Arundo donax

Arundo donax, giant cane, is a tall perennial cane. It is one of several so-called reed species. It has several names including carrizo, arundo, Spanish cane, Colorado river reed, wild cane, and giant reed.

Arundo donax grows in damp soils, either fresh or moderately saline, and is native to the Mediterranean Basin and Middle East,[1] and probably also parts of Africa and the southern Arabian Peninsula. It has been widely planted and naturalised in the mild temperate, subtropical and tropical regions of both hemispheres (Herrera & Dudley 2003), especially in the Mediterranean, California, the western Pacific and the Caribbean.[2][3] It forms dense stands on disturbed sites, sand dunes, in wetlands and riparian habitats.

Illustration Arundo donax0
Arundo donax
Arundo donax
Scientific classification
Kingdom: Plantae
Clade: Angiosperms
Clade: Monocots
Clade: Commelinids
Order: Poales
Family: Poaceae
Genus: Arundo
A. donax
Binomial name
Arundo donax


Arundo donax generally grows to 6 metres (20 ft) in height, or in ideal conditions can exceed 10 metres (33 ft). The hollow stems are 2 to 3 centimetres (0.79 to 1.18 in) in diameter. The grey-green swordlike leaves are alternate, 30 to 60 centimetres (12 to 24 in) long and 2 to 6 centimetres (0.79 to 2.36 in) wide with a tapered tip, and have a hairy tuft at the base. Overall, the plant resembles an outsize common reed (Phragmites australis) or a bamboo (subfamily Bambusoideae).

Arundo donax flowers in late summer, bearing upright, feathery plumes 40 to 60 centimetres (16 to 24 in) long, that are usually seedless or with seeds that are rarely fertile.[4] Instead, it mostly reproduces vegetatively by tough, fibrous underground rhizomes that form knotty, spreading mats which penetrate deep into the soil, up to 1 metre (3.3 ft) deep (Alden et al., 1998; Mackenzie, 2004). Stem and rhizome pieces less than 5 centimetres (2.0 in) long and containing a single node could sprout readily under a variety of conditions (Boose and Holt, 1999). This vegetative propagation appears well adapted to floods, which may break up individual A. donax clumps, spreading the pieces, which may sprout and colonise downstream (Mackenzie 2004).

Phyllostachys aurea - Arundo donax
Phyllostachys aurea (golden bamboo) and Arundo donax
Arundo donax
Arundo donax 2
Arundo donax
Arundo donax 1
Arundo donax


Arundo donax is a tall, perennial C3 grass in the subfamily Arundinoideae. Stems produced during the first growing season are unbranched and photosynthetic. In the Mediterranean, where a temperate climate is characterized by warm and dry summer and mild winter, new shoots of giant reed emerge around March, growing rapidly in June and July and producing stems and leaves. From late July the lower leaves start to dry, depending on seasonal temperature patterns. Drying accelerates during autumn when anthesis occurs from the beginning of October to the end of November. In this phenological stage moisture content falls significantly. In the low temperatures of winter giant reed stops its growth; regrowth occurs in springtime. Giant reed behaves as an annual in Central Europe where soil temperatures are low, due to poor freeze tolerance of the rhizomes.

The base growth temperature reported for giant reed is 7 °C,[5] with a maximum temperature of 30 °C. It has a high photosynthetic capacity, associated with absence of light saturation. Carbon dioxide exchange rates are high compared to other C3 and C4 species; maximum CO2 uptake ranged from 19.8 to 36.7 µmol m−2 s−1 under natural conditions, depending on irradiance and leaf age. Carbon dioxide exchange is regulated by leaf conductance.[6]

Genetic background

In most areas where giant reed grows (Mediterranean area and US), viable seeds are not produced.[7] It is reported that sterility of giant reed results from failure of the megaspore mother cell to divide.[8] This sterility, which drastically limits genetic variability, is an obstacle for breeding programs which aim to increase the productivity and biomass quality for energy conversion.[9] A total of 185 clones of A. donax were collected from California to South Carolina and genetically fingerprinted with the SRAP and TE-based markers.[10] Giant reed exhibited no molecular genetic variation despite the wide genomic coverage of the markers used in this study. The molecular data strongly point to a single genetic clone of A. donax in the United States, although multiple introductions of this plant into the United States have been documented. Another study conducted in the Mediterranean area sampled giant reed from 80 different sites, and demonstrated low gene diversity in this region as well. Results indicate the occurrence of post-meiotic alterations in the ovule and pollen developmental pathway. AFLP data support a monophyletic origin of giant reed and suggest that it originated in Asia, spreading from there into the Mediterranean Basin.


Giant reed is adapted to a wide variety of ecological conditions, but is generally associated with riparian and wetland systems. It is distributed across the southern United States from Maryland to California. Plants can grow in a variety of soils, from heavy clays to loose sands and gravelly soils, but prefer wet drained soils, where they produce dense monotypic stands. Giant reed was found to grow rapidly in soil contaminated with arsenic, cadmium and lead; limited metal translocation from roots to shoots accounted for its strong tolerance to heavy metals.[11] The same study determined that accumulations of As, Cd and Pb were high in roots but low in shoots, where SEM images showed thick and homogeneous stem tissue characteristics. In Pakistan, where the presence of arsenic has made risky the use of ground waters as a source of drinking water, a research study highlighted the phytoremediation potential of A. donax when grown in hydroponics cultures containing arsenic concentrations up to 1000 µg l−1.[12] Giant reed was able to translocate the metals absorbed into the shoot and to accumulate metals in the stalk and leaves above the root concentration, showing no toxic effects at As concentrations up to 600 µg l−1. Furthermore, the plant is not consumed by herbivores, a positive trait in phytoremediation plants.

