Atmospheric pressure

Atmospheric pressure, sometimes also called barometric pressure (after the sensor), is the pressure within the atmosphere of Earth (or that of another planet). The standard atmosphere (symbol: atm) is a unit of pressure defined as 1013.25 mbar (101.325 kPa), equivalent to 760 mmHg (torr), 29.9212 inches Hg, or 14.696 psi.[1] The atm unit is roughly equivalent to the mean sea-level atmospheric pressure on Earth, that is, the Earth's atmospheric pressure at sea level is approximately 1 atm.

In most circumstances atmospheric pressure is closely approximated by the hydrostatic pressure caused by the weight of air above the measurement point. As elevation increases, there is less overlying atmospheric mass, so that atmospheric pressure decreases with increasing elevation. Pressure measures force per unit area, with SI units of Pascals (1 pascal = 1 newton per square metre, 1 N/m2). On average, a column of air with a cross-sectional area of 1 square centimetre (cm2), measured from mean (average) sea level to the top of Earth's atmosphere, has a mass of about 1.03 kilogram and exerts a force or "weight" of about 10.1 newtons or 2.37 lbf, resulting in a pressure at sea level of about 10.1 N/cm2 or 101 kN/m2 (101 kilopascals, kPa). A column of air with a cross-sectional area of 1 in2 (6.45 cm2) would have a mass of about 6.65 kg and a weight of about 65.4 N or 14.7 lbf, resulting in a pressure of 10.1 N/cm2 or 14.7 lbf/in2.

Mechanism

Atmospheric pressure is caused by the gravitational attraction of the planet on the atmospheric gases above the surface, and is a function of the mass of the planet, the radius of the surface, and the amount and composition of the gases and their vertical distribution in the atmosphere.[2][3] It is modified by the planetary rotation and local effects such as wind velocity, density variations due to temperature and variations in composition.

Mean sea-level pressure

Day5pressureforecast
Map showing atmospheric pressure in mbar or hPa
Mslp-jja-djf
15-year average mean sea-level pressure for June, July, and August (top) and December, January, and February (bottom). ERA-15 re-analysis.
Aircraft altimeter
Kollsman-type barometric aircraft altimeter (as used in North America) displaying an altitude of 80 ft (24 m).

The mean sea-level pressure (MSLP) is the average atmospheric pressure at mean sea level. This is the atmospheric pressure normally given in weather reports on radio, television, and newspapers or on the Internet. When barometers in the home are set to match the local weather reports, they measure pressure adjusted to sea level, not the actual local atmospheric pressure.

The altimeter setting in aviation is an atmospheric pressure adjustment.

Average sea-level pressure is 1013.25 mbar (101.325 kPa; 29.921 inHg; 760.00 mmHg). In aviation, weather reports (METAR), QNH is transmitted around the world in millibars or hectopascals (1 hectopascal = 1 millibar), except in the United States, Canada, and Colombia where it is reported in inches of mercury (to two decimal places). The United States and Canada also report sea-level pressure SLP, which is adjusted to sea level by a different method, in the remarks section, not in the internationally transmitted part of the code, in hectopascals or millibars.[4] However, in Canada's public weather reports, sea level pressure is instead reported in kilopascals.[5]

In the US weather code remarks, three digits are all that are transmitted; decimal points and the one or two most significant digits are omitted: 1013.2 mbar (101.32 kPa) is transmitted as 132; 1000.0 mbar (100.00 kPa) is transmitted as 000; 998.7 mbar is transmitted as 987; etc. The highest sea-level pressure on Earth occurs in Siberia, where the Siberian High often attains a sea-level pressure above 1050 mbar (105 kPa; 31 inHg), with record highs close to 1085 mbar (108.5 kPa; 32.0 inHg). The lowest measurable sea-level pressure is found at the centers of tropical cyclones and tornadoes, with a record low of 870 mbar (87 kPa; 26 inHg) (see Atmospheric pressure records).

