Apamin

Apamin is an 18 amino acid peptide neurotoxin found in apitoxin (bee venom).[2] Dry bee venom consists of 2–3% of apamin.[3] Apamin selectively blocks SK channels, a type of Ca2+-activated K+ channel expressed in the central nervous system. Toxicity is caused by only a few amino acids, these are cysteine1, lysine4, arginine13, arginine14 and histidine18. These amino acids are involved in the binding of apamin to the Ca2+-activated K+ channel. Due to its specificity for SK channels, apamin is used as a drug in biomedical research to study the electrical properties of SK channels and their role in the afterhyperpolarizations occurring immediately following an action potential.[4]

Apamin[1]
Apamin
Identifiers
3D model (JSmol)
ChEMBL
ChemSpider
ECHA InfoCard 100.041.969
Properties
C79H131N31O24S4
Molar mass 2027.33874 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Apamin Preproprotein
Identifiers
SymbolApamin
CAS number24345-16-2
Entrez406135
UniProtP01500

Origin

The first symptoms of apitoxin (bee venom), that are now thought to be caused by apamin, were described back in 1936 by Hahn and Leditschke. Apamin was first isolated by Habermann in 1965 from Apis mellifera, the Western honey bee. Apamin was named after this bee. Bee venom contains many other compounds, like histamine, phospholipase A2, hyaluronidase, MCD peptide, and the main active component melittin. Apamin was separated from the other compounds by gel filtration and ion exchange chromatography.[2]

Structure and active site

Apamin is a polypeptide possessing an amino acid sequence of H-Cys-Asn-Cys-Lys-Ala-Pro-Glu-Thr-Ala-Leu-Cys-Ala-Arg-Arg-Cys-Gln-Gln-His-NH2 (with disulfide bonds between Cys1-Cys11 and Cys3-Cys15). Apamin is very rigid because of the two disulfide bridges and seven hydrogen bonds. The three-dimensional structure of apamin has been studied with several spectroscopical techniques: HNMR, Circular Dichroism, Raman spectroscopy, FT-IR. The structure is presumed to consist of an alpha-helix and beta-turns, but the exact structure is still unknown.[5]

By local alterations it is possible to find the amino acids that are involved in toxicity of apamin. It was found by Vincent et al. that guanidination of the ε-amino group of lysine4 does not decrease toxicity. When the ε-amino group of lysine4 and the α-amino group of cysteine1 are acetylated or treated with fluorescamine, toxicity decreases with a factor of respectively 2.5 and 2.8. This is only a small decrease, which indicates that neither the ε-amino group of lysine4 nor the α-amino group of cysteine1 is essential for the toxicity of apamin. Glutamine7 was altered by formation of an amide bond with glycine ethyl ester, this resulted in a decrease in toxicity of a factor 2.0. Glutamine7 also doesn't appear to be essential for toxicity. When histidine18 is altered by carbethoxylation, toxicity decreases only by a factor 2.6. But when histidine18, the ε-amino group of lysine4 and the α-amino group of cysteine1 all are carbethoxylated and acetylated toxicity decreases drastically. This means that these three amino acids are not essential for toxicity on their own, but the three of them combined are. Chemical alteration of arginine13 and arginine14 by treatment of 1,2-cyclohexanedione and cleavage by trypsin decreases toxicity by a factor greater than 10. The amino acids that cause toxicity of apamin are cysteine1, lysine4, arginine13, arginine14 and histidine18.[6]

Toxicodynamics

Apamin is the smallest neurotoxin polypeptide known, and the only one that passes the blood-brain barrier.[6] Apamin thus reaches its target organ, the central nervous system. Here it inhibits small-conductance Ca2+-activated K+ channels (SK channels) in neurons. These channels are responsible for the afterhyperpolarizations that follow action potentials, and therefore regulate the repetitive firing frequency.[7] Three different types of SK channels show different characteristics. Only SK2 and SK3 are blocked by apamin, whereas SK1 is apamin insensitive. SK channels function as a tetramer of subunits. Heteromers have intermediate sensitivity.[7] SK channels are activated by the binding of intracellular Ca2+ to the protein calmodulin, which is constitutively associated to the channel.[8] Transport of potassium ions out of the cell along their concentration gradient causes the membrane potential to become more negative. The SK channels are present in a wide range of excitable and non-excitable cells, including cells in the central nervous system, intestinal myocytes, endothelial cells, and hepatocytes.