Carbon sequestration

An increased environmental concern is the health of soil system as one of the main factors affecting quality and productivity of agroecosystems. Around the world, several regions are subjected to a decline of fertility due to an increasing degradation of soils, loss of organic matter and increasing desertification.[13] Recently research was carried out to evaluate, in the same pedological and climatic conditions, the impact of three long-term (14 years) agricultural systems, continuous giant reed, natural grassland, and cropping sequence, on the organic-matter characteristics and microbial biomass size in soil.[14] The study pointed out that a long term Giant reed cropping system, characterized by low tillage intensity, positively affect the amount and quality of soil organic matter. Arundo donax showed greater values than tilled management system for total soil organic carbon, light fraction carbon, dissolved organic carbon, and microbial biomass carbon. Regarding the humification parameters, there were noticed any statistically differences between giant reed and a cropping sequence (cereals-legumes cultivated conventionally).

Management in riparian habitats

Arundo is a highly invasive plant in southwestern North American rivers, and its promotion as a biofuel in other regions is of great concern to environmental scientists and land managers.[15] Arundo donax was introduced from the Mediterranean to California in the 1820s for roofing material and erosion control in drainage canals in the Los Angeles area (Bell 1997; Mackenzie 2004). Through spread and subsequent plantings as an ornamental plant, and for use as reeds in woodwind instruments, it has become naturalised throughout warm coastal freshwaters of North America, and its range continues to spread.

It has been planted widely through South America and Australasia (Boose and Holt 1999; Bell 1997) and in New Zealand it is listed under the National Pest Plant Accord as an "unwanted organism".[16] Despite its invasive characteristics in regions around the world where it is not native, Arundo is being promoted by the energy industry as a bio-fuel crop. Some of the regions, such as the southeastern United States have natural disturbances, such as hurricanes and floods, that could widely disperse this plant.

It is among the fastest-growing terrestrial plants in the world (nearly 10 centimetres (3.9 in) / day; Dudley, 2000). To present knowledge, Arundo does not provide any food sources or nesting habitats for wildlife. Replacement of native plant communities by Arundo results in low-quality habitat and altered ecosystem functioning (Bell 1997; Mackenzie 2004). For example, it damages California's riparian ecosystems by outcompeting native species, such as willows, for water. A. donax stems and leaves contain a variety of harmful chemicals, including silica and various alkaloids, which protect it from most insect herbivores and deter wildlife from feeding on it (Bell 1997; Miles et al. 1993; Mackenzie 2004). Grazing animals such as cattle, sheep, and goats may have some effect on it, but are unlikely to be useful in keeping it under control (Dudley 2000).

Arundo donax appears to be highly adapted to fires. It is highly flammable throughout the year, and during the drier months of the year (July to October), it can increase the probability, intensity, and spread of wildfires through the riparian environment, changing the communities from flood-defined to fire-defined communities.[17] After fires, A. donax rhizomes can resprout quickly, outgrowing native plants, which can result in large stands of A. donax along riparian corridors (Bell 1997; Scott 1994). Fire events thus push the system further toward mono-specific stands of A. donax.

A waterside plant community dominated by A. donax may also have reduced canopy shading of the in-stream habitat, which may result in increased water temperatures. This may lead to decreased oxygen concentrations and lower diversity of aquatic animals (Bell 1997).

As the impact of Arundo donax increased in the environment and native species various efforts have been taken to reduce its population. It has few natural enemies in its introduced range. Several Mediterranean insects have been imported into the United States as biological control agents (Bell, 1997; Miles et al. 1993; Mackenzie 2004, Goolsby 2007). The Arundo wasp, Tetramesa romana, the Arundo scale insect, Rhizaspidiotus donacis, and the Arundo fly, Cryptonevra are known to have some effect in damaging the plant. Tetramesa romana and more recently Rhizaspidiotus donacisis were registered in the US as biological control agents.

Other remedies like using mechanical force have also been employed, since outside its native range Arundo donax doesn’t reproduce by seeds, so removing its root structure can be effective at controlling it. Also preventing it from getting sunlight will deplete the plant of its resources and eventually kill it (Mackenzie 2004). Systemic herbicides and glyphosate are also used as chemical remedies.

