Astronomy & Astrophysics

Astronomy & Astrophysics is a peer-reviewed scientific journal covering theoretical, observational, and instrumental astronomy and astrophysics. It is one of the premier journals for astronomy in the world. The journal is published by EDP Sciences in 16 issues per year.[1] The editor-in-chief is Thierry Forveille (Observatoire des Sciences de l'Univers de Grenoble). Previous editors in chief include Claude Bertout, James Lequeux, Michael Grewing, Catherine Cesarsky and George Contopoulos.

Astronomy & Astrophysics
Aand A cover
DisciplineAstronomy, astrophysics
LanguageEnglish
Edited byThierry Forveille
Publication details
Publication history
1969–present
Publisher
Frequency16/year
After 12 months
5.567
Standard abbreviations
Astron. Astrophys.
Indexing
CODENAAEJAF
ISSN0004-6361 (print)
1432-0746 (web)
LCCN74220573
OCLC no.1518497
Links

History

Astronomy & Astrophysics was formed in 1969 by the merging of several national journals of individual European countries into one comprehensive publication.[2] These journals, with their ISSN and date of first publication are as follows:[3]

  • Annales d'Astrophysique ISSN 0365-0499 (France), established in 1938
  • Arkiv för Astronomi ISSN 0004-2048 (Sweden), established in 1948
  • Bulletin of the Astronomical Institutes of the Netherlands ISSN 0365-8910 (Netherlands), established in 1921
  • Bulletin Astronomique ISSN 0245-9787 (France), established in 1884
  • Journal des Observateurs ISSN 0368-3389 (France), established in 1915
  • Zeitschrift für Astrophysik ISSN 0372-8331 (Germany), established in 1930

The publishing of Astronomy & Astrophysics was further extended in 1992 by the incorporation of Bulletin of the Astronomical Institutes of Czechoslovakia, established in 1947. Astronomy & Astrophysics initially published articles in either English, French, or German, but articles in French and German were always few. They were eventually discontinued, in part due to difficulties in finding adequately specialized independent referees who were also fluent in those languages.

Sponsoring countries

The original sponsoring countries were the four countries whose journals merged to form Astronomy & Astrophysics (France, Germany, the Netherlands and Sweden), together with Belgium, Denmark, Finland, and Norway. The European Southern Observatory also participated as a "member country". Norway later withdrew, but Austria, Greece, Italy, Spain, and Switzerland all joined. The Czech Republic, Estonia, Hungary, Poland, and Slovakia all joined as new members in the 1990s. In 2001 the words "A European Journal" were removed from the front cover in recognition of the fact that the journal was becoming increasingly global in scope, and in 2002 Argentina was admitted as an "observer". In 2004 the Board of Directors decided that the journal "will henceforth consider applications for sponsoring membership from any country in the world with well-documented active and excellent astronomical research".[4] Argentina became the first non-European country to gain full membership in 2005. Brazil, Chile, and Portugal all gained "observer" status at this time and have since progressed to full membership.

Abstracting and indexing

This journal is listed in the following databases:[3][5][6]

Open access

All letters to the editor and all articles published in the online sections of the journal are open access upon publication. Articles in the other sections of the journal are made freely available 12 months after publication (delayed open-access model), through the publisher's site and via the Astrophysics Data System. Authors have the option to pay for immediate open access.[8]

See also

Further reading

References

  1. ^ LCCN 74-220573. Library of Congress. 2010.
  2. ^ History and purpose of A&A journal. S.R. Pottasch. EDP Sciences. 2012.
  3. ^ a b List of indexing databases for this journal, and bibliographic information. "Library catalog". National Library of Australia. Retrieved January 27, 2011.
  4. ^ Sandqvist, Aage (October 2004). "Letter from the Board of Directors". Astronomy & Astrophysics. Retrieved 20 March 2018.
  5. ^ List of Thomson Reuters indexing services that list this journal. "Master Journal List". Thomson Reuters. Retrieved January 27, 2011.
  6. ^ "Abstracting and indexing". EDP Sciences. Retrieved January 27, 2011.
  7. ^ SIMBAD astronomical database. Access date - January 27, 2011
  8. ^ "Astronomy & Astrophysics - Journal Information". EDP Sciences. Retrieved 2013-04-23.
Astronomer

An astronomer is a scientist in the field of astronomy who focuses their studies on a specific question or field outside the scope of Earth. They observe astronomical objects such as stars, planets, moons, comets, and galaxies – in either observational (by analyzing the data) or theoretical astronomy. Examples of topics or fields astronomers study include planetary science, solar astronomy, the origin or evolution of stars, or the formation of galaxies. Related but distinct subjects like physical cosmology, which studies the Universe as a whole.