Surface pressure

Surface pressure is the atmospheric pressure at a location on Earth's surface (terrain and oceans). It is directly proportional to the mass of air over that location.

For numerical reasons, atmospheric models such as general circulation models (GCMs) usually predict the nondimensional logarithm of surface pressure.

The average value of surface pressure on Earth is 985 hPa.[6] This is in contrast to mean sea-level pressure, which involves the extrapolation of pressure to sea-level for locations above or below sea-level. The average pressure at mean sea-level (MSL) in the International Standard Atmosphere (ISA) is 1013.25 hPa, or 1 atmosphere (Atm), or 29.92 inches of mercury.

Pressure (P), mass (m), and the acceleration due to gravity (g), are related by P = F/A = (m*g)/A, where A is surface area. Atmospheric pressure is thus proportional to the weight per unit area of the atmospheric mass above that location.

Altitude variation

Storm over Snæfellsjökull
A very local storm above Snæfellsjökull, showing clouds formed on the mountain by orographic lift
Atmospheric Pressure vs. Altitude
Variation in atmospheric pressure with altitude, computed for 15 °C and 0% relative humidity.
Plastic bottle at 14000 feet, 9000 feet and 1000 feet, sealed at 14000 feet
This plastic bottle was sealed at approximately 14,000 feet (4,300 m) altitude, and was crushed by the increase in atmospheric pressure, recorded at 9,000 feet (2,700 m) and 1,000 feet (300 m), as it was brought down towards sea level.

Pressure on Earth varies with the altitude of the surface; so air pressure on mountains is usually lower than air pressure at sea level. Pressure varies smoothly from the Earth's surface to the top of the mesosphere. Although the pressure changes with the weather, NASA has averaged the conditions for all parts of the earth year-round. As altitude increases, atmospheric pressure decreases. One can calculate the atmospheric pressure at a given altitude.[7] Temperature and humidity also affect the atmospheric pressure, and it is necessary to know these to compute an accurate figure. The graph at right was developed for a temperature of 15 °C and a relative humidity of 0%.

At low altitudes above sea level, the pressure decreases by about 1.2 kPa for every 100 metres. For higher altitudes within the troposphere, the following equation (the barometric formula) relates atmospheric pressure p to altitude h

where the constant parameters are as described below:

Parameter Description Value
p0 Sea level standard atmospheric pressure 101325 Pa
L Temperature lapse rate, = g/cp for dry air ~ 0.0065 K/m
cp Constant-pressure specific heat 1004.68506 J/(kg·K)
T0 Sea level standard temperature 288.15 K
g Earth-surface gravitational acceleration 9.80665 m/s2
M Molar mass of dry air 0.02896968 kg/mol
R0 Universal gas constant 8.31582991 J/(mol·K)

Local variation

Wilma1315z-051019-1kg12
Hurricane Wilma on 19 October 2005; 882 hPa (12.79 psi) in the storm's eye

Atmospheric pressure varies widely on Earth, and these changes are important in studying weather and climate. See pressure system for the effects of air pressure variations on weather.

Atmospheric pressure shows a diurnal or semidiurnal (twice-daily) cycle caused by global atmospheric tides. This effect is strongest in tropical zones, with an amplitude of a few millibars, and almost zero in polar areas. These variations have two superimposed cycles, a circadian (24 h) cycle and semi-circadian (12 h) cycle.