The US Department of Homeland Security considers this plant invasive and in 2007 began researching biological controls.[18] In 2015, Texas Senator Carlos Uresti passed legislation to create a program to eradicate Arundo donax using herbicides and the Arundo wasp.[19]

In New Zealand's northernmost region, Arundo donax crowds out native plants,[20] reduces wildlife habitat, contributes to higher fire frequency and intensity, and modifies river hydrology.[21]


Energy crop

Energy crops are plants which are produced with the express purpose of using their biomass energetically [22] and at the same time reduce carbon dioxide emission. Biofuels derived from lignocellulosic plant material represent an important renewable energy alternative to transportation fossil fuels.[23] Perennial rhizomatous grasses display several positive attributes as energy crops because of their high productivity, low (no) demand for nutrient inputs consequent to the recycling of nutrients by their rhizomes, exceptional soil carbon sequestration - 4X switchgrass, multiple products, adaptation to saline soils and saline water, and resistance to biotic and abiotic stresses.

Giant reed is one of the most promising crops for energy production in the Mediterranean climate of Europe and Africa, where it has shown advantages as an indigenous crop (already adapted to the environment), durable yields, and resistant to long drought periods. Several field studies have highlighted the beneficial effect of giant reed crop on the environment due to its minimal soil tillage, fertilizer and pesticide needs. Furthermore, it offers protection against soil erosion,[24] one of the most important land degradation processes in Mediterranean and US environments. A. donax bioenergy feedstock has an impressive potential for several conversion processes. Dried biomass has a direct combustion high heating value of 3,400 kJ/kg (8,000 BTU/lb). In Italy, Arundo donax was used in one instance from 1937 to 1962 on a large-scale industrial basis for paper and dissolving pulp. This interest was stimulated primarily by the desire of the dictatorship, just before World War II, to be independent of foreign sources of textile fibres and the desire for an export product.[25] According to historical records made by Snia Viscosa, giant reed was established on 6 300 ha in Torviscosa (Udine), reaching the average annual production of 35 t ha−1.[26] Today several screening studies on energy crops have been carried out by several Universities in the US as well as in EU to evaluate and identify best management practices for maximizing biomass yields and assess environmental impacts.


Establishment is a critical point of cultivation. Stem and rhizome have a great ability to sprout after removal from mother plant and both can be used for clonal propagation. The use of rhizomes were found to be the better propagation method for this species, achieving better survival rate.[27] In this field study, it was noticed how the lowest density (12 500 rhizomes ha−1) resulted in taller and thicker plants compared to denser plantation (25 000 rhizomes ha−1). Seedbed preparation is conducted in the spring, immediately before planting, by a pass with a double-disk harrowing and a pass with a field cultivator. Giant reed has the possibility of adopting low plant density. The rhizomes were planted at 10–20 centimetres (3.9–7.9 in) of soil depth, with a minimum plant density of 10 000 plants per ha), while mature stems, with two or more nodes, can be planted 10–15 centimetres (3.9–5.9 in) deep. In order to ensure good root stand and adequate contact with the soil, sufficient moisture is needed immediately after planting. Pre-plant fertilizer is distributed according to the initial soil fertility, but usually an application of P at a rate of 80–100 kilograms (180–220 lb) ha−1 is applied.

A. donax maintains a high productive aptitude without irrigation under semi-arid climate conditions. In Southern Italy, a trial was carried out testing the yields performance of 39 genotypes, and an average yields of 22.1 t ha−1 dry matter in the second year were reached,[28] a comparable result with others results obtained in Spain (22.5 t ha−1) as well as in South Greece (19.0 t ha−1). Several reports underlined that it is more economical to grow giant reed under moderate irrigation.

In order to evaluate different management practices, nitrogen fertilizer and input demand was evaluated in a 6-year field study conducted at the University of Pisa. Fertilizer enhanced the productive capacity in the initial years, but as the years go by and as the radical apparatus progressively deepens, the differences due to fertilizer decrease until disappearing. Harvest time and plant density were found to not affect the biomass yields.

Due to its high growth rate and superior resource-capture capacity (light, water and nutrients), A. donax is not affected by weed competition from the second year. An application of post-emergence treatment is usually recommended. Giant reed has few known disease or insect pest, but in intensive cultivation, no pesticides are used.

To remove giant reed at the end of the crop cycle, there are mainly two methods: mechanical or chemical.[29] An excavator can be useful to dig out the rhizomes or alternatively a single late-season application of 3% glyphosate onto the foliar mass is efficient and effective with least hazardous to biota.[30] Glyphosate was selected as the most appropriate product for specific considerations on efficacy, environmental safety, soil residual activity, operator safety, application timing, and cost-effectiveness. However, glyphosate is only effective in fall when plants are actively transporting nutrients to the root zone, and multiple retreatments are usually needed. Other herbicides registered for aquatic use can be very effective in controlling Arundo at other times of the year.


Arundo donax is a strong candidate for use as a renewable biofuel source because of its fast growth rate and its ability to grow in different soil types and climatic conditions. A. donax will produce an average of three kilograms of biomass per square metre (25 tons per acre) once established.[31] The energy density of the biomass produced is 17 MJ/Kg regardless of fertilizer usage.[31] Outside its native range, this needs to be balanced against its major invasive potential.

Studies in the European Union have identified A. donax as the most productive and lowest impact of all energy biomass crops (see FAIR REPORT E.U. 2004).

Arundo donax's ability to grow for 20 to 25 years without replanting is also significant.

