Anesthetic

An anesthetic (American English) or anaesthetic (British English; see spelling differences) is a drug used to induce anesthesia - in other words, to result in a temporary loss of sensation or awareness. They may be divided into two broad classes: general anesthetics, which cause a reversible loss of consciousness, and local anesthetics, which cause a reversible loss of sensation for a limited region of the body without necessarily affecting consciousness.

A wide variety of drugs are used in modern anesthetic practice. Many are rarely used outside anesthesiology, but others are used commonly in various fields of healthcare. Combinations of anesthetics are sometimes used for their synergistic and additive therapeutic effects. Adverse effects, however, may also be increased.[1] Anesthetics are distinct from analgesics, which block only sensation of painful stimuli.

Erythroxylum novogranatense var. Novogranatense (retouched)
Leaves of the coca plant (Erythroxylum novogranatense var. Novogranatense), from which cocaine , the only naturally occurring local anesthetic, is derived.

Local anesthetics

Local anesthetic agents prevent transmission of nerve impulses without causing unconsciousness. They act by reversibly binding to fast sodium channels from within nerve fibers, thereby preventing sodium from entering the fibres, stabilising the cell membrane and preventing action potential propagation. Each of the local anesthetics have the suffix "-caine" in their names.

Local anesthetics can be either ester- or amide-based. Ester local anesthetics (such as procaine, amethocaine, cocaine, benzocaine, tetracaine) are generally unstable in solution and fast-acting, are rapidly metabolised by cholinesterases in the blood plasma and liver, and more commonly induce allergic reactions. Amide local anesthetics (such lidocaine, prilocaine, bupivicaine, levobupivacaine, ropivacaine, mepivacaine, dibucaine and etidocaine) are generally heat-stable, with a long shelf life (around two years). Amides have a slower onset and longer half-life than ester anesthetics, and are usually racemic mixtures, with the exception of levobupivacaine (which is S(-) -bupivacaine) and ropivacaine (S(-)-ropivacaine). Amides are generally used within regional and epidural or spinal techniques, due to their longer duration of action, which provides adequate analgesia for surgery, labor, and symptomatic relief.

Only preservative-free local anesthetic agents may be injected intrathecally.

Pethidine also has local anesthetic properties, in addition to its opioid effects.[2]

General anesthetics

Inhaled agents

Volatile agents are specially formulated organic liquids that evaporate readily into vapors, and are given by inhalation for induction or maintenance of general anesthesia. Nitrous oxide and xenon are gases at room temperature rather than liquids, so they are not considered volatile agents. The ideal anesthetic vapor or gas should be non-flammable, non-explosive, and lipid-soluble. It should possess low blood gas solubility, have no end-organ (heart, liver, kidney) toxicity or side-effects, should not be metabolized, and should not be an irritant to the respiratory pathways of the patient.

No anaesthetic agent currently in use meets all these requirements, nor can any anaesthetic agent be considered safe. There are inherent risks and drug interactions that are specific to each and every patient.[3] The agents in widespread current use are isoflurane, desflurane, sevoflurane, and nitrous oxide. Nitrous oxide is a common adjuvant gas, making it one of the most long-lived drugs still in current use. Because of its low potency, it cannot produce anesthesia on its own but is frequently combined with other agents. Halothane, an agent introduced in the 1950s, has been almost completely replaced in modern anesthesia practice by newer agents because of its shortcomings.[4] Partly because of its side effects, enflurane never gained widespread popularity.[4]

In theory, any inhaled anesthetic agent can be used for induction of general anesthesia. However, most of the halogenated anesthetics are irritating to the airway, perhaps leading to coughing, laryngospasm and overall difficult inductions. For this reason, the most frequently used agent for inhalational induction is sevoflurane. All of the volatile agents can be used alone or in combination with other medications to maintain anesthesia (nitrous oxide is not potent enough to be used as a sole agent).