Records

The highest adjusted-to-sea level barometric pressure ever recorded on Earth (above 750 meters) was 1084.8 hPa (32.03 inHg) measured in Tosontsengel, Mongolia on 19 December 2001.[8] The highest adjusted-to-sea level barometric pressure ever recorded (below 750 meters) was at Agata in Evenk Autonomous Okrug, Russia (66°53’ N, 93°28’ E, elevation: 261 m, 856 ft) on 31 December 1968 of 1083.8 hPa (32.005 inHg).[9] The discrimination is due to the problematic assumptions (assuming a standard lapse rate) associated with reduction of sea level from high elevations.[8]

The Dead Sea, the lowest place on Earth at 430 metres (1,410 ft) below sea level, has a correspondingly high typical atmospheric pressure of 1065 hPa.[10]

The lowest non-tornadic atmospheric pressure ever measured was 870 hPa (0.858 atm; 25.69 inHg), set on 12 October 1979, during Typhoon Tip in the western Pacific Ocean. The measurement was based on an instrumental observation made from a reconnaissance aircraft.[11]

Measurement based on depth of water

One atmosphere (101.325 kPa or 14.7 psi) is also the pressure caused by the weight of a column of fresh water of approximately 10.3 m (33.8 ft). Thus, a diver 10.3 m underwater experiences a pressure of about 2 atmospheres (1 atm of air plus 1 atm of water). Conversely, 10.3 m is the maximum height to which water can be raised using suction under standard atmospheric conditions.

Low pressures such as natural gas lines are sometimes specified in inches of water, typically written as w.c. (water column) gauge or w.g. (inches water gauge). A typical gas-using residential appliance in the US is rated for a maximum of 14 w.g., which is approximately 1048.37 hPa. Similar metric units with a wide variety of names and notation based on millimetres, centimetres or metres are now less commonly used.

Boiling point of water

Pure water boils at 100 °C (212 °F) at earth's standard atmospheric pressure. The boiling point is the temperature at which the vapor pressure is equal to the atmospheric pressure around the water.[12] Because of this, the boiling point of water is lower at lower pressure and higher at higher pressure. Cooking at high elevations, therefore, requires adjustments to recipes[13] or pressure cooking. A rough approximation of elevation can be obtained by measuring the temperature at which water boils; in the mid-19th century, this method was used by explorers.[14]

Measurement and maps

An important application of the knowledge that atmospheric pressure varies directly with altitude was in determining the height of hills and mountains thanks to the availability of reliable pressure measurement devices. While in 1774, Maskelyne was confirming Newton's theory of gravitation at and on Schiehallion in Scotland (using plumb bob deviation to show the effect of gravity) and accurately measure elevation, William Roy using barometric pressure was able to confirm his height determinations, the agreement being to within one meter (3.28 feet). This method became and continues to be useful for survey work and map making. This early application of science gave people insight into how science could easily be put to practical use.[15]

See also

References

  1. ^ International Civil Aviation Organization. Manual of the ICAO Standard Atmosphere, Doc 7488-CD, Third Edition, 1993. ISBN 92-9194-004-6.
  2. ^ "atmospheric pressure (encyclopedic entry)". National Geographic. Retrieved 28 February 2018.
  3. ^ "Q & A: Pressure - Gravity Matters?". Department of Physics. University of Illinois Urbana-Champaign. Retrieved 28 February 2018.
  4. ^ Sample METAR of CYVR Nav Canada
  5. ^ Montreal Current Weather, CBC Montreal, Canada, retrieved 2014-03-30
  6. ^ Jacob, Daniel J. Introduction to Atmospheric Chemistry. Princeton University Press, 1999.
  7. ^ A quick derivation relating altitude to air pressure Archived 2011-09-28 at the Wayback Machine by Portland State Aerospace Society, 2004, accessed 05032011
  8. ^ a b World: Highest Sea Level Air Pressure Above 750 m, Wmo.asu.edu, 2001-12-19, archived from the original on 2012-10-17, retrieved 2013-04-15
  9. ^ World: Highest Sea Level Air Pressure Below 750 m, Wmo.asu.edu, 1968-12-31, archived from the original on 2013-05-14, retrieved 2013-04-15
  10. ^ Kramer, MR; Springer C; Berkman N; Glazer M; Bublil M; Bar-Yishay E; Godfrey S (March 1998). "Rehabilitation of hypoxemic patients with COPD at low altitude at the Dead Sea, the lowest place on earth" (PDF). Chest. 113 (3): 571–575. doi:10.1378/chest.113.3.571. PMID 9515826. Archived from the original (PDF) on 2013-10-29. PMID 9515826
  11. ^ Chris Landsea (2010-04-21). "Subject: E1), Which is the most intense tropical cyclone on record?". Atlantic Oceanographic and Meteorological Laboratory. Archived from the original on 6 December 2010. Retrieved 2010-11-23.
  12. ^ Vapour Pressure, Hyperphysics.phy-astr.gsu.edu, retrieved 2012-10-17
  13. ^ High Altitude Cooking, Crisco.com, 2010-09-30, archived from the original on 2012-09-07, retrieved 2012-10-17
  14. ^ Berberan-Santos, M. N.; Bodunov, E. N.; Pogliani, L. (1997). "On the barometric formula". American Journal of Physics. 65 (5): 404–412. Bibcode:1997AmJPh..65..404B. doi:10.1119/1.18555.
  15. ^ Hewitt, Rachel, Map of a Nation – a Biography of the Ordnance Survey ISBN 1-84708-098-7