In the UK it is considered suitable for planting in and around water areas.[32]

Arundo donax grown in Australia was demonstrated as potential feedstock for producing advanced biofuels through hydrothermal liquefaction.[33]


Studies have found this plant to be rich in active tryptamine compounds, but there are more indications of the plants in India having these compounds than in the United States.[34] Toxins such as bufotenidine[35] and gramine[34] have also been found.

The dried rhizome with the stem removed has been found to contain 0.0057% DMT, 0.026% bufotenine, 0.0023% 5-MeO-MMT.[34] The flowers are also known to have DMT and the 5-methoxylated N-demethylated analogue, also 5-MeO-NMT. The quite toxic quaternary methylated salt of DMT, bufotenidine,[34] has been found in the flowers, and the cyclic dehydrobufotenidine has been found in the roots. A. donax is also known to release volatile organic compounds (VOCs), mainly isoprene.[36]


Arundo donax has been cultivated throughout Asia, southern Europe, northern Africa, and the Middle East for thousands of years. Ancient Egyptians wrapped their dead in the leaves. The canes contain silica, perhaps the reason for their durability, and have been used to make fishing rods, and walking sticks. Its stiff stems are also used as support for climbing plants or for vines.

This plant may have been used in combination with harmal (Peganum harmala) to create a brew similar to the South American ayahuasca, and may trace its roots to the Soma of lore.[37]


Mature reeds are used in construction as raw material, given their excellent properties and tubular shape. Its resemblance to bamboo permits their combination in buildings, though Arundo is more flexible.

In rural regions of Spain, for centuries there has existed a technique named cañizo, consisting of rectangles of approximately 2 by 1 meters of woven reeds to which clay or plaster could be added. A properly insulated cañizo in a roof could keep its mechanical properties for over 60 years. Its high silicon content allows the cane to keep its qualities through time. Its low weight, flexibility, good adherence of the cañizo fabric and low price of the raw material have been the main reasons that made this technique possible to our days. However, in the last decades, the rural migration from the countryside to urban centres and the extensive exploitation of land has substituted traditional crops. This has threatened very seriously its continuity.

Recently, initiatives are being taken to recover the use of this material, combining ancient techniques from southern Iraq mudhif (reed houses) with new materials.

Diverse associations and collectives, such as CanyaViva, are pioneering in the research in combination with Spanish universities.

Musical instruments

Ancient Greeks used cane (called Kalamos: A. donax) to make flutes, known as kalamavlos; this is a compound word, from kalamos (cane) + avlos (flute). At the time, the best cane for flutes came from the banks of river Kephissos, in Attica, Greece. Several kalamavlos tuned differently and tied together, made a syrinx or Panpipes. A. donax is still the principal source material of reed makers for clarinets, saxophones, oboes, bassoons, bagpipes, and other woodwind instruments.[38] The Var country in southern France contains the best-known supply of instrument reeds.

Additionally, giant reed has been used to make flutes for over 5,000 years. The pan pipes consist of ten or more pipes made from the cane. Also, the ancient end-blown flute ney (a) is made from the same reeds.

Other uses

When young, A. donax is readily browsed by ruminants, but it becomes unpalatable when maturing.[39] A. donax has also been used in constructed wetlands for wastewater treatment.[40]