Binding of apamin to SK channels is mediated by amino acids in the pore region as well as extracellular amino acids of the SK channel.[9] It is likely that the inhibition of SK channels is caused by blocking of the pore region, which hinders the transport of potassium ions. This will increase the neuronal excitability and lower the threshold for generating an action potential. Other toxins that block SK channels are tamapin and scyllatoxin.

Toxicokinetics

The kinetics of labeled derivatives of apamin were studied in vitro and in vivo in mice by Cheng-Raude et al. This shed some light on the kinetics of apamin itself. The key organ for excretion is likely to be the kidney, since enrichment of the labeled derivatives was found there. The peptide apamin is small enough to pass the glomerular barrier, facilitating renal excretion. The central nervous system, contrarily, was found to contain only very small amounts of apamin. This is unexpected, as this is the target organ for neurotoxicity caused by apamin. This low concentration thus appeared to be sufficient to cause the toxic effects.[10]

However, these results disagree with a study of Vincent et al. After injection of a supralethal dose of radioactive acetylated apamin in mice, enrichment was found in the spinal cord, which is part of the target organ. Some other organs, including kidney and brain, contained only small amounts of the apamin derivative.[6]

Symptoms

Symptoms following bee sting may include:

Patients poisoned with bee venom can be treated with anti-inflammatory medication, antihistamines and oral prednisolone.[11]

Apamin is an element in bee venom. You can come into contact with apamin through bee venom, so the symptoms that are known are not caused by apamin directly, but by the venom as a whole. Apamin is the only neurotoxin acting purely on the central nervous system. The symptoms of apamin toxicity are not well known, because people are not easily exposed to the toxin alone.[12]

Through research about the neurotoxicity of apamin some symptoms were discovered. In mice, the injection of apamin produces convulsions and long-lasting spinal spasticity. Also it is known that the polysynaptic spinal reflexes are disinhibited in cats.[12] Polysynaptic reflex is a reflex action that transfers an impulse from a sensory neuron to a motor neuron via an interneuron in the spinal cord.[13] In rats, apamin was found to cause tremor and ataxia, as well as dramatic haemorrhagic effects in the lungs.[14]

Furthermore, apamin has been found to be 1000 times more efficient when applied into the ventricular system instead of the peripheral nervous system. The ventricular system is a set of structures in the brain containing cerebrospinal fluid. The peripheral nervous system contains the nerves and ganglia outside of the brain and spinal cord.[12] This difference in efficiency can easily be explained. Apamin binds to the SK channels, which differ slightly in different tissues. So apamin binding is probably stronger in SK channels in the ventricular system than in other tissues.

Toxicity rates

In earlier years it was thought that apamin was a rather nontoxic compound (LD50 = 15 mg/kg in mice) compared to the other compounds in bee venom.[15] The current lethal dose values of apamin measured in mice are given below.[16] There are no data known specific for humans.

Intraperitoneal (mouse) LD50: 3.8 mg/kg

Subcutaneous (mouse) LD50: 2.9 mg/kg

Intravenous (mouse) LD50: 4 mg/kg

Intracerebral (mouse) LD50: 1800 ng/kg

Parenteral (mouse) LD50: 600 mg/kg

Therapeutic use

Recent studies have shown that SK channels do not only regulate afterhyperpolarization, they also have an effect on synaptic plasticity. This is the activity-dependent adaptation of the strength of synaptic transmission. Synaptic plasticity is an important mechanism underlying learning and memory processes. Apamin is expected to influence these processes by inhibiting SK channels. It has been shown that apamin enhances learning and memory in rats and mice.[7][17] This may provide a basis for the use of apamin as a treatment for memory disorders and cognitive dysfunction. However, due to the risk of toxic effects, the therapeutic window is very narrow.[17]

SK channel blockers may have a therapeutic effect on Parkinson's disease. Dopamine, which is depleted in this disease, will be released from midbrain dopaminergic neurons when these SK channels are inhibited. SK channels have also been proposed as targets for the treatment of epilepsy, emotional disorders and schizophrenia.[17]