Astronomers usually fall under either of two main types: observational and theoretical. Observational astronomers make direct observations of celestial objects and analyze the data. In contrast, theoretical astronomers create and investigate models of things that cannot be observed. Because it takes millions to billions of years for a system of stars or a galaxy to complete a life cycle, astronomers must observe snapshots of different systems at unique points in their evolution to determine how they form, evolve, and die. They use these data to create models or simulations to theorize how different celestial objects work.

Further subcategories under these two main branches of astronomy include planetary astronomy, galactic astronomy, or physical cosmology.

Astronomical unit

The astronomical unit (symbol: au, ua, or AU) is a unit of length, roughly the distance from Earth to the Sun. However, that distance varies as Earth orbits the Sun, from a maximum (aphelion) to a minimum (perihelion) and back again once a year. Originally conceived as the average of Earth's aphelion and perihelion, since 2012 it has been defined as exactly 149597870700 metres, or about 150 million kilometres (93 million miles). The astronomical unit is used primarily for measuring distances within the Solar System or around other stars. It is also a fundamental component in the definition of another unit of astronomical length, the parsec.

Astronomy

Astronomy (from Greek: ἀστρονομία) is a natural science that studies celestial objects and phenomena. It applies mathematics, physics, and chemistry in an effort to explain the origin of those objects and phenomena and their evolution. Objects of interest include planets, moons, stars, nebulae, galaxies, and comets; the phenomena also includes supernova explosions, gamma ray bursts, quasars, blazars, pulsars, and cosmic microwave background radiation. More generally, all phenomena that originate outside Earth's atmosphere are within the purview of astronomy. A related but distinct subject is physical cosmology, which is the study of the Universe as a whole.Astronomy is one of the oldest of the natural sciences. The early civilizations in recorded history, such as the Babylonians, Greeks, Indians, Egyptians, Nubians, Iranians, Chinese, Maya, and many ancient indigenous peoples of the Americas, performed methodical observations of the night sky. Historically, astronomy has included disciplines as diverse as astrometry, celestial navigation, observational astronomy, and the making of calendars, but professional astronomy is now often considered to be synonymous with astrophysics.Professional astronomy is split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects, which is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. The two fields complement each other, with theoretical astronomy seeking to explain observational results and observations being used to confirm theoretical results.

Astronomy is one of the few sciences in which amateurs still play an active role, especially in the discovery and observation of transient events. Amateur astronomers have made and contributed to many important astronomical discoveries, such as finding new comets.

Bibcode

The bibcode (also known as the refcode) is a compact identifier used by several astronomical data systems to uniquely specify literature references.

Constellation

A constellation is a group of stars that forms an imaginary outline or pattern on the celestial sphere, typically representing an animal, mythological person or creature, a god, or an inanimate object.The origins of the earliest constellations likely go back to prehistory. People used them to relate stories of their beliefs, experiences, creation, or mythology. Different cultures and countries adopted their own constellations, some of which lasted into the early 20th century before today's constellations were internationally recognized. Adoption of constellations has changed significantly over time. Many have changed in size or shape. Some became popular, only to drop into obscurity. Others were limited to single cultures or nations.

The 48 traditional Western constellations are Greek. They are given in Aratus' work Phenomena and Ptolemy's Almagest, though their origin probably predates these works by several centuries. Constellations in the far southern sky were added from the 15th century until the mid-18th century when European explorers began traveling to the Southern Hemisphere. Twelve ancient constellations belong to the zodiac (straddling the ecliptic, which the Sun, Moon, and planets all traverse). The origins of the zodiac remain historically uncertain; its astrological divisions became prominent c. 400 BC in Babylonian or Chaldean astronomy, probably dates back to prehistory.

In 1928, the International Astronomical Union (IAU) formally accepted 88 modern constellations, with contiguous boundaries that together cover the entire celestial sphere. Any given point in a celestial coordinate system lies in one of the modern constellations. Some astronomical naming systems include the constellation where a given celestial object is found to convey its approximate location in the sky. The Flamsteed designation of a star, for example, consists of a number and the genitive form of the constellation name.