  1. ^ Dudley, T.L., A.M. Lambert, A. Kirk, and Y. Tamagawa. 2008. Herbivores of Arundo donax in California. Pages 146-152 in Proceedings of the XII International Symposium on Biological Control of Weeds. Wallingford, UK: CAB International.
  2. ^ "Catalogue of Life 2008".
  3. ^ University of California website, Agriculture and Natural Resources
  4. ^ (Johnson et al. 2006)
  5. ^ Spencer, D.F., Ksander, G.G., 2006. Estimate Arundo donax ramet recruitment using degree-day based equation. Aquat. Bot. 85, 282–288.
  6. ^ Rossa B, TuAers AV, Naidoo G, von Willert DJ. 1998. Arundo donax L. (Poaceae)—a C3 species with unusually high photosynthetic capacity. Botanica Acta. 111:216–21.
  7. ^ Saltonstall, K., Lambert, A., Meyerson, L.A., 2010. Genetics and reproduction of common (Phragmites australis) and giant reed (Arundo donax). Invasive Plant Sci. Manag. 3, 495-505.
  8. ^ Bhanwra R.K., Choda S.P., Kumar S. 1982. Comparative embryology of some grasses. Proceedings of the Indian National Science Academy, 48, 152–162.
  9. ^ Mariani C., R. Cabrini, A. Danin, P. Piffanelli, A. Fricano, S. Gomarasca, M. Dicandilo, F. Grassi and C. Soave. 2010 Origin, diffusion and reproduction of the giant reed (Arundo donax L.) a promising weedy energy crop. Annals of Applied Biology. 157: 191–202.
  10. ^ Ahmad R., Liow P.S., Spencer D.F., Jasieniuk M. 2008. Molecular evidence for a single genetic clone of invasive Arundo donax in the United States. Aquatic Botany. 88: 113–120.
  11. ^ Guo, Z.H., and Miao, X.F., 2010. Growth changes and tissues anatomical characteristics of giant reed (Arundo donax L.) in soil contaminated with arsenic, cadmium and lead. J. Cent. South Univ. Technol. 17:770−777.
  12. ^ Mirza, N., Mahmood, Q., Pervez, A., Ahmad, R., Farooq, R., Shah, M.M., Azim, M.R. 2010. Phytoremediation potential of Arundo donax in arsenic-contaminated synthetic wastewater. Bioresour Technol. 101:5815-9.
  13. ^ Albaladejo, J., and E. Díaz. 1990. Degradation and regeneration of the soil in a Mediterranean Spanish coastline: Trials in Lucdeme project (Degradación y regeneración del suelo en el litoral mediterráneo español: Experiencias en el proyecto LUCDEME). In Soil degradation and rehabilitation in Mediterranean environmental conditions (Degradación y regeneración del suelo en condiciones ambientales medíterráneas), ed. J. Albaladejo et al., 191–214. Madrid: CSIC.
  14. ^ Riffaldi, R., Saviozzi, A., Cardelli, A., Bulleri, F., and Angelini, L. 2010. Comparison of Soil Organic-Matter Characteristics under the Energy Crop Giant Reed, Cropping Sequence and Natural Grass. Communications in Soil Science and Plant Analysis, 41:173–180.
  15. ^ Lambert, A.M., Dudley, T.L., Saltonstall, K., 2010. Ecology and impacts of the large-statured invasive grasses Arundo donax and Phragmites australis in North America. Invasive Plant Sci. Manag. 3, 489-494.
  16. ^ "Giant reed". Biosecurity New Zealand. Retrieved 2009-01-13.
  17. ^ Coffman, G., Ambrose, R., Rundel, P., 2010. Wildfire promotes dominance of invasive giant reed (Arundo donax) in riparian ecosystems. Biol. Invasions 12, 2723-2734.
  18. ^
  19. ^ Aguilar, Julian (2016-04-05). "New Carrizo Eradication Effort Reignites Old Debate". Texas Tribune.
  20. ^ "New Zealand imports insects to fight plant invader". BBC News. 2017-01-19. Retrieved 2017-01-21.
  21. ^ McAllister (2011). "Ecological impact of invasive Arundo donax populations in New Zealand: a 10 year study". Journal of Ecology. 53 (9): 62–67.
  22. ^ Lewandowski I, Scurlock JMO, Lindvall E, Christou M. 2003. The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe. Biomass and Bioenergy. 25:335–61.
  23. ^ Sanderson K. 2006. US biofuels: A field in ferment. Nature 444: 673-676.
  24. ^ Heaton, E., Voigt, T., and Long, S.P. 2004. A quantitative review comparing the yields of two candidate C4 perennial biomass crops in relation to nitrogen, temperature and water. Biomass and Bioenergy. 27:21–30.
  25. ^ Perdue RE (1958). Arundo donax – the source of musical reeds and industrial cellulose. Economic Botany 12: 368-404.
  26. ^ Facchini 1941 La canna gentile per la Produzione Della cellulose mobile. L’impresa agricolo-Industriale di Torviscosa
  27. ^ Christou M, Mardikis M, Alexopoulou E. 2000. Propagation material and plant density effects on the Arundo donax yields. In: Biomass for energy and industry: proceeding of the First World Conference, Sevilla, Spain, June 5–9, 2000. p. 1622–8.
  28. ^ Cosentino et al. 2006 First results on evaluation of Arundo donax (L.) clones collected in Southern Italy
  29. ^ Jackson 1998, Chemical control of giant reed (Arundo donax) and salt cedar (Tamarix ramosissima).
  30. ^ Spencer, D.F., Tan, W., Liow, P., Ksander, G., Whitehand, L.C., Weaver, S., Olson, J., Newhauser, M.,2008.Evaluation of glyphosate for managing giant reed (Arundo donax). InvasivePlantSci.Manage.1,248–254.
  31. ^ a b Angelini, L.G., Ceccarinia, L., and Bonarib E.; European Journal of Agronomy, 22, 2005, pp 375-389
  32. ^ BS 7370-5 Recommendations for maintenance of water areas
  33. ^ Kosinkova, Jana; Ramirez, Jerome; Jablonsky, Michal; Ristovski, Zoran; Brown, Richard; Rainey, Thomas (24 May 2017). "Energy and chemical conversion of five Australian lignocellulosic feedstocks into bio-crude through liquefaction". RSC Advances. 7 (44): 27707–27717. doi:10.1039/C7RA02335A.
  34. ^ a b c d Erowid Arundo Donax Info Page 1
  35. ^ Erowid Arundo Donax Info Page 3
  36. ^ Owen, S.M., Boissard, C., and Hewitt, C. N. Atmospheric Environment, 35, 2001, pp 5393–5409
  37. ^ S. Ghosal, S. K. Dutta, A. K. Sanyal, and Bhattacharya, "Arundo donax L. (Gramineae), Phytochemical and Pharmacological Evaluation," in the Journal of Medical Chemistry, vol. 12 (1969), p. 480.
  38. ^ Opperman, Kalman (1956). Handbook for making and Adjusting Single Reeds. New York, New York: Chappell & Co. p. 40.
  39. ^ Heuzé V., Tran G., Giger-Reverdin S., Lebas F., 2015. Giant reed (Arundo donax). Feedipedia, a programme by INRA, CIRAD, AFZ and FAO. Last updated on December 7, 2015, 17:39
  40. ^ Calheiros, Cristina SC, et al. "Use of constructed wetland systems with Arundo and Sarcocornia for polishing high salinity tannery wastewater." Journal of environmental management 95.1 (2012): 66-71.

