Audio mixing (recorded music)

In sound recording and reproduction, audio mixing is the process of combining multitrack recordings into a final mono, stereo or surround sound product. These tracks that are blended together are done so by using various processes such as equalization and compression.[1] Audio mixing techniques and approaches can vary widely, and due to the skill-level or intent of the mixer, can greatly affect the qualities of the sound recording.[2]

Audio mixing techniques largely depend on music genres and the quality of sound recordings involved.[3] The process is generally carried out by a mixing engineer, though sometimes the record producer or recording artist may assist. After mixing, a mastering engineer prepares the final product for production.

Audio mixing may be performed on a mixing console or digital audio workstation.

Sony DMXR100
Digital Mixing Console Sony DMX R-100 used in project studios

History

In the late 19th century, Thomas Edison and Emile Berliner developed the first recording machines. The recording and reproduction process itself was completely mechanical with little or no electrical parts. Edison's phonograph cylinder system utilized a small horn terminated in a stretched, flexible diaphragm attached to a stylus which cut a groove of varying depth into the malleable tin foil of the cylinder. Emile Berliner's gramophone system recorded music by inscribing spiraling lateral cuts onto a vinyl disc.[4]

Electronic recording became more widely used during the 1920s. It was based on the principles of electromagnetic transduction. The possibility for a microphone to be connected remotely to a recording machine meant that microphones could be positioned in more suitable places. The process was improved when outputs of the microphones could be mixed before being fed to the disc cutter, allowing greater flexibility in the balance.[5]

Before the introduction of multitrack recording, all sounds and effects that were to be part of a record were mixed at one time during a live performance. If the recorded mix wasn't satisfactory, or if one musician made a mistake, the selection had to be performed over until the desired balance and performance was obtained. With the introduction of multi-track recording, the production of a modern recording changed into one that generally involves three stages: recording, overdubbing, and mixing.[6]

Modern mixing emerged with the introduction of commercial multi-track tape machines, most notably when 8-track recorders were introduced during the 1960s. The ability to record sounds into separate channels meant that combining and treating these sounds could be postponed to the mixing stage.[7]

In the 1980s, home recording and mixing became more efficient. The 4-track Portastudio was introduced in 1979. Bruce Springsteen released the album Nebraska in 1982 using one. The Eurythmics topped the charts in 1983 with the song "Sweet Dreams (Are Made of This)", recorded by band member Dave Stewart on a makeshift 8-track recorder.[8] In the mid-to-late 1990s, computers replaced tape-based recording for most home studios, with the Power Macintosh proving popular.[9] At the same time, digital audio workstations, first used in the mid-1980s, began to replace tape in many professional recording studios.

Equipment

Mixing consoles

Mixing Console Discom2
A simple mixing console

A mixer (mixing console, mixing desk, mixing board, or software mixer) is the operational heart of the mixing process.[10] Mixers offer a multitude of inputs, each fed by a track from a multitrack recorder. Mixers typically have 2 main outputs (in the case of two-channel stereo mixing) or 8 (in the case of surround).

Mixers offer three main functionalities.[10][11]

  1. Summing signals together, which is normally done by a dedicated summing amplifier or, in the case of a digital mixer, by a simple algorithm.
  2. Routing of source signals to internal buses or external processing units and effects.
  3. On-board processors with equalizers and compressors.

Mixing consoles can be large and intimidating due to the exceptional number of controls. However, because many of these controls are duplicated (e.g. per input channel), much of the console can be learned by studying one small part of it. The controls on a mixing console will typically fall into one of two categories: processing and configuration. Processing controls are used to manipulate the sound. These can vary in complexity, from simple level controls, to sophisticated outboard reverberation units. Configuration controls deal with the signal routing from the input to the output of the console through the various processes.[12]

Digital audio workstations (DAW) can perform many mixing features in addition to other processing. An audio control surface gives a DAW the same user interface as a mixing console. The distinction between a large console and a DAW equipped with a control surface is that a digital console will typically consist of dedicated digital signal processors for each channel. DAWs can dynamically assign resources like digital audio signal processing power, but may run out if too many signal processes are in simultaneous use. This overload can often be solved by increasing the capacity of the DAW.[12]

Outboard gear and plugins

Outboard gear (analog) and software plugins (digital) can be inserted into the signal path to extend processing possibilities. Outboard gear and plugins fall into two main categories:[10][11]

  • Processors – these devices are normally connected in series to the signal path, so the input signal is replaced with the processed signal. Examples include equalization, dynamic processing (compressors, gates, expanders, and limiters). However, some processors are also used in parallel, as is the case in techniques such as parallel compression/limiting (a.k.a. New York compression) and sidechain equalization.
  • Effects – these can be considered as any unit that has an effect upon the signal, the term is mostly used to describe units that are connected in parallel to the signal path, and therefore they add to the existing sounds but do not replace them. Examples of common effects include reverb and delay. Some effects are more commonly used in series like chorus, flange, and vibrato.

