowel barium enema.

Radiocontrast agent

Radiocontrast agents are substances used to enhance the visibility of internal structures in X-ray-based imaging techniques such as computed tomography (contrast CT), projectional radiography, and fluoroscopy. Radiocontrast agents are typically iodine, barium-sulphate or gadolinium based compounds. They absorb external X-rays, resulting in decreased exposure on the X-ray detector. This is different from radiopharmaceuticals used in nuclear medicine which emit radiation.

Magnetic resonance imaging (MRI) functions through different principles and thus utilizes different contrast agents. These compounds work by altering the magnetic properties of nearby hydrogen nuclei.

Radium

Radium is a chemical element with symbol Ra and atomic number 88. It is the sixth element in group 2 of the periodic table, also known as the alkaline earth metals. Pure radium is silvery-white, but it readily reacts with nitrogen (rather than oxygen) on exposure to air, forming a black surface layer of radium nitride (Ra3N2). All isotopes of radium are highly radioactive, with the most stable isotope being radium-226, which has a half-life of 1600 years and decays into radon gas (specifically the isotope radon-222). When radium decays, ionizing radiation is a product, which can excite fluorescent chemicals and cause radioluminescence.

Radium, in the form of radium chloride, was discovered by Marie and Pierre Curie in 1898. They extracted the radium compound from uraninite and published the discovery at the French Academy of Sciences five days later. Radium was isolated in its metallic state by Marie Curie and André-Louis Debierne through the electrolysis of radium chloride in 1911.In nature, radium is found in uranium and (to a lesser extent) thorium ores in trace amounts as small as a seventh of a gram per ton of uraninite. Radium is not necessary for living organisms, and adverse health effects are likely when it is incorporated into biochemical processes because of its radioactivity and chemical reactivity. Currently, other than its use in nuclear medicine, radium has no commercial applications; formerly, it was used as a radioactive source for radioluminescent devices and also in radioactive quackery for its supposed curative powers. Today, these former applications are no longer in vogue because radium's toxicity has since become known, and less dangerous isotopes are used instead in radioluminescent devices.

Upper gastrointestinal series

An upper gastrointestinal series, also called an upper gastrointestinal study or contrast radiography of the upper gastrointestinal tract, is a series of radiographs used to examine the gastrointestinal tract for abnormalities. A contrast medium, usually a radiocontrast agent such as barium sulfate mixed with water, is ingested or instilled into the gastrointestinal tract, and X-rays are used to create radiographs of the regions of interest. The barium enhances the visibility of the relevant parts of the gastrointestinal tract by coating the inside wall of the tract and appearing white on the film. This in combination with other plain radiographs allows for the imaging of parts of the upper gastrointestinal tract such as the pharynx, larynx, esophagus, stomach, and small intestine such that the inside wall lining, size, shape, contour, and patency are visible to the examiner. With fluoroscopy, it is also possible to visualize the functional movement of examined organs such as swallowing, peristalsis, or sphincter closure. Depending on the organs to be examined, barium radiographs can be classified into barium swallow, barium meal, barium follow-through, and enteroclysis (small bowel enema). To further enhance the quality of images, air or gas is sometimes introduced into the gastrointestinal tract in addition to barium, and this procedure is called double-contrast imaging. In this case the gas is referred to as the negative contrast medium. Traditionally the images produced with barium contrast are made with plain-film radiography, but computed tomography is also used in combination with barium contrast, in which case the procedure is called CT enterography.

Yttrium barium copper oxide

Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds, famous for displaying high-temperature superconductivity. It includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen (77 K) at about 90 K. Many YBCO compounds have the general formula YBa2Cu3O7−x (also known as Y123), although materials with other Y:Ba:Cu ratios exist, such as YBa2Cu4Oy (Y124) or Y2Ba4Cu7Oy (Y247).

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.