External links

Experiments

Altitude

Altitude or height (sometimes known as 'depth') is defined based on the context in which it is used (aviation, geometry, geographical survey, sport, atmospheric pressure, and many more). As a general definition, altitude is a distance measurement, usually in the vertical or "up" direction, between a reference datum and a point or object. The reference datum also often varies according to the context. Although the term altitude is commonly used to mean the height above sea level of a location, in geography the term elevation is often preferred for this usage.

Vertical distance measurements in the "down" direction are commonly referred to as depth.

Atmosphere (unit)

The standard atmosphere (symbol: atm) is a unit of pressure defined as 101325 Pa (1.01325 bar). It is sometimes used as a reference or standard pressure.

Atmospheric-pressure chemical ionization

Atmospheric pressure chemical ionization (APCI) is an ionization method used in mass spectrometry which utilizes gas-phase ion-molecule reactions at atmospheric pressure (105 Pa), commonly coupled with high-performance liquid chromatography (HPLC). APCI is a soft ionization method similar to chemical ionization where primary ions are produced on a solvent spray. The main usage of APCI is for polar and relatively less polar thermally stable compounds with molecular weight less than 1500 Da. The application of APCI with HPLC has gained a large popularity in trace analysis detection such as steroids, pesticides and also in pharmacology for drug metabolites.

Atmospheric-pressure laser ionization

Atmospheric pressure laser ionization is an atmospheric pressure ionization method for mass spectrometry (MS). Laser light in the UV range is used to ionize molecules in a resonance-enhanced multiphoton ionization (REMPI) process. It is a selective and sensitive ionization method for aromatic and polyaromatic compounds. Atmospheric photoionization is the latest in development of atmospheric ionization methods.

Atmospheric diving suit

An atmospheric diving suit (ADS) is a small one-person articulated anthropomorphic submersible which resembles a suit of armour, with elaborate pressure joints to allow articulation while maintaining an internal pressure of one atmosphere. The ADS can be used for very deep dives of up to 2,300 feet (700 m) for many hours, and eliminates the majority of physiological dangers associated with deep diving; the occupant need not decompress, there is no need for special gas mixtures, and there is no danger of decompression sickness or nitrogen narcosis. Divers do not even need to be skilled swimmers.

Atmospheric diving suits in current use include the Newtsuit, Hardsuit and the WASP, all of which are self-contained hard suits that incorporate propulsion units. The hardsuit is constructed from cast aluminum (forged aluminum in a version constructed for the US Navy for submarine rescue); the upper hull is made from cast aluminum, while the bottom dome is machined aluminum. The WASP is of glass-reinforced plastic (GRP) body tube construction.