Multiple level controls in signal path

A single signal can pass through a large number of level controls – such as an individual channel fader, subgroup master fader, master fader and monitor volume control. According to audio engineer Tomlinson Holman, problems are created due to the multiplicity of the controls. Each and every console has their own dynamic range and it is important to utilize this correctly to avoid excessive noise or distortions. Attacking this problem – of the correct setting for the variety of controls - can be accomplished relatively quickly. Holman refers to the scale of the control as a clue for the solution of this problem. With 0 dB being the nominal setting of the controls, many have a "gain in hand," which goes above 0 dB. This means that one can turn it up from the nominal setting to have something that sounds clear. Other controls, such as sub masters and master level controls, are used for slight trims to the overall section-by-section balance or for the main fade-ins and fade-outs of the overall mix. [12]:174

Processes that affect levels

  • Faders – used to attenuate or boost the level of signals.
  • Pan pots – A fundamental part of configuration in recording console is panning. Pan pots are devices that place sound among the channels: L, C, R, LS, and RS.[12]:174 They are also used to pan signals to the left or right and in surround, to the back or front.
  • Compressors – A device which attenuates the volume of a track when its volume passes beyond a set threshold. The primary use of a compressor in mixing is to limit the dynamic range of a track. Compressors are equipped with a number of controls including the threshold, the amount of compression (e.g. Ratio), and how quickly or slowly the compressor acts (e.g. Attack and Release).[12]:175
  • Expansion – The Expansion device does exactly the opposite of what the compressor does. It increases the volume range of a source and may do so across a wide dynamic range or may be restricted to a narrower region by control functions. Restricting expansion to only low-level sounds helps to minimize noise. This function is often referred to as downward expansion, noise gating, or keying and reduces the level below a threshold set by a specific control. Noise gates have numerous audible problems. (e.g.: In a dialog recording with air conditioning noise in the background, the threshold of the noise gate may remove the air conditioner sound between lines of dialog which can create an exaggerated difference that could be much more noticeable than if the audio had been left unprocessed.)[12]:176
  • Limiters – A limiter is a compressor with a Ratio of 10:1 or higher. Often referred to as a "brick-wall" limiter, some limiters have extremely high (or infinite) Ratios meaning that little to no audio surpasses the threshold. Limiters are most commonly used in mixing to strictly limit the maximum output volume of a track, buss, or overall mix. Limiters are especially useful in digital mixing to avoid clipping.[12]:176

These items discussed thus far affect the level of audio signal. The most commonly used process is level control, which is used even on the simplest of mixers.[12]:177

Processes that affect frequency response

Processes that primarily affect the frequency response of the signal are generally seen as second in importance to level control. These processes clean the audio signal, enhance interchangeability between other signals, adjust for the loudness effect, and generally create a much more pleasant or deliberately worse sound. There are two principle frequency response processes – equalization and filtering.[12]:177

  • Equalizers – The simplest description of EQ is the process of altering the frequency response in a manner similar to what tone controls do on a stereo system. Professional EQs dissect the audio spectrum into three or four parts which may be called the low-bass, mid-bass, mid-treble, and high frequency controls.[12]:178
  • Filters – Filters are used to eliminate certain frequencies from the output. Filters strip off the any part of the audio spectrum. There are various types of filters. A high-pass filter (low-cut) is used to remove excessive room noise at low frequencies. A low-pass filter (high-cut) is used to help isolate a low frequency instrument playing in a studio along with others. And a band-pass filter is a combination of high- and low-pass filters, also known as a telephone filter (because a sound lacking in high and low frequencies resembles the quality of sound transmitted and received by telephone).[13]