References

  1. ^ Apamin - Compound Summary, PubChem.
  2. ^ a b Habermann E (1984). "Apamin". Pharmacology & Therapeutics. 25 (2): 255–70. doi:10.1016/0163-7258(84)90046-9. PMID 6095335.
  3. ^ Son DJ, Lee JW, Lee YH, Song HS, Lee CK, Hong JT (Aug 2007). "Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds". Pharmacology & Therapeutics. 115 (2): 246–70. doi:10.1016/j.pharmthera.2007.04.004. PMID 17555825.
  4. ^ Castle NA, Haylett DG, Jenkinson DH (Feb 1989). "Toxins in the characterization of potassium channels". Trends in Neurosciences. 12 (2): 59–65. doi:10.1016/0166-2236(89)90137-9. PMID 2469212.
  5. ^ Kastin AJ. Apamin. handbook of biologically active peptides (2013 ed.). pp. 417–418.
  6. ^ a b c Vincent JP, Schweitz H, Lazdunski M (Jun 1975). "Structure-function relationships and site of action of apamin, a neurotoxic polypeptide of bee venom with an action on the central nervous system". Biochemistry. 14 (11): 2521–5. doi:10.1021/bi00682a035. PMID 1138869.
  7. ^ a b c M. Stocker; M. Krause; P. Pedarzani (1999). "An apamin-sentisitive Ca2+-activated K+ current in hippocampal pyramidal neurons". PNAS. 96 (8). doi:10.1073/pnas.96.8.4662. PMC 16389.
  8. ^ Stocker M (Oct 2004). "Ca(2+)-activated K+ channels: molecular determinants and function of the SK family". Nature Reviews. Neuroscience. 5 (10): 758–70. doi:10.1038/nrn1516. PMID 15378036.
  9. ^ Nolting A, Ferraro T, D'hoedt D, Stocker M (Feb 2007). "An amino acid outside the pore region influences apamin sensitivity in small conductance Ca2+-activated K+ channels". The Journal of Biological Chemistry. 282 (6): 3478–86. doi:10.1074/jbc.M607213200. PMC 1849974. PMID 17142458.
  10. ^ Cheng-Raude D, Treloar M, Habermann E (1976). "Preparation and pharmacokinetics of labeled derivatives of apamin". Toxicon. 14 (6): 467–76. doi:10.1016/0041-0101(76)90064-7. PMID 1014036.
  11. ^ a b Saravanan R, King R, White J (Apr 2004). "Transient claw hand owing to a bee sting. A report of two cases". The Journal of Bone and Joint Surgery. British Volume. 86 (3): 404–5. doi:10.1302/0301-620x.86b3.14311. PMID 15125129.
  12. ^ a b c Habermann E (Nov 1977). "Neurotoxicity of apamin and MCD peptide upon central application". Naunyn-Schmiedeberg's Archives of Pharmacology. 300 (2): 189–91. doi:10.1007/bf00505050. PMID 593441.
  13. ^ "polysynaptic reflex".
  14. ^ Lallement G, Fosbraey P, Baille-Le-Crom V, Tattersall JE, Blanchet G, Wetherell JR, Rice P, Passingham SL, Sentenac-Roumanou H (Dec 1995). "Compared toxicity of the potassium channel blockers, apamin and dendrotoxin". Toxicology. 104 (1–3): 47–52. doi:10.1016/0300-483X(95)03120-5. PMID 8560501.
  15. ^ department of the army Edgewood Arsenal biodemical laboratory (1972). "Beta adrenergic and antiarrhythmic effect of apamin, a component of bee venom".
  16. ^ "Apamin" (PDF). Material Safety Data Sheet.
  17. ^ a b c Faber ES, Sah P (Oct 2007). "Functions of SK channels in central neurons". Clinical and Experimental Pharmacology & Physiology. 34 (10): 1077–83. doi:10.1111/j.1440-1681.2007.04725.x. PMID 17714097.

External links

Apitoxin

Apitoxin, or honey bee venom, is a cytotoxic and hemotoxic bitter colorless liquid containing proteins, which may produce local inflammation. It may have similarities to sea nettle toxin.