Bar (unit)

The bar is a metric unit of pressure, but is not approved as part of the International System of Units (SI). It is defined as exactly equal to 100,000 Pa, which is slightly less than the current average atmospheric pressure on Earth at sea level.The bar and the millibar were introduced by the Norwegian meteorologist Vilhelm Bjerknes, who was a founder of the modern practice of weather forecasting.The International Bureau of Weights and Measures (BIPM) lists the bar as one of the "non-SI units [that authors] should have the freedom to use", but has declined to include it among the "Non-SI units accepted for use with the SI". The bar has been legally recognised in countries of the European Union since 2004. The US National Institute of Standards and Technology (NIST) deprecates its use except for "limited use in meteorology" and lists it as one of several units that "must not be introduced in fields where they are not presently used". The International Astronomical Union (IAU) also lists it under "Non-SI units and symbols whose continued use is deprecated".Units derived from the bar include the megabar (symbol: Mbar), kilobar (symbol: kbar), decibar (symbol: dbar), centibar (symbol: cbar), and millibar (symbol: mbar or mb). The notation bar(g), though deprecated by various bodies, represents gauge pressure, i.e., pressure in bars above ambient or atmospheric pressure.

Barometer

A barometer is a scientific instrument used to measure air pressure. Pressure tendency can forecast short term changes in the weather. Many measurements of air pressure are used within surface weather analysis to help find surface troughs, high pressure systems and frontal boundaries.

Barometers and pressure altimeters (the most basic and common type of altimeter) are essentially the same instrument, but used for different purposes. An altimeter is intended to be used at different levels matching the corresponding atmospheric pressure to the altitude, while a barometer is kept at the same level and measures subtle pressure changes caused by weather.

Boiling point

The boiling point of a substance is the temperature at which the vapor pressure of the liquid equals the pressure surrounding the liquid and the liquid changes into a vapor.

The boiling point of a liquid varies depending upon the surrounding environmental pressure. A liquid in a partial vacuum has a lower boiling point than when that liquid is at atmospheric pressure. A liquid at high pressure has a higher boiling point than when that liquid is at atmospheric pressure. For example, water boils at 100 °C (212 °F) at sea level, but at 93.4 °C (200.1 °F) at 1,905 metres (6,250 ft) altitude. For a given pressure, different liquids will boil at different temperatures.

The normal boiling point (also called the atmospheric boiling point or the atmospheric pressure boiling point) of a liquid is the special case in which the vapor pressure of the liquid equals the defined atmospheric pressure at sea level, 1 atmosphere. At that temperature, the vapor pressure of the liquid becomes sufficient to overcome atmospheric pressure and allow bubbles of vapor to form inside the bulk of the liquid. The standard boiling point has been defined by IUPAC since 1982 as the temperature at which boiling occurs under a pressure of 1 bar.The heat of vaporization is the energy required to transform a given quantity (a mol, kg, pound, etc.) of a substance from a liquid into a gas at a given pressure (often atmospheric pressure).

Liquids may change to a vapor at temperatures below their boiling points through the process of evaporation. Evaporation is a surface phenomenon in which molecules located near the liquid's edge, not contained by enough liquid pressure on that side, escape into the surroundings as vapor. On the other hand, boiling is a process in which molecules anywhere in the liquid escape, resulting in the formation of vapor bubbles within the liquid.

Electrospray ionization

Electrospray ionization (ESI) is a technique used in mass spectrometry to produce ions using an electrospray in which a high voltage is applied to a liquid to create an aerosol. It is especially useful in producing ions from macromolecules because it overcomes the propensity of these molecules to fragment when ionized. ESI is different from other ionization processes (e.g. matrix-assisted laser desorption/ionization (MALDI)) since it may produce multiple-charged ions, effectively extending the mass range of the analyser to accommodate the kDa-MDa orders of magnitude observed in proteins and their associated polypeptide fragments.Mass spectrometry using ESI is called electrospray ionization mass spectrometry (ESI-MS) or, less commonly, electrospray mass spectrometry (ES-MS). ESI is a so-called 'soft ionization' technique, since there is very little fragmentation. This can be advantageous in the sense that the molecular ion (or more accurately a pseudo molecular ion) is always observed, however very little structural information can be gained from the simple mass spectrum obtained. This disadvantage can be overcome by coupling ESI with tandem mass spectrometry (ESI-MS/MS). Another important advantage of ESI is that solution-phase information can be retained into the gas-phase.