Processes that affect time

  • Reverbs – Reverbs are used to simulate boundary reflections created in a real room, adding a sense of space and depth to otherwise 'dry' recordings. Another use is to distinguish among auditory objects; all sound having one reverberant character will be categorized together by human hearing in a process called auditory streaming. This is an important feature in layering sound, in depth, from in front of the speaker to behind it.[12]:181

Before the advent of electronic reverb and echo processing, physical means were used to generate the effects. An echo chamber, a large reverberant room, could be equipped with a speaker and at least two spaced microphones. Signals were then sent to the speaker and the reverberation generated in the room was picked up by the two microphones, constituting a "stereo return".[13]

Processes that affect space

  • Panning – Static panning is used to control the location of phantom sources. This is achieved by leveraging a panning law that calculates the perceived location from the balance of loudspeakers' signal volumes or their relative time shift. Source locations can be located at any location between a pair of frontal or rear loudspeakers. Dynamic panning alters the volume or time balance of the loudspeaker pair to create the impression of moving sources.
  • Pseudostereophony – Pseudostereophony techniques are applied to broaden the sound image. This way the apparent source width or the degree of listener envelopment is increased. A number of pseudostereo recording and mixing techniques are known from the viewpoint of audio engineers[14][15] and researchers.[16][17]

Mixdown

The mixdown process converts a program with a multiple-channel configuration into a program with fewer channels. Common examples include downmixing from 5.1 surround sound to stereo, and stereo to mono. In the former case, the left and right surround channels are blended with the left and right front channels. The centre channel is blended equally with the left and right channels. The LFE channel is either mixed with the front signals or not used. Because these are common scenarios, it is common practice to verify the sound of such downmixes during the production process to ensure stereo and mono compatibility.

The alternative channel configuration can be explicitly authored during the production process with multiple channel configurations provided for distribution. For example, a stereo mix can be put on DVDAudio discs or Super Audio CDs along with the surround mix.[18] Alternatively, the program can be automatically downmixed by the end consumer's audio system. For example, a DVD player or sound card may downmix a surround sound program to stereophonic sound (two channels) for playback through two speakers.

Mixing in surround sound

Any device having a number of multiple bus consoles (typically having eight or more buses) can be used to create a 5.1 surround sound mix, but this may be frustrating if the device is not designed to facilitate signal routing, panning and processing in a surround sound environment. Whether working in an analog hardware, digital hardware, or DAW "in-the-box" mixing environment, the ability to pan mono or stereo sources and place effects in the 5.1 soundscape and monitor multiple output formats without difficulty can make the difference between a successful or compromised mix.[19] Mixing in surround is very similar to mixing in stereo except that there are more speakers, placed to "surround" the listener. In addition to the horizontal panoramic options available in stereo, mixing in surround lets the mix engineer pan sources within a much wider and more enveloping environment. In a surround mix, sounds can appear to originate from many more or almost any direction depending on the number of speakers used, their placement and how audio is processed.

There are two common ways to approach mixing in surround:

  • Expanded Stereo – With this approach, the mix will still sound very much like an ordinary stereo mix. Most of the sources such as the instruments of a band, the vocals, and so on, will still be panned between the left and right speakers, but lower levels might also be sent to the rear speakers in order to create a wider stereo image, while lead sources such as the main vocal might be sent to the center speaker. Additionally, reverb and delay effects will often be sent to the rear speakers to create a more realistic sense of being in a real acoustic space. In the case of mixing a live recording that was performed in front of an audience, signals recorded by microphones aimed at, or placed among the audience will also often be sent to the rear speakers to make the listener feel as if he or she is actually a part of the audience.
  • Complete Surround/All speakers are treated equally – Instead of following the traditional ways of mixing in stereo, this much more liberal approach lets the mix engineer do anything he or she wants. Instruments can appear to originate from anywhere, or even spin around the listener. When done appropriately and with taste, interesting sonic experiences can be achieved, as was the case with James Guthrie's 5.1 mix of Pink Floyd's The Dark Side of the Moon, albeit with input from the band.[20] This is a much different mix from the 1970s quadrophonic mix.

Naturally, these two approaches can be combined any way the mix engineer sees fit. Recently, a third approach to mixing in surround was developed by surround mix engineer Unne Liljeblad.