Other star patterns or groups called asterisms are not constellations per se but are used by observers to navigate the night sky. Examples of bright asterisms include the Pleiades and Hyades within the constellation Taurus or Venus' Mirror in the constellation of Orion.. Some asterisms, like the False Cross, are split between two constellations; others, like the Summer Triangle, share stars across several constellations.

Event Horizon Telescope

The Event Horizon Telescope (EHT) is a large telescope array consisting of a global network of radio telescopes. The EHT project combines data from several very-long-baseline interferometry (VLBI) stations around Earth with angular resolution sufficient to observe objects the size of a supermassive black hole's event horizon. The project's observational targets include the two black holes with the largest angular diameter as observed from Earth: the black hole at the center of the supergiant elliptical galaxy Messier 87 (M87), and Sagittarius A* (Sgr A*), at the center of the Milky Way.The Event Horizon Telescope project is an international collaboration launched in 2009 after a long period of theoretical and technical developments. On the theory side, work on the photon orbit and first simulations of what a black hole would look like progressed to predictions of VLBI imaging for the Galactic Center black hole, Sgr A*. Technical advances in radio observing moved from the first detection of Sgr A*, through VLBI at progressively shorter wavelengths, ultimately leading to detection of horizon scale structure in both Sgr A* and M87. The collaboration now comprises over 200 members, 60 institutions, working over 20 countries and regions.The first image of a black hole, at the center of galaxy Messier 87, was published by the EHT Collaboration on April 10, 2019, in a series of six scientific publications. The array made this observation at a wavelength of 1.3 mm and with a theoretical diffraction-limited resolution of 25 microarcseconds. Future plans involve improving the array's resolution by adding new telescopes and by taking shorter-wavelength observations.

Gravity

Gravity (from Latin gravitas, meaning 'weight'), or gravitation, is a natural phenomenon by which all things with mass or energy—including planets, stars, galaxies, and even light—are brought toward (or gravitate toward) one another. On Earth, gravity gives weight to physical objects, and the Moon's gravity causes the ocean tides. The gravitational attraction of the original gaseous matter present in the Universe caused it to begin coalescing, forming stars – and for the stars to group together into galaxies – so gravity is responsible for many of the large-scale structures in the Universe. Gravity has an infinite range, although its effects become increasingly weaker on farther objects.

Gravity is most accurately described by the general theory of relativity (proposed by Albert Einstein in 1915) which describes gravity not as a force, but as a consequence of the curvature of spacetime caused by the uneven distribution of mass. The most extreme example of this curvature of spacetime is a black hole, from which nothing—not even light—can escape once past the black hole's event horizon. However, for most applications, gravity is well approximated by Newton's law of universal gravitation, which describes gravity as a force which causes any two bodies to be attracted to each other, with the force proportional to the product of their masses and inversely proportional to the square of the distance between them.

Gravity is the weakest of the four fundamental forces of physics, approximately 1038 times weaker than the strong force, 1036 times weaker than the electromagnetic force and 1029 times weaker than the weak force. As a consequence, it has no significant influence at the level of subatomic particles. In contrast, it is the dominant force at the macroscopic scale, and is the cause of the formation, shape and trajectory (orbit) of astronomical bodies. For example, gravity causes the Earth and the other planets to orbit the Sun, it also causes the Moon to orbit the Earth, and causes the formation of tides, the formation and evolution of the Solar System, stars and galaxies.

The earliest instance of gravity in the Universe, possibly in the form of quantum gravity, supergravity or a gravitational singularity, along with ordinary space and time, developed during the Planck epoch (up to 10−43 seconds after the birth of the Universe), possibly from a primeval state, such as a false vacuum, quantum vacuum or virtual particle, in a currently unknown manner. Attempts to develop a theory of gravity consistent with quantum mechanics, a quantum gravity theory, which would allow gravity to be united in a common mathematical framework (a theory of everything) with the other three forces of physics, are a current area of research.