Volatile agents are frequently compared in terms of potency, which is inversely proportional to the minimum alveolar concentration. Potency is directly related to lipid solubility. This is known as the Meyer-Overton hypothesis. However, certain pharmacokinetic properties of volatile agents have become another point of comparison. Most important of those properties is known as the blood/gas partition coefficient. This concept refers to the relative solubility of a given agent in blood. Those agents with a lower blood solubility (i.e., a lower blood–gas partition coefficient; e.g., desflurane) give the anesthesia provider greater rapidity in titrating the depth of anesthesia, and permit a more rapid emergence from the anesthetic state upon discontinuing their administration. In fact, newer volatile agents (e.g., sevoflurane, desflurane) have been popular not due to their potency (minimum alveolar concentration), but due to their versatility for a faster emergence from anesthesia, thanks to their lower blood–gas partition coefficient.

Intravenous agents (non-opioid)

While there are many drugs that can be used intravenously to produce anesthesia or sedation, the most common are:

The two barbiturates mentioned above, thiopental and methohexital, are ultra-short-acting, and are used to induce and maintain anesthesia.[5] However, though they produce unconsciousness, they provide no analgesia (pain relief) and must be used with other agents.[5] Benzodiazepines can be used for sedation before or after surgery and can be used to induce and maintain general anesthesia.[5] When benzodiazepines are used to induce general anesthesia, midazolam is preferred.[5] Benzodiazepines are also used for sedation during procedures that do not require general anesthesia.[5] Like barbiturates, benzodiazepines have no pain-relieving properties.[5] Propofol is one of the most commonly used intravenous drugs employed to induce and maintain general anesthesia.[5] It can also be used for sedation during procedures or in the ICU.[5] Like the other agents mentioned above, it renders patients unconscious without producing pain relief.[5] Because of its favorable physiological effects, "etomidate has been primarily used in sick patients".[5] Ketamine is infrequently used in anesthesia because of the unpleasant experiences that sometimes occur on emergence from anesthesia, which include "vivid dreaming, extracorporeal experiences, and illusions."[6] However, like etomidate it is frequently used in emergency settings and with sick patients because it produces fewer adverse physiological effects.[5] Unlike the intravenous anesthetic drugs previously mentioned, ketamine produces profound pain relief, even in doses lower than those that induce general anesthesia.[5] Also unlike the other anesthetic agents in this section, patients who receive ketamine alone appear to be in a cataleptic state, unlike other states of anesthesia that resemble normal sleep. Ketamine-anesthetized patients have profound analgesia but keep their eyes open and maintain many reflexes.[5]

Neonatal and infant neurotoxicity concerns

Concerns have been raised as to the safety of general anesthetics, in particular ketamine and isoflurane in neonates and young children due to significant neurodegeneration. The risk of neurodegeneration is increased in combination of these agents with nitrous oxide and benzodiazepines such as midazolam. This has led to the FDA and other bodies to take steps to investigate these concerns.[7] These concerns have arisen from animal studies involving rats and non-human primates. Research has found that anesthetics which enhance GABA or block NMDA can precipitate neuronal cell death in these animals. The developing central nervous system is most vulnerable to these potential neurotoxic effects during the last trimester of pregnancy and shortly after birth. Melatonin, a free oxygen radical scavenger and indirect antioxidant is known to reduce the toxicity of a range of drugs has been found in a rat study to reduce the neurotoxicity of anesthetic agents to the early developing brain.[8] Recent research in animals has found that all sedatives and anesthetics cause extensive neurodegeneration in the developing brain. There is also some evidence in humans that surgery and exposure to anesthetics in the early developmental stages causes persisting learning deficits.[9]

Intravenous opioid analgesic agents

While opioids can produce unconsciousness, they do so unreliably and with significant side effects.[10][11] So, while they are rarely used to induce anesthesia, they are frequently used along with other agents such as intravenous non-opioid anesthetics or inhalational anesthetics.[5] Furthermore, they are used to relieve pain of patients before, during, or after surgery. The following opioids have short onset and duration of action and are frequently used during general anesthesia:

The following agents have longer onset and duration of action and are frequently used for post-operative pain relief:

Muscle relaxants

Muscle relaxants do not render patients unconscious or relieve pain. Instead, they are sometimes used after a patient is rendered unconscious (induction of anesthesia) to facilitate intubation or surgery by paralyzing skeletal muscle.