  • MSS – Multi Stereo Surround[21] – This approach treats the speakers in a surround sound system as a multitude of stereo pairs. For example, a stereo recording of a piano, created using two microphones in an ORTF configuration, might have its left channel sent to the left rear speaker and its right channel sent to the center speaker. The piano might also be sent to a reverb having its left and right outputs sent to the left front speaker and right rear speaker, respectively. Additional elements of the song, such as an acoustic guitar recorded in stereo, might have its left and right channels sent to a different stereo pair such as the left front speaker and the right rear speaker with its reverb returning to yet another stereo pair, the left rear speaker and the center speaker. Thus, multiple clean stereo recordings surround the listener without the smearing comb-filtering effects that often occur when the same or similar sources are sent to multiple speakers.

References

  1. ^ "Art of Mixing, Berklee College of Music". Retrieved 2017-09-02.
  2. ^ Strong, Jeff (2009). Home Recording For Musicians For Dummies (Third ed.). Indianapolis, Indiana: Wiley Publishing, Inc. p. 249.
  3. ^ Hepworth-Sawyrr, Russ (2009). From Demo to Delivery. The production process. Oxford, United Kingdom: Focal Press. p. 109.
  4. ^ Rumsey, Francis; McCormick, Tim (2009). Sound and Recording (6th ed.). Oxford, United Kingdom: Elsevier Inc. p. 168. ISBN 978-0-240-52163-3.
  5. ^ Rumsey, Francis; McCormick, Tim (2009). Sound and Recording (6th ed.). Oxford, United Kingdom: Elsevier Inc. p. 169. ISBN 978-0-240-52163-3.
  6. ^ Huber, David Miles (2001). Modern Recording Techniques. Focal Press. p. 321. ISBN 978-0240804569.
  7. ^ "The emergence of multitrack recording". no publication date give. Retrieved June 17, 2018. Check date values in: |date= (help)
  8. ^ "Eurythmics: Biography". Artist Directory. Rolling Stone. 2010. Retrieved March 20, 2010.
  9. ^ "Studio Recording Software: Personal And Project Audio Adventures". studiorecordingsoftware101.com. 2008. Archived from the original on February 8, 2011. Retrieved March 20, 2010.
  10. ^ a b c White, Paul (2003). Creative Recording (2nd ed.). Sanctuary Publishing. p. 335. ISBN 978-1-86074-456-3.
  11. ^ a b Izhaki, Roey (2008). Mixing Audio. Focal Press. p. 566. ISBN 978-0-240-52068-1.
  12. ^ a b c d e f g h i j k Holman, Tomlinson (2010). Sound for Film and Television (3rd ed.). Oxford, United Kingdom: Elsevier Inc. ISBN 978-0-240-81330-1.
  13. ^ a b Rumsey, Francis; McCormick, Tim (2009). Sound and Recording (6th ed.). Oxford, United Kingdom: Elsevier Inc. p. 390. ISBN 978-0-240-52163-3.
  14. ^ Levinit, Daniel J. (2004). "Instrument (and vocal) recording tips and tricks". In Greenbaum, Ken; Barzel, Ronen. Audio Anecdotes. Natick: A K Peters. pp. 147–158.
  15. ^ Cabrera, Andrés (2011). "Pseudo-Stereo Techniques. Csound Implementations". CSound Journal. 2011 (14): Paper number 3. Retrieved 1 June 2018.
  16. ^ Faller, Christof (2005). Pseudostereophony Revisited (PDF). Audio Engineering Society Convention 118. Barcelona. Retrieved 1 June 2018.
  17. ^ Ziemer, Tim (2017). "Source Width in Music Production. Methods in Stereo, Ambisonics, and Wave Field Synthesis". In Schneider, Albrecht. Studies in Musical Acoustics and Psychoacoustics. Current Research in Systematic Musicology. 4. Cham: Springer. pp. 299–340. doi:10.1007/978-3-319-47292-8_10. ISBN 978-3-319-47292-8.
  18. ^ Bartlett, Bruce; Bartlett, Jenny (2009). Practical Recording Techniques (5th ed.). Oxford, United Kingdom: Focal Press. p. 484. ISBN 978-0-240-81144-4.
  19. ^ Huber, David Miles; Runstein, Robert (2010). Modern Recording Techniques (7th ed.). Oxford, United Kingdom: Focal Press. p. 559. ISBN 978-0-240-81069-0.
  20. ^ "Archived copy". Archived from the original on 2012-04-02. Retrieved 2011-11-12.CS1 maint: Archived copy as title (link)
  21. ^ "Surround Sound Mixing". www.mix-engineer.com. Retrieved 2010-01-12.