Indian astronomy

Indian astronomy has a long history stretching from pre-historic to modern times. Some of the earliest roots of Indian astronomy can be dated to the period of Indus Valley Civilization or earlier. Astronomy later developed as a discipline of Vedanga or one of the "auxiliary disciplines" associated with the study of the Vedas, dating 1500 BCE or older. The oldest known text is the Vedanga Jyotisha, dated to 1400–1200 BCE (with the extant form possibly from 700–600 BCE).Greek astronomy was influenced by Indian astronomy and vice versa beginning in the 4th century BCE and through the early centuries of the Common Era, for example by the Yavanajataka and the Romaka Siddhanta, a Sanskrit translation of a Greek text disseminated from the 2nd century.Indian astronomy flowered in the 5th–6th century, with Aryabhata, whose Aryabhatiya represented the pinnacle of astronomical knowledge at the time. Later the Indian astronomy significantly influenced Muslim astronomy, Chinese astronomy, European astronomy, and others. Other astronomers of the classical era who further elaborated on Aryabhata's work include Brahmagupta, Varahamihira and Lalla.

An identifiable native Indian astronomical tradition remained active throughout the medieval period and into the 16th or 17th century, especially within the Kerala school of astronomy and mathematics.

Johannes Kepler

Johannes Kepler (; German: [joˈhanəs ˈkɛplɐ, -nɛs -]; December 27, 1571 – November 15, 1630) was a German astronomer, mathematician, and astrologer. He is a key figure in the 17th-century scientific revolution, best known for his laws of planetary motion, and his books Astronomia nova, Harmonices Mundi, and Epitome Astronomiae Copernicanae. These works also provided one of the foundations for Newton's theory of universal gravitation.

Kepler was a mathematics teacher at a seminary school in Graz, where he became an associate of Prince Hans Ulrich von Eggenberg. Later he became an assistant to the astronomer Tycho Brahe in Prague, and eventually the imperial mathematician to Emperor Rudolf II and his two successors Matthias and Ferdinand II. He also taught mathematics in Linz, and was an adviser to General Wallenstein.

Additionally, he did fundamental work in the field of optics, invented an improved version of the refracting (or Keplerian) telescope, and was mentioned in the telescopic discoveries of his contemporary Galileo Galilei. He was a corresponding member of the Accademia dei Lincei in Rome.Kepler lived in an era when there was no clear distinction between astronomy and astrology, but there was a strong division between astronomy (a branch of mathematics within the liberal arts) and physics (a branch of natural philosophy). Kepler also incorporated religious arguments and reasoning into his work, motivated by the religious conviction and belief that God had created the world according to an intelligible plan that is accessible through the natural light of reason.

Kepler described his new astronomy as "celestial physics", as "an excursion into Aristotle's Metaphysics", and as "a supplement to Aristotle's On the Heavens", transforming the ancient tradition of physical cosmology by treating astronomy as part of a universal mathematical physics.

Light-year

The light-year is a unit of length used to express astronomical distances and measures about 9.46 trillion kilometres (9.46 x 1012 km) or 5.88 trillion miles (5.88 x 1012 mi). As defined by the International Astronomical Union (IAU), a light-year is the distance that light travels in vacuum in one Julian year (365.25 days). Because it includes the word "year", the term light-year is sometimes misinterpreted as a unit of time.

The light-year is most often used when expressing distances to stars and other distances on a galactic scale, especially in nonspecialist and popular science publications. The unit most commonly used in professional astrometry is the parsec (symbol: pc, about 3.26 light-years; the distance at which one astronomical unit subtends an angle of one second of arc).

Luminosity

In astronomy, luminosity is the total amount of energy emitted per unit of time by a star, galaxy, or other astronomical object. As a term for energy emitted per unit time, luminosity is synonymous with power.In SI units luminosity is measured in joules per second or watts. Values for luminosity are often given in the terms of the luminosity of the Sun, L⊙. Luminosity can also be given in terms of the astronomical magnitude system: the absolute bolometric magnitude (Mbol) of an object is a logarithmic measure of its total energy emission rate, while absolute magnitude is a logarithmic measure of the luminosity within some specific wavelength range or filter band.

In contrast, the term brightness in astronomy is generally used to refer to an object's apparent brightness: that is, how bright an object appears to an observer. Apparent brightness depends on both the luminosity of the object and the distance between the object and observer, and also on any absorption of light along the path from object to observer. Apparent magnitude is a logarithmic measure of apparent brightness. The distance determined by luminosity measures can be somewhat ambiguous, and is thus sometimes called the luminosity distance.