Barbiturate overdose

Barbiturate overdose is poisoning due to excessive doses of barbiturates. Symptoms typically include difficulty thinking, poor coordination, decreased level of consciousness, and a decreased effort to breathe (respiratory depression). Complications of overdose can include noncardiogenic pulmonary edema. If death occurs this is typically due to a lack of breathing.Barbiturate overdose may occur by accident or purposefully in an attempt to cause death. The toxic effects are additive to those of alcohol and benzodiazepines. The lethal dose varies with a person's tolerance and how the drug is taken. The effects of barbiturates occur via the GABA neurotransmitter. Exposure may be verified by testing the urine or blood.Treatment involves supporting a person's breathing and blood pressure. While there is no antidote, activated charcoal may be useful. Multiple doses of charcoal may be required. Hemodialysis may occasionally be considered. Urine alkalinisation has not been found to be useful. While once a common cause of overdose, barbiturates are now a rare cause.

Cinchonism

Cinchonism or quinism is a pathological condition caused by an overdose of quinine or quinidine, or their natural source, cinchona bark. Quinine and its derivatives are used medically to treat malaria. In much smaller amounts, quinine is an ingredient of tonic drinks, acting as a bittering agent. Cinchonism can occur from therapeutic doses of quinine, either from one or several large doses. Quinidine (Class 1A anti-arrhythmic) can also cause cinchonism symptoms to develop with as little as a single dose.

Cobalt poisoning

Cobalt poisoning is intoxication caused by excessive levels of cobalt in the body. Cobalt is an essential element for health in animals in minute amounts as a component of Vitamin B12. A deficiency of cobalt, which is very rare, is also potentially lethal, leading to pernicious anemia.Exposure to cobalt metal dust is most common in the fabrication of tungsten carbide. Another potential source is wear and tear of metal-on-metal hip prostheses.

Diarrhetic shellfish poisoning

Diarrhetic shellfish poisoning (DSP) is one of the four recognized symptom types of shellfish poisoning, the others being paralytic shellfish poisoning, neurotoxic shellfish poisoning and amnesic shellfish poisoning.

As the name suggests, this syndrome manifests itself as intense diarrhea and severe abdominal pains. Nausea and vomiting may sometimes occur too.

DSP and its symptoms usually set in within about half an hour of ingesting infected shellfish, and last for about one day. A recent case in France, though, with 20 people consuming oysters manifested itself after 36 hours. The causative poison is okadaic acid, which inhibits intestinal cellular de-phosphorylation. This causes the cells to become very permeable to water and causes profuse, intense diarrhea with a high risk of dehydration. As no life-threatening symptoms generally emerge from this, no fatalities from DSP have ever been recorded.

KCNN2

Potassium intermediate/small conductance calcium-activated channel, subfamily N, member 2, also known as KCNN2, is a protein which in humans is encoded by the KCNN2 gene. KCNN2 is an ion channel protein also known as KCa2.2.

MCD peptide

Mast cell degranulating (MCD) peptide is a cationic 22-amino acid residue peptide, which is a component of the venom of the bumblebee (Megabombus pennsylvanicus). At low concentrations, MCD peptide can stimulate mast cell degranulation. At higher concentrations, it has anti-inflammatory properties. In addition, it is a potent blocker of voltage-sensitive potassium channels.

Maurotoxin

Maurotoxin (abbreviated MTX) is a peptide toxin from the venom of the Tunisian chactoid scorpion Scorpio maurus palmatus, from which it was first isolated and from which the chemical gets its name. It acts by blocking several types of voltage-gated potassium channel.

Neurotoxic shellfish poisoning

Neurotoxic shellfish poisoning is caused by the consumption of shellfish contaminated by breve-toxins or brevetoxin analogs.Symptoms in humans include vomiting and nausea and a variety of neurological symptoms such as slurred speech. No fatalities have been reported but there are a number of cases which led to hospitalization.