External links

Brian Vibberts

Brian Vibberts, a native of Portland, Connecticut, is an audio engineer who has been active since 1991. He is a 6-time Grammy Award winner, and has participated in the making of numerous albums that have resulted in Grammy Award nominations and winners. Also known by the nickname, "Dr Vibb," he has creatively recorded or mixed many multi-platinum artists in many genres, including Michael Jackson, Aerosmith, The Pussycat Dolls, Bon Jovi, Natasha Bedingfield, Green Day, Trace Adkins, Faith Hill, Toby Keith, Ice Cube, Boyz II Men, Elton John, Eric Clapton, Chick Corea, Brad Paisley, Ringo Starr, Mariah Carey and Tony Bennett.

Celebration Day (film)

Celebration Day is a concert film by the English rock band Led Zeppelin, recorded at the Ahmet Ertegun Tribute Concert on 10 December 2007, in London's O2 Arena. The film was given a limited theatrical run starting on 17 October 2012, and was released on several home audio and video formats on 19 November 2012. The performance, the film, and album releases have been widely praised.

East Infection

East Infection is an EP by Gogol Bordello released in 2005 by Rubric Records. Released prior to the album Gypsy Punks, it consists of leftover tracks from that album's sessions.

The title track remains a live favourite. "Ave. B" was rerecorded as "Avenue B" for Gypsy Punks, and "Strange Uncles From Abroad" was rerecorded as "My Strange Uncles From Abroad" for Super Taranta! "Copycat" is also notable for being the band's first song in the dub style. "Mala Vida" is a cover of a song by Mano Negra, and "Madagascar-Roumania" incorporates a traditional Romanian folk song, Tu Jésty Fáta a misspell of "Tu Esti Fata".

Final mix

Final mix may refer to:

"Final Mix", an episode of Code Lyoko.

Kingdom Hearts Final Mix, an alternate version of the Kingdom Hearts game.

Kingdom Hearts II Final Mix+, an alternate version of the Kingdom Hearts II game.

The product of Audio mixing (recorded music)

Geoff Foster

Geoff Foster is an English recording and mix engineer, best known for his work on numerous film scores.

Grammy Award for Best Remixed Recording, Non-Classical

The Grammy Award for Best Remixed Recording, Non-Classical is an honor presented to producers for quality remixed recordings at the Grammy Awards, a ceremony that was established in 1958 and originally called the Gramophone Awards. Honors in several categories are presented at the ceremony annually by the National Academy of Recording Arts and Sciences of the United States to "honor artistic achievement, technical proficiency and overall excellence in the recording industry, without regard to album sales or chart position".The award was first presented as the Grammy Award for Remixer of the Year, Non-Classical at the 40th Grammy Awards in 1998 to Frankie Knuckles. While the award was under this name, it was presented without specifying a work; when it shifted to its current name in 2002 works were named. According to the category description guide for the 52nd Grammy Awards, the award is presented "to recognize an individual(s) who takes previously recorded material and adds or alters it in such a way as to create a new and unique performance". The prize is given to the remixer(s), not the original artist(s).French DJ David Guetta, British producer Jacques Lu Cont, and Skrillex have each won the award twice. Three-time nominees are Steve "Silk" Hurley and Masters at Work, although neither artist has won the award. American producer Maurice Joshua was put forward in 2001 and 2003, and won in 2004 for Maurice's Soul Mix of "Crazy in Love". Frankie Knuckles, David Morales, Roger Sanchez, Hex Hector and Deep Dish have each been nominated for the award twice and have won it once.

Mixed

Mixed is the past tense of mix. It may also refer to:

Mixed breed (disambiguation), an animal whose parents are from different breeds or species

Mixed anomaly, in theoretical physics, an example of an anomaly

Mixed data sampling, an econometric model developed by Ghysels

Mixed Doubles (play), a 1969 play that was first performed

Mixed drink, see cocktail

Mixed feelings, ambivalence

Mixed forest, see Temperate broadleaf and mixed forests

Mixed gauge, see Dual gauge

Mixed government, a form of government that integrated facets of democracy, oligarchy, and monarchy

Mixed inhibition, a combination of two different types of reversible enzyme inhibition

Mixed language, a language that arises when two languages are in contact

Mixed martial arts, a combat sport in which two competitors use different martial arts for fighting