Milky Way

The Milky Way is the galaxy that contains our Solar System. The name describes the galaxy's appearance from Earth: a hazy band of light seen in the night sky formed from stars that cannot be individually distinguished by the naked eye. The term Milky Way is a translation of the Latin via lactea, from the Greek γαλαξίας κύκλος (galaxías kýklos, "milky circle"). From Earth, the Milky Way appears as a band because its disk-shaped structure is viewed from within. Galileo Galilei first resolved the band of light into individual stars with his telescope in 1610. Until the early 1920s, most astronomers thought that the Milky Way contained all the stars in the Universe. Following the 1920 Great Debate between the astronomers Harlow Shapley and Heber Curtis, observations by Edwin Hubble showed that the Milky Way is just one of many galaxies.

The Milky Way is a barred spiral galaxy with a diameter between 150,000 and 200,000 light-years (ly). It is estimated to contain 100–400 billion stars and more than 100 billion planets. The Solar System is located at a radius of 26,490 (± 100) light-years from the Galactic Center, on the inner edge of the Orion Arm, one of the spiral-shaped concentrations of gas and dust. The stars in the innermost 10,000 light-years form a bulge and one or more bars that radiate from the bulge. The galactic center is an intense radio source known as Sagittarius A*, assumed to be a supermassive black hole of 4.100 (± 0.034) million solar masses.

Stars and gases at a wide range of distances from the Galactic Center orbit at approximately 220 kilometers per second. The constant rotation speed contradicts the laws of Keplerian dynamics and suggests that much (about 90%) of the mass of the Milky Way is invisible to telescopes, neither emitting nor absorbing electromagnetic radiation. This conjectural mass has been termed "dark matter". The rotational period is about 240 million years at the radius of the Sun. The Milky Way as a whole is moving at a velocity of approximately 600 km per second with respect to extragalactic frames of reference. The oldest stars in the Milky Way are nearly as old as the Universe itself and thus probably formed shortly after the Dark Ages of the Big Bang.The Milky Way has several satellite galaxies and is part of the Local Group of galaxies, which form part of the Virgo Supercluster, which is itself a component of the Laniakea Supercluster.

Pleiades

The Pleiades (), also known as the Seven Sisters and Messier 45, are an open star cluster containing middle-aged, hot B-type stars located in the constellation of Taurus. It is among the nearest star clusters to Earth and is the cluster most obvious to the naked eye in the night sky.

The cluster is dominated by hot blue and luminous stars that have formed within the last 100 million years. Reflection nebulae around the brightest stars were once thought to be left over material from the formation of the cluster, but are now considered likely to be an unrelated dust cloud in the interstellar medium through which the stars are currently passing.Computer simulations have shown that the Pleiades were probably formed from a compact configuration that resembled the Orion Nebula. Astronomers estimate that the cluster will survive for about another 250 million years, after which it will disperse due to gravitational interactions with its galactic neighborhood.

Pluto

Pluto (minor planet designation: 134340 Pluto) is a dwarf planet in the Kuiper belt, a ring of bodies beyond Neptune. It was the first Kuiper belt object to be discovered and is the largest known plutoid (or ice dwarf).

Pluto was discovered by Clyde Tombaugh in 1930 and was originally considered to be the ninth planet from the Sun. After 1992, its status as a planet was questioned following the discovery of several objects of similar size in the Kuiper belt. In 2005, Eris, a dwarf planet in the scattered disc which is 27% more massive than Pluto, was discovered. This led the International Astronomical Union (IAU) to define the term "planet" formally in 2006, during their 26th General Assembly. That definition excluded Pluto and reclassified it as a dwarf planet.

Pluto is the largest and second-most-massive (after Eris) known dwarf planet in the Solar System, and the ninth-largest and tenth-most-massive known object directly orbiting the Sun. It is the largest known trans-Neptunian object by volume but is less massive than Eris. Like other Kuiper belt objects, Pluto is primarily made of ice and rock and is relatively small—about one-sixth the mass of the Moon and one-third its volume. It has a moderately eccentric and inclined orbit during which it ranges from 30 to 49 astronomical units or AU (4.4–7.4 billion km) from the Sun. This means that Pluto periodically comes closer to the Sun than Neptune, but a stable orbital resonance with Neptune prevents them from colliding. Light from the Sun takes about 5.5 hours to reach Pluto at its average distance (39.5 AU).

Pluto has five known moons: Charon (the largest, with a diameter just over half that of Pluto), Styx, Nix, Kerberos, and Hydra. Pluto and Charon are sometimes considered a binary system because the barycenter of their orbits does not lie within either body.