Adverse effects

  • Depolarizing Muscle Relaxants i.e. Suxamethonium
    • Hyperkalemia – A small rise of 0.5 mmol/l occurs normally, this is of little consequence unless potassium is already raised such as in renal failure
    • Hyperkalemia – Exaggerated potassium release in burn patients (occurs from 24 hours after injury, lasting for up to 2 years), neuromuscular disease and paralyzed (quadraplegic, paraplegic) patients. The mechanism is reported to be through upregulation of acetylcholine receptors in those patient populations with increased efflux of potassium from inside muscle cells. May cause life-threatening arrhythmia
    • Muscle aches, commoner in young muscular patients who mobilize soon after surgery
    • Bradycardia, especially if repeat doses are given
    • Malignant hyperthermia, a potentially life-threatening condition in susceptible patients
    • Suxamethonium Apnea, a rare genetic condition leading to prolonged duration of neuromuscular blockade, this can range from 20 minutes to a number of hours. Not dangerous as long as it is recognized and the patient remains intubated and sedated, there is the potential for awareness if this does not occur.
    • Anaphylaxis
  • Non-depolarizing Muscle Relaxants
    • Histamine release e.g. Atracurium & Mivacurium
    • Anaphylaxis

Another potentially disturbing complication where neuromuscular blockade is employed is 'anesthesia awareness'. In this situation, patients paralyzed may awaken during their anesthesia, due to an inappropriate decrease in the level of drugs providing sedation or pain relief. If this fact is missed by the anesthesia provider, the patient may be aware of their surroundings, but be incapable of moving or communicating that fact. Neurological monitors are increasingly available that may help decrease the incidence of awareness. Most of these monitors use proprietary algorithms monitoring brain activity via evoked potentials. Despite the widespread marketing of these devices many case reports exist in which awareness under anesthesia has occurred despite apparently adequate anesthesia as measured by the neurologic monitor.

Intravenous reversal agents

  • Flumazenil, reverses the effects of benzodiazepines
  • Naloxone, reverses the effects of opioids
  • Neostigmine, helps reverse the effects of non-depolarizing muscle relaxants
  • Sugammadex, new agent that is designed to bind Rocuronium therefore terminating its action