General references

  1. Alden, P., F. Heath, A. Leventer, R. Keen, W. B. Zomfler, eds. 1998. National Audubon Society Field Guide to California. Knopf, New York.
  2. Bell, G. P. 1997. Ecology and Management of Arundo donax, and approaches to riparian habitat restoration in southern California. In Plant Invasions: Studies from North America and Europe, eds. J. H. Brock, M. Wade, P. Pysêk, and D. Green. pp. 103–113. Backhuys, Leiden, the Netherlands.
  3. Boose, A. B., and J. S. Holt. 1999. Environmental effects on asexual reproduction in Arundo donax. Weeds Research 39: 117-127.
  4. Dudley, T. L. 2000. Noxious wildland weeds of California: Arundo donax. In: Invasive plants of California's wildlands. C. Bossard, J. Randall, & M. Hoshovsky (eds.).
  5. Herrera, A., and T. L. Dudley. 2003. Invertebrate community reduction in response to Arundo donax invasion at Sonoma Creek. Biol.Invas 5:167-177.
  6. Mackenzie, A. 2004. Giant Reed. In: The Weed Workers' Handbook. C. Harrington and A. Hayes (eds.)
  7. Miles, D. H., K. Tunsuwan, V. Chittawong, U. Kokpol, M. I. Choudhary, and J. Clardy. 1993. Boll weevil antifeedants from Arundo donax. Phytochemistry 34: 1277-1279.
  8. Perdue, R. E. 1958. Arundo donax – source of musical reeds and industrial cellulose. Economic Botany 12: 368-404.
  9. Scott, G. 1994. Fire threat from Arundo donax. pp. 17–18 in: November 1993 Arundo donax workshop proceedings, Jackson, N.E. P. Frandsen, S. Douthit (eds.). Ontario, CA.
  10. Tu, M., C. Hurd, and J. M. Randall. 2001. Weed Control Methods Handbook: Tools and Techniques for Use in Natural Areas. The Nature Conservancy.
  11. Excerpted from Chapter 15 of TIHKAL, 1997

External links


Arundineae is a tribe of grasses, containing three genera.It is not to be confused with the bamboo tribe Arundinarieae and the panicoid tribe Arundinelleae.


Arundo is a genus of stout, perennial plants in the grass family.

Arundo is native to southern Europe, North Africa, and much of temperate Asia as far east as Japan. They grow to 3–6 m tall, occasionally to 10 m, with leaves 30–60 cm long and 3–6 cm broad.

SpeciesArundo collina Ten.

Arundo donax L. – Giant cane, Spanish cane (south and east Mediterranean, to India; naturalised in many additional areas and often invasive)

Arundo formosana Hack. – Nansei-shoto, Taiwan, Philippines

Arundo mediterranea Danin – Mediterranean

Arundo micrantha Lam. – Mediterranean

Arundo plinii Turra – Pliny's reed – Greece, Italy, Albania, CroatiaThere are over 200 species once considered part of Arundo but now regarded as better suited to other genera: Achnatherum, Agrostis, Ammophila, Ampelodesmos, Arthrostylidium, Arundinaria, Austroderia, Austrofestuca, Bambusa, Calamagrostis, Calammophila, Calamovilfa, Chionochloa, Chusquea, Cinna, Cortaderia, Dendrocalamus, Deschampsia, Dupontia, Gastridium, Gigantochloa, Graphephorum, Gynerium, Imperata, Indocalamus, Melica, Miscanthus, Molinia, Muhlenbergia, Neyraudia, Phalaris, Phragmites, Poa, Psammochloa, Rytidosperma, Saccharum, Schizostachyum, Scolochloa, Stipa, Thysanolaena, Trisetaria.

Batrachedra parvulipunctella

Batrachedra parvulipunctella is a species of moth of the Batrachedridae family. It is found in southern Europe and North Africa.Adults are on wing from May to June and again from July to September in two generations per year.

The larvae live in white silky cases, feeding on the waxy secretions of Coccoidea species (including Aclerda berlesii) which occur on Phragmitis australis and Arundo donax.

Coccidula rufa

Coccidula rufa is a species of beetle in family Coccinellidae. It is found in the Palearctic The beetles are found throughout Europe except in the far north North Africa and East across the Palearctic - Turkey,European Russia, the Caucasus, Siberia, the Russian Far East, Belarus, Ukraine, Moldova, Transcaucasia, Kazakhstan, Middle Asia,Western Asia, Afghanistan, Mongolia. They occur to an altitude of about 1000 meters.he preferred habitat is damp areas with swamp and water plants - slack and marshes, including peatlands but Coccidula rufa also occurs in dry biotopes (fields, meadows, sandy river banks, quarries, and gardens)

They eat aphids which they hunt on aquatic plants such as cane, reed, sedges, and gramineans in the genera Glyceria and Elymus They eat aphids which they hunt on the aquatic plants, especially Hyalopterus pruni which lives not only on Prunus species such as Prunus spinosa , but also on reeds ( Phragmites australis), Arundo donax and Molinia caerulea. Overwintering takes place in the reed.