The New Horizons spacecraft performed a flyby of Pluto on July 14, 2015, becoming the first ever spacecraft to do so. During its brief flyby, New Horizons made detailed measurements and observations of Pluto and its moons. In September 2016, astronomers announced that the reddish-brown cap of the north pole of Charon is composed of tholins, organic macromolecules that may be ingredients for the emergence of life, and produced from methane, nitrogen and other gases released from the atmosphere of Pluto and transferred about 19,000 km (12,000 mi) to the orbiting moon.

Solar mass

The solar mass (M) is a standard unit of mass in astronomy, equal to approximately 2×1030 kg. It is used to indicate the masses of other stars, as well as clusters, nebulae, and galaxies. It is equal to the mass of the Sun (denoted by the solar symbol ⊙︎). This equates to about two nonillion (two quintillion in the long scale) kilograms:

M = (1.98847±0.00007)×1030 kg

The above mass is about 332946 times the mass of Earth (M), or 1047 times the mass of Jupiter (MJ).

Because Earth follows an elliptical orbit around the Sun, the solar mass can be computed from the equation for the orbital period of a small body orbiting a central mass. Based upon the length of the year, the distance from Earth to the Sun (an astronomical unit or AU), and the gravitational constant (G), the mass of the Sun is given by:

The value of G is difficult to measure and is only known with limited accuracy in SI units (see Cavendish experiment). The value of G times the mass of an object, called the standard gravitational parameter, is known for the Sun and several planets to much higher accuracy than G alone. As a result, the solar mass is used as the standard mass in the astronomical system of units.

Star

A star is type of astronomical object consisting of a luminous spheroid of plasma held together by its own gravity. The nearest star to Earth is the Sun. Many other stars are visible to the naked eye from Earth during the night, appearing as a multitude of fixed luminous points in the sky due to their immense distance from Earth. Historically, the most prominent stars were grouped into constellations and asterisms, the brightest of which gained proper names. Astronomers have assembled star catalogues that identify the known stars and provide standardized stellar designations. However, most of the estimated 300 sextillion (3×1023) stars in the Universe are invisible to the naked eye from Earth, including all stars outside our galaxy, the Milky Way.

For at least a portion of its life, a star shines due to thermonuclear fusion of hydrogen into helium in its core, releasing energy that traverses the star's interior and then radiates into outer space. Almost all naturally occurring elements heavier than helium are created by stellar nucleosynthesis during the star's lifetime, and for some stars by supernova nucleosynthesis when it explodes. Near the end of its life, a star can also contain degenerate matter. Astronomers can determine the mass, age, metallicity (chemical composition), and many other properties of a star by observing its motion through space, its luminosity, and spectrum respectively. The total mass of a star is the main factor that determines its evolution and eventual fate. Other characteristics of a star, including diameter and temperature, change over its life, while the star's environment affects its rotation and movement. A plot of the temperature of many stars against their luminosities produces a plot known as a Hertzsprung–Russell diagram (H–R diagram). Plotting a particular star on that diagram allows the age and evolutionary state of that star to be determined.

A star's life begins with the gravitational collapse of a gaseous nebula of material composed primarily of hydrogen, along with helium and trace amounts of heavier elements. When the stellar core is sufficiently dense, hydrogen becomes steadily converted into helium through nuclear fusion, releasing energy in the process. The remainder of the star's interior carries energy away from the core through a combination of radiative and convective heat transfer processes. The star's internal pressure prevents it from collapsing further under its own gravity. A star with mass greater than 0.4 times the Sun's will expand to become a red giant when the hydrogen fuel in its core is exhausted. In some cases, it will fuse heavier elements at the core or in shells around the core. As the star expands it throws a part of its mass, enriched with those heavier elements, into the interstellar environment, to be recycled later as new stars. Meanwhile, the core becomes a stellar remnant: a white dwarf, a neutron star, or if it is sufficiently massive a black hole.

Binary and multi-star systems consist of two or more stars that are gravitationally bound and generally move around each other in stable orbits. When two such stars have a relatively close orbit, their gravitational interaction can have a significant impact on their evolution. Stars can form part of a much larger gravitationally bound structure, such as a star cluster or a galaxy.