SK channel

SK channels (small conductance calcium-activated potassium channels) are a subfamily of Ca2+-activated K+ channels. They are so called because of their small single channel conductance in the order of 10 pS. SK channels are a type of ion channel allowing potassium cations to cross the cell membrane and are activated (opened) by an increase in the concentration of intracellular calcium through N-type calcium channels. Their activation limits the firing frequency of action potentials and is important for regulating afterhyperpolarization in the neurons of the central nervous system as well as many other types of electrically excitable cells. This is accomplished through the hyperpolarizing leak of positively charged potassium ions along their concentration gradient into the extracellular space. This hyperpolarization causes the membrane potential to become more negative. SK channels are thought to be involved in synaptic plasticity and therefore play important roles in learning and memory.

Schmidt sting pain index

The Schmidt sting pain index is a pain scale rating the relative pain caused by different hymenopteran stings. It is mainly the work of Justin O. Schmidt (born 1947), an entomologist at the Carl Hayden Bee Research Center in Arizona. Schmidt has published a number of papers on the subject, and claims to have been stung by the majority of stinging Hymenoptera.

His original paper in 1983 was a way to systematize and compare the hemolytic properties of insect venoms. The index contained in the paper started from 0 for stings that are completely ineffective against humans, progressed through 2, a familiar pain such as a common bee or wasp sting and finished at 4 for the most painful stings. Synoeca septentrionalis, along with other wasps in the genus Synoeca, bullet ants and tarantula hawks were the only species to attain this ranking. In the conclusion, some descriptions of the most painful examples were given, e.g.: "Paraponera clavata stings induced immediate, excruciating pain and numbness to pencil-point pressure, as well as trembling in the form of a totally uncontrollable urge to shake the affected part."

Subsequently, Schmidt has refined his scale, culminating in a paper published in 1990, which classifies the stings of 78 species and 41 genera of Hymenoptera. Schmidt described some of the experiences in vivid detail.An entry in The Straight Dope reported that "implausibly exact numbers" which do not appear in any of Schmidt’s published scientific papers were "wheedled out of him" by Outside magazine for an article it published in 1996.In September 2015, Schmidt was co-awarded the Ig Nobel Physiology and Entomology prize with Michael Smith, for their Hymenoptera research.

Scyllatoxin

Scyllatoxin (also leiurotoxin I) is a toxin, from the scorpion Leiurus quinquestriatus hebraeus, which blocks small-conductance Ca2+-activated K+ channels.

Shellfish poisoning

Shellfish poisoning includes four (4) syndromes that share some common features and are primarily associated with bivalve molluscs (such as mussels, clams, oysters and scallops.) These shellfish are filter feeders and, therefore, accumulate toxins produced by microscopic algae, such as cyanobacteria, diatoms and dinoflagellates.

Sulfuric acid poisoning

Sulfuric acid poisoning refers to ingestion of sulfuric acid, found in lead-acid batteries and some metal cleaners, pool cleaners, drain cleaners and anti-rust products.

Taicatoxin

Taicatoxin (TCX) is a snake toxin that blocks voltage-dependent L-type calcium channels and small conductance Ca2+-activated K+ channels. The name taicatoxin (TAIpan + CAlcium + TOXIN) is derived from its natural source, the taipan snake, the site of its action, calcium channels, and from its function as a toxin. Taicatoxin was isolated from the venom of Australian taipan snake, Oxyuranus scutellatus scutellatus. TCX is a secreted protein, produced in the venom gland of the snake.

Tamapin

Tamapin is a toxin from the Indian Red Scorpion (Mesobuthus tamalus), which is a selective and potent blocker of SK2 channels.

Tamulotoxin

Tamulotoxin (or Tamulus toxin, Tamulustoxin, in short form: TmTx) is a venomous neurotoxin from the Indian Red Scorpion (Hottentotta tamulus, Mesobuthus tamulus or Buthus tamulus).

Tetraethylammonium

Tetraethylammonium (TEA), (NEt+4) or (Et4N+) is a quaternary ammonium cation consisting of four ethyl groups attached to a central nitrogen atom, and is positively charged. It is a counterion used in the research laboratory to prepare lipophilic salts of inorganic anions. It is used similarly to tetrabutylammonium, the difference being that its salts are less lipophilic and more easily crystallized.

Tin poisoning

Tin poisoning refers to the toxic effects of tin and its compounds. Cases of poisoning from tin metal, its oxides, and its salts are "almost unknown"; on the other hand certain organotin compounds are almost as toxic as cyanide.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.