The electrospray ionization technique was first reported by Masamichi Yamashita and John Fenn in 1984. The development of electrospray ionization for the analysis of biological macromolecules was rewarded with the attribution of the Nobel Prize in Chemistry to John Bennett Fenn in 2002.

One of the original instruments used by Dr. Fenn is on display at the Science History Institute in Philadelphia, Pennsylvania.

Hydrostatics

Fluid statics or hydrostatics is the branch of fluid mechanics that studies "fluids at rest and the pressure in a fluid or exerted by a fluid on an immersed body".It encompasses the study of the conditions under which fluids are at rest in stable equilibrium as opposed to fluid dynamics, the study of fluids in motion. Hydrostatics are categorized as a part of the fluid statics, which is the study of all fluids, incompressible or not, at rest.

Hydrostatics is fundamental to hydraulics, the engineering of equipment for storing, transporting and using fluids. It is also relevant to geophysics and astrophysics (for example, in understanding plate tectonics and the anomalies of the Earth's gravitational field), to meteorology, to medicine (in the context of blood pressure), and many other fields.

Hydrostatics offers physical explanations for many phenomena of everyday life, such as why atmospheric pressure changes with altitude, why wood and oil float on water, and why the surface of still water is always level.

Liquid chromatography–mass spectrometry

Liquid chromatography–mass spectrometry (LC-MS) is an analytical chemistry technique that combines the physical separation capabilities of liquid chromatography (or HPLC) with the mass analysis capabilities of mass spectrometry (MS). Coupled chromatography - MS systems are popular in chemical analysis because the individual capabilities of each technique are enhanced synergistically. While liquid chromatography separates mixtures with multiple components, mass spectrometry provides structural identity of the individual components with high molecular specificity and detection sensitivity. This tandem technique can be used to analyze biochemical, organic, and inorganic compounds commonly found in complex samples of environmental and biological origin. Therefore, LC-MS may be applied in a wide range of sectors including biotechnology, environment monitoring, food processing, and pharmaceutical, agrochemical, and cosmetic industries.In addition to the liquid chromatography and mass spectrometry devices, an LC-MS system contains an interface that efficiently transfers the separated components from the LC column into the MS ion source. The interface is necessary because the LC and MS devices are fundamentally incompatible. While the mobile phase in a LC system is a pressurized liquid, the MS analyzers commonly operate under vacuum (around 10−6 torr). Thus, it is not possible to directly pump the eluate from the LC column into the MS source. Overall, the interface is a mechanically simple part of the LC-MS system that transfers the maximum amount of analyte, removes a significant portion of the mobile phase used in LC and preserves the chemical identity of the chromatography products (chemically inert). As a requirement, the interface should not interfere with the ionizing efficiency and vacuum conditions of the MS system. Nowadays, most extensively applied LC-MS interfaces are based on atmospheric pressure ionization (API) strategies like electrospray ionization (ESI), atmospheric pressure chemical ionization (APCI), and atmospheric pressure photo-ionization (APPI).These interfaces became available in the 1990s after a two decade long research and development process.

List of atmospheric pressure records in Europe

The following is a List of atmospheric pressure records in Europe and the extratropical Northern Atlantic (it does not include localised events, such as those that occur in tornados).