Sun

The Sun is the star at the center of the Solar System. It is a nearly perfect sphere of hot plasma, with internal convective motion that generates a magnetic field via a dynamo process. It is by far the most important source of energy for life on Earth. Its diameter is about 1.39 million kilometers (864,000 miles), or 109 times that of Earth, and its mass is about 330,000 times that of Earth. It accounts for about 99.86% of the total mass of the Solar System.

Roughly three quarters of the Sun's mass consists of hydrogen (~73%); the rest is mostly helium (~25%), with much smaller quantities of heavier elements, including oxygen, carbon, neon, and iron.The Sun is a G-type main-sequence star (G2V) based on its spectral class. As such, it is informally and not completely accurately referred to as a yellow dwarf (its light is closer to white than yellow). It formed approximately 4.6 billion years ago from the gravitational collapse of matter within a region of a large molecular cloud. Most of this matter gathered in the center, whereas the rest flattened into an orbiting disk that became the Solar System. The central mass became so hot and dense that it eventually initiated nuclear fusion in its core. It is thought that almost all stars form by this process.

The Sun is roughly middle-aged; it has not changed dramatically for more than four billion years, and will remain fairly stable for more than another five billion years. It currently fuses about 600 million tons of hydrogen into helium every second, converting 4 million tons of matter into energy every second as a result. This energy, which can take between 10,000 and 170,000 years to escape from its core, is the source of the Sun's light and heat. In about 5 billion years, when hydrogen fusion in its core has diminished to the point at which the Sun is no longer in hydrostatic equilibrium, its core will undergo a marked increase in density and temperature while its outer layers expand to eventually become a red giant. It is calculated that the Sun will become sufficiently large to engulf the current orbits of Mercury and Venus, and render Earth uninhabitable. After this, it will shed its outer layers and become a dense type of cooling star known as a white dwarf, and no longer produce energy by fusion, but still glow and give off heat from its previous fusion.

The enormous effect of the Sun on Earth has been recognized since prehistoric times, and the Sun has been regarded by some cultures as a deity. The synodic rotation of Earth and its orbit around the Sun are the basis of solar calendars, one of which is the predominant calendar in use today.

Uranus

Uranus (from the Latin name Ūranus for the Greek god Οὐρανός) is the seventh planet from the Sun. It has the third-largest planetary radius and fourth-largest planetary mass in the Solar System. Uranus is similar in composition to Neptune, and both have bulk chemical compositions which differ from that of the larger gas giants Jupiter and Saturn. For this reason, scientists often classify Uranus and Neptune as "ice giants" to distinguish them from the gas giants. Uranus' atmosphere is similar to Jupiter's and Saturn's in its primary composition of hydrogen and helium, but it contains more "ices" such as water, ammonia, and methane, along with traces of other hydrocarbons. It is the coldest planetary atmosphere in the Solar System, with a minimum temperature of 49 K (−224 °C; −371 °F), and has a complex, layered cloud structure with water thought to make up the lowest clouds and methane the uppermost layer of clouds. The interior of Uranus is mainly composed of ices and rock.Like the other giant planets, Uranus has a ring system, a magnetosphere, and numerous moons. The Uranian system has a unique configuration because its axis of rotation is tilted sideways, nearly into the plane of its solar orbit. Its north and south poles, therefore, lie where most other planets have their equators. In 1986, images from Voyager 2 showed Uranus as an almost featureless planet in visible light, without the cloud bands or storms associated with the other giant planets. Observations from Earth have shown seasonal change and increased weather activity as Uranus approached its equinox in 2007. Wind speeds can reach 250 metres per second (900 km/h; 560 mph).Uranus is the only planet whose name is derived directly from a figure from Greek mythology, from the Latinised version of the Greek god of the sky Ouranos.

Zodiac

The zodiac is an area of the sky that extends approximately 8° north or south (as measured in celestial latitude) of the ecliptic, the apparent path of the Sun across the celestial sphere over the course of the year. The paths of the Moon and visible planets are also within the belt of the zodiac.In Western astrology, and formerly astronomy, the zodiac is divided into twelve signs, each occupying 30° of celestial longitude and roughly corresponding to the constellations Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra, Scorpio, Sagittarius, Capricorn, Aquarius and Pisces.The twelve astrological signs form a celestial coordinate system, or more specifically an ecliptic coordinate system, which takes the ecliptic as the origin of latitude and the Sun's position at vernal equinox as the origin of longitude.

Facilities
Telescopes
Telescope
instruments
Miscellany

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.