Cosmopterix salahinella

Cosmopterix salahinella is a moth of the family Cosmopterigidae. It is found from Tunisia, Egypt, Libya and Israel east to Saudi Arabia and Iran.The wingspan is 10–12 mm. Adults are on wing from the end of January to the end of May. There are two generations per year in Egypt.

The larvae feed on Phragmites australis and Arundo donax. They mine the leaves of their host plant. Pupation takes place inside of the mine. Larvae can be found from summer to February.


Cynodon is a genus of plants in the grass family. It is native to warm temperate to tropical regions of the Old World, as well as being cultivated and naturalized in the New World and on many oceanic islands.

The genus name comes from Greek words meaning "dog-tooth". The genus as a whole as well as its species are commonly known as Bermuda grass or dog's tooth grass.

SpeciesCynodon aethiopicus - Africa; introduced in South Africa, Queensland, Hawaii, Texas

Cynodon barberi - India, Sri Lanka

Cynodon coursii - Madagascar

Cynodon dactylon - Old World; introduced in New World and on various islands

Cynodon incompletus - southern Africa; introduced in Australia, Argentina

Cynodon × magennisii - Limpopo, Gauteng, Mpumalanga; introduced in Texas, Alabama

Cynodon nlemfuensis - Africa from Ethiopia to Zimbabwe; introduced in South Africa, West Africa, Saudi Arabia, Philippines, Texas, Florida, Mesoamerica, northern South America, various islands

Cynodon plectostachyus - Chad, East Africa; introduced in Madagascar, Bangladesh, Mexico, West Indies, Paraguay, northeastern Argentina, Texas, California

Cynodon radiatus - China, Indian Subcontinent, Southeast Asia, Madagascar; introduced in Australia, New Guinea

Cynodon transvaalensis - South Africa, Lesotho; introduced in other parts of Africa plus in scattered locales in Iran, Australia, and the AmericasFormerly includedSeveral species now considered better suited to other genera, namely Arundo, Bouteloua, Brachyachne, Chloris, Cortaderia, Ctenium, Digitaria, Diplachne, Eleusine, Enteropogon, Eragrostis, Eustachys, Gynerium, Leptochloa, Molinia, Muhlenbergia, Phragmites, Poa, Spartina, Tridens, and Trigonochloa.

Desert riparian

Desert riparian is a North American desert vegetation type (or biome) occurring in the bottoms of canyons and drainages that have water at or near the surface most of the year. It is contrasted with the desert dry wash vegetation type in which water at or near the surface is lacking most of the year. The visual character is of large, lush green trees surrounded by dry desert vegetation and soil coloration. The area may be in a patch surrounding a spring (oasis), or in a strand following the course of water flow. Over 80% of known desert wildlife species use desert riparian areas. Common dominant species include Fremont cottonwood (Populus fremontii), Arizona ash (Fraxinus velutina), arroyo willow (Salix lasiolepis), Goodding's willow (Salix gooddingii), red willow (Salix laevigata), California fan palm (Washingtonia filifera), and invasive species such as salt cedar (Tamarix ramosissima), giant reed (Arundo donax), and Russian olive (Elaeagnus angustifolia). Salt cedar is particularly causing problems for this ecosystem because it is able to extract water more efficiently than cottonwoods and willows. Many noninvasive non-native species may also be found because springs and surface water areas in the desert often were old homesites where such species were intentionally planted, such as elm, black locust, and assorted fruit trees.

Double reed

A double reed is a type of reed used to produce sound in various wind instruments. The term double reed comes from the fact that there are two pieces of cane (or, less commonly, some other material) vibrating against each other. A single reed consists of one piece of cane which vibrates against a mouthpiece made of metal, hardened rubber, resin, or some other material. The term double reeds can also refer collectively to the class of instruments which use double reeds.

Giardino Botanico Alpinia

The Giardino Botanico Alpinia (4 hectares) is a botanical garden specializing in alpine plants, located at 800 m altitude above Stresa on Lake Maggiore, Province of Verbano-Cusio-Ossola, Piedmont, Italy. It can be reached via the Lido di Carciano - Alpino - Mottarone cable car, and is open daily in the warmer months.

The garden was established in 1934 with the name Duxia on a site with very fine views of the lake and mountains. Today it contains about 1,000 species, focusing mainly on the Alps and foothills, with additional specimens from the Caucasus, China, and Japan. Its collections include Artemisia (A. atrata, A. borealis, A. campestris, A. chamaemelifolia, A. genipi, A. Umbelliformis, A. vallesiaca), Campanula (C. bononiensis, C. excisa, C. glomerata, C. spicata, C. thyrsoides), Centaurea (C. bracteata, C. cyanus, C. Montana, C. phrygia, C. scabiosa, C. triumfetti), Dianthus (D. alpinus, D. carthusianorum, D. seguieri, D. sylvestris), Geranium (G. argenteum, G. macrorrhizum, G. phaeum, G. pratense, G. sanguineum, G. sylvaticum), and Silene (S. alpestris, S. dioica, S. rupestris, S. saxifraga, S. vallesia).