Mixed media, in visual art, refers to an artwork in the making of which more than one medium has been employed

Mixed metaphor, see Metaphor (language)

Mixed oxide fuel, see Nuclear reprocessing

Mixed reality, the merging of real world and virtual worlds

Mixed spices, a common sweet blend of spices

Mixed strategy, used in game theory economics

Mixtape, a home-made compilation of songs

Multiracial, a person who is of multiple races

Mixed (United Kingdom ethnicity category), an ethnicity category that has been used by the United Kingdom's Office for National Statistics since the 1991 Census

Mixed (album), a compilation album of two avant-garde jazz sessions featuring performances by the Cecil Taylor Unit and the Roswell Rudd Sextet

Mixed Terrain Cycle-Touring, cycling over a variety of surfaces and topography on a single route, with a single bicycle

Mixed anxiety-depressive disorder, a diagnostic category defining patients who suffer from both anxiety and depressive symptoms of limited and equal intensity accompanied by at least some autonomic features

Mixed model, a statistical model containing both fixed effects and random effects, that is mixed effects

Mixed train, a train that hauls both passenger and freight cars or wagons

Audio mixing (recorded music), the process of combining and balancing multiple sound sources

Mixed-sex education, e.g. as in "mixed school"

Record producer

A record producer or music producer oversees and manages the sound recording and production of a band or performer's music, which may range from recording one song to recording a lengthy concept album. A producer has many, varying roles during the recording process. They may gather musical ideas for the project, collaborate with the artists to select cover tunes or original songs by the artist/group, work with artists and help them to improve their songs, lyrics or arrangements.

A producer may also:

Select session musicians to play rhythm section accompaniment parts or solos

Co-write.

Propose changes to the song arrangements, and

Coach the singers and musicians in the studioThe producer typically supervises the entire process from preproduction, through to the sound recording and mixing stages, and, in some cases, all the way to the audio mastering stage. The producer may perform these roles themself, or help select the engineer, and provide suggestions to the engineer. The producer may also pay session musicians and engineers and ensure that the entire project is completed within the record label's budget.

The Best Mixes from the Album Debut for All the People Who Don't Buy White Labels

The Best Mixes from the Album Debut for All the People Who Don't Buy White Labels (stylized as the best mixes from the album-debut for all the people who don't buy white-labels) is the first EP and remix compilation by Björk, originally released through Polydor Records in September 1994. The collection contains six remixes of four tracks from Björk's 1993 album Debut ("Human Behaviour", "One Day", "Come to Me" and "The Anchor Song"). All of the songs were written solely by Björk except "Human Behaviour", which was co-written by Nellee Hooper. Björk and Hooper were also co-producers of the EP. "Human Behavior" was remixed by the English electronic group Underworld; the remaining five tracks are remixes by The Sabres of Paradise and Black Dog. The compilation has been re-issued through the record labels One Little Indian, PolyGram and PO Records (in Japan).

We Are the World 25 for Haiti (YouTube edition)

"We Are the World 25 for Haiti (YouTube Edition)" is a collaborative charity song and music video produced by singer-songwriter Lisa Lavie and posted to the YouTube video sharing website to raise money for victims of the January 12, 2010 Haiti earthquake.

The video was created as a response to the celebrity remake "We Are the World 25 for Haiti" that was released eight days earlier, and is a cover of "We Are the World", the 1985 charity single produced in support of famine relief in Africa.

Who Is She 2 U

"Who Is She 2 U" is a song by American recording artist Brandy Norwood from her fourth studio album, Afrodisiac (2004). It was written by Candice Nelson, Walter Millsap III and Timbaland, and produced by the latter two. Built around a sample from Leon Ware's 1977 song "Instant Love", as written by Ware and Jacqueline Hilliard, the song was released as the album's second and final North American single on July 27, 2004, and as its third single throughout Australia and Europe by March 21, 2005.

The single failed to make much impact on the charts around the world; it reached number 85 on the US Billboard Hot 100 and number 43 on the Hot R&B/Hip-Hop Songs chart. Elsewhere, the song reached the top fifty in the United Kingdom, while peaking within the top ten of the German Black Chart. The music video for "Who Is She 2 U", directed by Jake Nava, was filmed throughout Los Angeles, California in July 2004. It features Norwood as an all-knowing narrator, who is watching the central male character's every move throughout the city while catching him in the act with various women.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.