References

  1. ^ Hendrickx, JF.; Eger, EI.; Sonner, JM.; Shafer, SL. (August 2008). "Is synergy the rule? A review of anesthetic interactions producing hypnosis and immobility". Anesth Analg. 107 (2): 494–506. doi:10.1213/ane.0b013e31817b859e. PMID 18633028.
  2. ^ Latta, KS; Ginsberg, B; Barkin, RL (2001). "Meperidine: a critical review". American Journal of Therapeutics. 9 (1): 53–68. doi:10.1097/00045391-200201000-00010. PMID 11782820.
  3. ^ Krøigaard, M.; Garvey, LH.; Menné, T.; Husum, B. (October 2005). "Allergic reactions in anaesthesia: are suspected causes confirmed on subsequent testing?". Br J Anaesth. 95 (4): 468–71. doi:10.1093/bja/aei198. PMID 16100238.
  4. ^ a b Townsend, Courtney (2004). Sabiston Textbook of Surgery. Philadelphia: Saunders. Chapter 17 – Anesthesiology Principles, Pain Management, and Conscious Sedation. ISBN 0-7216-5368-5.
  5. ^ a b c d e f g h i j k l m n Miller, Ronald (2005). Miller's Anesthesia. New York: Elsevier/Churchill Livingstone. ISBN 0-443-06656-6.
  6. ^ Garfield, JM; Garfield, FB; Stone, JG; Hopkins, D; Johns, LA (1972). ": A comparison of psychologic responses to ketamine and thiopental-nitrous oxide-halothane anesthesia". Anesthesiology. 36 (4): 329–338. doi:10.1097/00000542-197204000-00006. PMID 5020642.
  7. ^ Mellon, RD.; Simone, AF.; Rappaport, BA. (March 2007). "Use of anesthetic agents in neonates and young children". Anesth Analg. 104 (3): 509–20. doi:10.1213/01.ane.0000255729.96438.b0. PMID 17312200. Archived from the original on 9 March 2009.
  8. ^ Wang, C.; Slikker, W. (June 2008). "Strategies and experimental models for evaluating anesthetics: effects on the developing nervous system". Anesth Analg. 106 (6): 1643–58. doi:10.1213/ane.ob013e3181732c01. PMID 18499593. Archived from the original on 2 April 2009.
  9. ^ Istaphanous, GK.; Loepke, AW. (June 2009). "General anesthetics and the developing brain". Current Opinion in Anesthesiology. 22 (3): 368–73. doi:10.1097/ACO.0b013e3283294c9e. PMID 19434780.
  10. ^ Philbin, DM; Rosow, CE; Schneider, RC; Koski, G; D'ambra, MN (1990). ": Fentanyl and sufentanil anesthesia revisited: how much is enough?". Anesthesiology. 73 (1): 5–11. doi:10.1097/00000542-199007000-00002. PMID 2141773.
  11. ^ Streisand JB, Bailey PL, LeMaire L, Ashburn MA, Tarver SD, Varvel J, Stanley TH (April 1993). "Fentanyl-induced rigidity and unconsciousness in human volunteers. Incidence, duration, and plasma concentrations". Anesthesiology. 78 (4): 629–34. doi:10.1097/00000542-199304000-00003. PMID 8466061.

External links

Anaesthetic machine

An anaesthetic machine (British English) or anesthesia machine (American English; see spelling differences) is a medical device used to generate and mix a fresh gas flow of medical gases and inhalational anaesthetic agents for the purpose of inducing and maintaining anaesthesia.

The machine is commonly used together with a mechanical ventilator, breathing system, suction equipment, and patient monitoring devices; strictly speaking, the term "anaesthetic machine" refers only to the component which generates the gas flow, but modern machines usually integrate all these devices into one combined freestanding unit, which is colloquially referred to as the "anaesthetic machine" for the sake of simplicity. In the developed world, the most frequent type in use is the continuous-flow anaesthetic machine or "Boyle's machine", which is designed to provide an accurate supply of medical gases mixed with an accurate concentration of anaesthetic vapour, and to deliver this continuously to the patient at a safe pressure and flow. This is distinct from intermittent-flow anaesthetic machines, which provide gas flow only on demand when triggered by the patient's own inspiration.

Simpler anaesthetic apparatus may be used in special circumstances, such as the Triservice anaesthetic apparatus, a simplified anaesthesia delivery system invented for the British Defence Medical Services, which is light and portable and may be used effectively even when no medical gases are available. This device has unidirectional valves which suck in ambient air, which can be enriched with oxygen from a cylinder, with the help of a set of bellows. A large number of draw-over type of anaesthesia devices are still in use in India for administering an air-ether mixture to the patient, which can be enriched with oxygen.

Anesthesia

Anesthesia or anaesthesia (from Greek "without sensation") is a state of controlled, temporary loss of sensation or awareness that is induced for medical purposes. It may include analgesia (relief from or prevention of pain), paralysis (muscle relaxation), amnesia (loss of memory), or unconsciousness. A patient under the effects of anesthetic drugs is referred to as being anesthetized.

Anesthesia enables the painless performance of medical procedures that would otherwise cause severe or intolerable pain to an unanesthetized patient, or would otherwise be technically unfeasible. Three broad categories of anesthesia exist:

General anesthesia suppresses central nervous system activity and results in unconsciousness and total lack of sensation.

Sedation suppresses the central nervous system to a lesser degree, inhibiting both anxiety and creation of long-term memories without resulting in unconsciousness.