Additional species are displayed on nearby walks. The garden's nature walk displays Acer pseudoplatanus, Arundo donax, Betula pubescens, Cytisus scoparius, Fagus sylvatica, Frangula alnus, Fraxinus excelsior, Juniperus communis, Laburnum anagyroides, Lythrum salicaria, Sorbus aria, S. aucuparia, as well as Iris pseudacorus, I. sibirica, Myosotis scorpioides, Salix sp., Scirpus sylvaticus, Silphium perfoliatum, and Typha latifolia. The trail from Stresa to the Mottarone passes by Androsace vandellii, Campanula glomerata, Gentiana asclepiadea, G. kochiana, G. Kochiana, G. purpurea, Hypochoeris uniflora, Narcissus poeticus, Primula hirsuta, Rhododendron ferrugineum, Trollius europaeus, and Veratrum album.

Leucania zeae

Leucania zeae is a species of moth of the Noctuidae family. It is found in North Africa, southern Europe, Turkey, Israel, Iran, Iraq, Saudi Arabia, central Asia and western China.

Adults are on wing from March to November. There are multiple generation per year.

Recorded food plants include Arundo donax, Zea mays and other Gramineae species including cereals in Europe. It is occasionally considered a minor pest.

Pietro Tonolo

Pietro Tonolo (born May 30, 1959) is an Italian jazz saxophone player and composer.

Reed (mouthpiece)

A reed is a thin strip of material that vibrates to produce a sound on a musical instrument. Most woodwind instrument reeds are made from Arundo donax ("Giant cane") or synthetic material. Tuned reeds (as in harmonicas and accordions) are made of metal or synthetics. Musical instruments are classified according to the type and number of reeds.

The earliest types of single-reed instruments used idioglottal reeds, where the vibrating reed is a tongue cut and shaped on the tube of cane. Much later, single-reed instruments started using heteroglottal reeds, where a reed is cut and separated from the tube of cane and attached to a mouthpiece of some sort. By contrast, in an uncapped double reed instrument (such as the oboe and bassoon), there is no mouthpiece; the two parts of the reed vibrate against one another.


Scolochloa is a genus of grasses in the family Poaceae / Gramineae, now containing a single species, Scolochloa festucacea. Common rivergrass is a common name for the species. Scolochloa festucacea grows in Europe, temperate Asia, and North America. Its culms are erect and 100–150 centimetres (39–59 in) in height; its leaf blades are 15–30 cm (5.9–11.8 in) long and 5–10 mm (0.20–0.39 in) wide.

The genus formerly included a second species, Scolochloa arundinacea, which is now placed in the genus Arundo as Arundo donax.

Sesamia nonagrioides

Sesamia nonagrioides, the Mediterranean corn borer, Pink stalk borer or West African pink borer, is a moth of the Noctuidae family. It was described by Lefebvre in 1827. It is found in Spain, southern France, Italy and on the Balkan Peninsula, as well as in north-western, south-western and western Africa.The wingspan is 30–40 mm. The forewings are grey-yellowish, marked with a marginal band and with rounded spots. The hindwings are white.

There is a variable number of generations per year, ranging from two in southern France to up to four in Morocco.

The larvae feed on Phragmites communis and Arundo donax and probably also other grasses with thick stems. It is one of the most damaging pests of maize in the Mediterranean region. Larvae of the first generation are particularly destructive, because they tunnel the maize stem during the whole larval stage. The larvae are yellowish to brownish with a rust-coloured back and reach a length of 30–40 mm when full-grown.


The shawm () is a conical bore, double-reed woodwind instrument made in Europe from the 12th century to the present day. It achieved its peak of popularity during the medieval and Renaissance periods, after which it was gradually eclipsed by the oboe family of descendant instruments in classical music. It is likely to have come to Western Europe from the Eastern Mediterranean around the time of the Crusades. Double-reed instruments similar to the shawm were long present in Southern Europe and the East, for instance the Ancient Greek, and later Byzantine, aulos, the Persian sorna, and the Armenian duduk.

The body of the shawm is usually turned from a single piece of wood, and terminates in a flared bell somewhat like that of a trumpet. Beginning in the 16th century, shawms were made in several sizes, from sopranino to great bass, and four and five-part music could be played by a consort consisting entirely of shawms. All later shawms (excepting the smallest) have at least one key allowing a downward extension of the compass; the keywork is typically covered by a perforated wooden cover called the fontanelle. The bassoon-like double reed, made from the same arundo donax cane used for oboes and bassoons, is inserted directly into a socket at the top of the instrument, or in the larger types, on the end of a metal tube called the bocal. The pirouette, a small wooden attachment with a cavity in the center resembling a thimble, surrounds the lower part of the reed—this provides support for the lips and embouchure.Since only a short portion of the reed protrudes past the pirouette, the player has only limited contact with the reed, and therefore limited control of dynamics. The shawm’s conical bore and flaring bell, combined with the style of playing dictated by the use of a pirouette, gives the instrument a piercing, trumpet-like sound, well-suited for outdoor performances.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.