Extreme pressure values in Europe show both seasonal and geographical differentiation. the greatest pressure extremes occur in winter (January) with the deepest lows occurring to the northwest of the continent with a diminishing influence of low pressure to the southeast towards Central Europe and Southeast Europe. This is related to the main cyclonic centre of the Icelandic low, and the North Atlantic extratropical storm track, close to which have been observed some of the lowest atmospheric pressures of the Northern Hemisphere outside the tropics. Extreme high values are favoured over the north east of Europe where intense cold and long winter nights lead to cooling of the air column by radiative cooling causing sinking air reinforcing the development of the highest pressures. Other influences include the semi-permanent Azores high, and Siberian highs.

Naturally aspirated engine

A naturally aspirated engine is an internal combustion engine in which oxygen intake depends solely on atmospheric pressure and does not rely on forced induction through a turbocharger or a supercharger. Many sports cars specifically use naturally aspirated engines to avoid turbo lag.

Pascal (unit)

The pascal (symbol: Pa) is the SI derived unit of pressure used to quantify internal pressure, stress, Young's modulus and ultimate tensile strength. It is defined as one newton per square metre. It is named after the French polymath Blaise Pascal.

Common multiple units of the pascal are the hectopascal (1 hPa = 100 Pa) which is equal to one millibar, and the kilopascal (1 kPa = 1000 Pa) which is equal to one centibar.

The unit of measurement called standard atmosphere (atm) is defined as 101325 Pa. Meteorological reports in the United States typically state atmospheric pressure in millibars. In Canada these reports are given in terms of kilopascals.

Pounds per square inch

The pound per square inch or, more accurately, pound-force per square inch (symbol: lbf/in2; abbreviation: psi) is a unit of pressure or of stress based on avoirdupois units. It is the pressure resulting from a force of one pound-force applied to an area of one square inch. In SI units, 1 psi is approximately equal to 6895 N/m2.

Pounds per square inch absolute (psia) is used to make it clear that the pressure is relative to a vacuum rather than the ambient atmospheric pressure. Since atmospheric pressure at sea level is around 14.7 psi, this will be added to any pressure reading made in air at sea level. The converse is pounds per square inch gauge (psig), indicating that the pressure is relative to atmospheric pressure. For example, a bicycle tire pumped up to 65 psig in a local atmospheric pressure at sea level (14.7 psia) will have a pressure of 79.7 psia (14.7 psi + 65 psi). When gauge pressure is referenced to something other than ambient atmospheric pressure, then the units would be pounds per square inch differential (psid).

Pressure

Pressure (symbol: p or P) is the force applied perpendicular to the surface of an object per unit area over which that force is distributed. Gauge pressure (also spelled gage pressure) is the pressure relative to the ambient pressure.

Various units are used to express pressure. Some of these derive from a unit of force divided by a unit of area; the SI unit of pressure, the pascal (Pa), for example, is one newton per square metre; similarly, the pound-force per square inch (psi) is the traditional unit of pressure in the imperial and US customary systems. Pressure may also be expressed in terms of standard atmospheric pressure; the atmosphere (atm) is equal to this pressure, and the torr is defined as ​1⁄760 of this. Manometric units such as the centimetre of water, millimetre of mercury, and inch of mercury are used to express pressures in terms of the height of column of a particular fluid in a manometer.

Pressure measurement

Pressure measurement is the analysis of an applied force by a fluid (liquid or gas) on a surface. Pressure is typically measured in units of force per unit of surface area. Many techniques have been developed for the measurement of pressure and vacuum. Instruments used to measure and display pressure in an integral unit are called pressure gauges or vacuum gauges. A manometer (not to be confused with nanometer) is a good example, as it uses a column of liquid to both measure and indicate pressure. Likewise the widely used Bourdon gauge is a mechanical device, which both measures and indicates and is probably the best known type of gauge.