Regional and local anesthesia, which block transmission of nerve impulses from a specific part of the body. Depending on the situation, this may be used either on its own (in which case the patient remains conscious), or in combination with general anesthesia or sedation. Drugs can be targeted at peripheral nerves to anesthetize an isolated part of the body only, such as numbing a tooth for dental work or using a nerve block to inhibit sensation in an entire limb. Alternatively, epidural or spinal anesthesia can be performed in the region of the central nervous system itself, suppressing all incoming sensation from nerves outside the area of the block.In preparing for a medical procedure, the clinician chooses one or more drugs to achieve the types and degree of anesthesia characteristics appropriate for the type of procedure and the particular patient. The types of drugs used include general anesthetics, local anesthetics, hypnotics, sedatives, neuromuscular-blocking drugs, narcotics, and analgesics.

Risks during and following anesthesia are difficult to quantify, since many may be related to a variety of factors related to anesthesia itself, the nature of the procedure being performed and the patient's medical health. Examples of major risks include death, heart attack and pulmonary embolism whereas minor risks can include postoperative nausea and vomiting and hospital readmission. Of these factors, the person's health prior to the procedure(stratified by the ASA physical status classification system) has the greatest bearing on the probability of a complication occurring. Patients typically wake within minutes of anesthesia being terminated and regain their senses within hours.

Anesthesia awareness

Anesthesia awareness, also referred to as accidental awareness during general anaesthesia (AAGA) or unintended intra-operative awareness, is a potential complication occurring during general anesthesia where the intended state of complete unconsciousness is not maintained throughout the whole procedure. It can occur either because of failure to deliver sufficient anesthetic medication to the patient's body or because of individual patient factors that mean the patient is resistant to what would normally be an adequate dose of anesthetic medication.

Anesthetic vaporizer

An anesthetic vaporizer is a device generally attached to an anesthetic machine which delivers a given concentration of a volatile anesthetic agent. It works by controlling the vaporization of anesthetic agents from liquid, and then accurately controlling the concentration in which these are added to the fresh gas flow. The design of these devices takes account of varying: ambient temperature, fresh gas flow, and agent vapor pressure.

Butamben

Butamben is a local anesthetic. It is the ester of 4-aminobenzoic acid and butanol.

A white, odourless, crystalline powder. that is mildy soluble in water (1 part in 7000) and soluble in alcohol, ether, chloroform, fixed oils, and dilute acids. It slowly hydrolyses when boiled with water. Synonyms include Butamben, Butilaminobenzoato, and Butoforme. Proprietary names includes Alvogil in Spain and Alvogyl in Switzerland. It is one of three components in the topical anesthetic Cetacaine.

Desflurane

Desflurane (1,2,2,2-tetrafluoroethyl difluoromethyl ether) is a highly fluorinated methyl ethyl ether used for maintenance of general anesthesia. Like halothane, enflurane, and isoflurane, it is a racemic mixture of (R) and (S) optical isomers (enantiomers). Together with sevoflurane, it is gradually replacing isoflurane for human use, except in economically undeveloped areas, where its high cost precludes its use. It has the most rapid onset and offset of the volatile anesthetic drugs used for general anesthesia due to its low solubility in blood.

Some drawbacks of desflurane are its low potency, its pungency and its high cost (though at low flow fresh gas rates, the cost difference between desflurane and isoflurane appears to be insignificant). It may cause tachycardia and airway irritability when administered at concentrations greater than 10 vol%. Due to this airway irritability, desflurane is infrequently used to induce anesthesia via inhalation techniques.

Though it vaporises very readily, it is a liquid at room temperature. Anaesthetic machines are fitted with a specialized anaesthetic vaporiser unit that heats liquid desflurane to a constant temperature. This enables the agent to be available at a constant vapor pressure, negating the effects fluctuating ambient temperatures would otherwise have on its concentration imparted into the fresh gas flow of the anesthesia machine.