A vacuum gauge is a pressure gauge used to measure pressures lower than the ambient atmospheric pressure, which is set as the zero point, in negative values (e.g.: −15 psig or −760 mmHg equals total vacuum). Most gauges measure pressure relative to atmospheric pressure as the zero point, so this form of reading is simply referred to as "gauge pressure". However, anything greater than total vacuum is technically a form of pressure. For very accurate readings, especially at very low pressures, a gauge that uses total vacuum as the zero point may be used, giving pressure readings in an absolute scale.

Other methods of pressure measurement involve sensors that can transmit the pressure reading to a remote indicator or control system (telemetry).

Siphon

The word siphon ( SY-fən; from Ancient Greek: σίφων "pipe, tube", also spelled syphon) is used to refer to a wide variety of devices that involve the flow of liquids through tubes. In a narrower sense, the word refers particularly to a tube in an inverted 'U' shape, which causes a liquid to flow upward, above the surface of a reservoir, with no pump, but powered by the fall of the liquid as it flows down the tube under the pull of gravity, then discharging at a level lower than the surface of the reservoir from which it came.

There are two leading theories about how siphons cause liquid to flow uphill, against gravity, without being pumped, and powered only by gravity. The traditional theory for centuries was that gravity pulling the liquid down on the exit side of the siphon resulted in reduced pressure at the top of the siphon. Then atmospheric pressure was able to push the liquid from the upper reservoir, up into the reduced pressure at the top of the siphon, like in a barometer or drinking straw, and then over. However, it has been demonstrated that siphons can operate in a vacuum and to heights exceeding the barometric height of the liquid. Consequently, the cohesion tension theory of siphon operation has been advocated, where the liquid is pulled over the siphon in a way similar to the chain model. It need not be one theory or the other that is correct, but rather both theories may be correct in different circumstances of ambient pressure. The atmospheric pressure with gravity theory obviously cannot explain siphons in vacuum, where there is no significant atmospheric pressure. But the cohesion tension with gravity theory cannot explain CO2 gas siphons, siphons working despite bubbles, and the flying droplet siphon, where gases do not exert significant pulling forces, and liquids not in contact cannot exert a cohesive tension force.

All known published theories in modern times recognize Bernoulli's equation as a decent approximation to idealized, friction-free siphon operation.

Vapor pressure

Vapor pressure (or vapour pressure in British spelling) or equilibrium vapor pressure is defined as the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium vapor pressure is an indication of a liquid's evaporation rate. It relates to the tendency of particles to escape from the liquid (or a solid). A substance with a high vapor pressure at normal temperatures is often referred to as volatile. The pressure exhibited by vapor present above a liquid surface is known as vapor pressure. As the temperature of a liquid increases, the kinetic energy of its molecules also increases. As the kinetic energy of the molecules increases, the number of molecules transitioning into a vapor also increases, thereby increasing the vapor pressure.

The vapor pressure of any substance increases non-linearly with temperature according to the Clausius–Clapeyron relation. The atmospheric pressure boiling point of a liquid (also known as the normal boiling point) is the temperature at which the vapor pressure equals the ambient atmospheric pressure. With any incremental increase in that temperature, the vapor pressure becomes sufficient to overcome atmospheric pressure and lift the liquid to form vapor bubbles inside the bulk of the substance. Bubble formation deeper in the liquid requires a higher temperature due to the higher fluid pressure, because fluid pressure increases above the atmospheric pressure as the depth increases. More important at shallow depths is the higher temperature required to start bubble formation. The surface tension of the bubble wall leads to an overpressure in the very small, initial bubbles. Thus, thermometer calibration should not rely on the temperature in boiling water.

The vapor pressure that a single component in a mixture contributes to the total pressure in the system is called partial pressure. For example, air at sea level, and saturated with water vapor at 20 °C, has partial pressures of about 2.3 kPa of water, 78 kPa of nitrogen, 21 kPa of oxygen and 0.9 kPa of argon, totaling 102.2 kPa, making the basis for standard atmospheric pressure.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.