Desflurane, along with enflurane and to a lesser extent isoflurane, has been shown to react with the carbon dioxide absorbent in anesthesia circuits to produce detectable levels of carbon monoxide through degradation of the anesthetic agent. The CO2 absorbent Baralyme, when dried, is most culpable for the production of carbon monoxide from desflurane degradation, although it is also seen with soda lime absorbent as well. Dry conditions in the carbon dioxide absorbent are conducive to this phenomenon, such as those resulting from high fresh gas flows.

Diethyl ether

Diethyl ether, or simply ether, is an organic compound in the ether class with the formula (C2H5)2O, sometimes abbreviated as Et2O (see Pseudoelement symbols). It is a colorless, highly volatile flammable liquid. It is commonly used as a solvent in laboratories and as a starting fluid for some engines. It was formerly used as a general anesthetic, until non-flammable drugs were developed, such as halothane. It has been used as a recreational drug to cause intoxication.

Dissociative

Dissociatives are a class of hallucinogen, which distort perceptions of sight and sound and produce feelings of detachment – dissociation – from the environment and self. This is done through reducing or blocking signals to the conscious mind from other parts of the brain. Although many kinds of drugs are capable of such action, dissociatives are unique in that they do so in such a way that they produce hallucinogenic effects, which may include sensory deprivation, dissociation, hallucinations, and dream-like states or trances. Some, which are nonselective in action and affect the dopamine and/or opioid systems, may be capable of inducing euphoria. Many dissociatives have general depressant effects and can produce sedation, respiratory depression, analgesia, anesthesia, and ataxia, as well as cognitive and memory impairment and amnesia.

General anaesthetic

General anaesthetics (or anesthetics, see spelling differences) are often defined as compounds that induce a loss of consciousness in humans or loss of righting reflex in animals. Clinical definitions are also extended to include the lack of awareness to painful stimuli, sufficient to facilitate surgical applications in clinical and veterinary practice. General anaesthetics do not act as analgesics and should also not be confused with sedatives. General anaesthetics are a structurally diverse group of compounds whose mechanisms encompasses multiple biological targets involved in the control of neuronal pathways. The precise workings are the subject of some debate and ongoing research.General anesthetics elicit a state of general anesthesia. It remains somewhat controversial regarding how this state should be defined. General anesthetics, however, typically elicit several key reversible effects: immobility, analgesia, amnesia, unconsciousness, and reduced autonomic responsiveness to noxious stimuli.

Inhalational anaesthetic

An inhalational anaesthetic is a chemical compound possessing general anaesthetic properties that can be delivered via inhalation. They are administered through a face mask, laryngeal mask airway or tracheal tube connected to an anaesthetic vaporiser and an anaesthetic delivery system. Agents of significant contemporary clinical interest include volatile anaesthetic agents such as isoflurane, sevoflurane and desflurane, as well as certain anaesthetic gases such as nitrous oxide and xenon.

Iontocaine

Iontocaine was an anesthetic medication, marketed under the two brand names Numby and Phoresor PM900 by IOMED inc. It is a local anesthetic with vasoconstrictor, administered via iontophoresis through the skin. It can numb up to 10 mm of skin in as little as 10 minutes. It is a 2% lidocaine, 0.01 mg/ml epinephrine solution. It was manufactured by IOMED, Inc.

Iontocaine was approved by the United States Food and Drug Administration on 21 December 1995. It was discontinued by the manufacturer in 2005.

Local anesthesia

Local anesthesia is any technique to induce the absence of sensation in a specific part of the body, generally for the aim of inducing local analgesia, that is, local insensitivity to pain, although other local senses may be affected as well. It allows patients to undergo surgical and dental procedures with reduced pain and distress. In many situations, such as cesarean section, it is safer and therefore superior to general anesthesia. It is also used for relief of non-surgical pain and to enable diagnosis of the cause of some chronic pain conditions. Anesthetists sometimes combine both general and local anesthesia techniques.

The following terms are often used interchangeably:

Local anesthesia, in a strict sense, is anesthesia of a small part of the body such as a tooth or an area of skin.

Regional anesthesia is aimed at anesthetizing a larger part of the body such as a leg or arm.

Conduction anesthesia encompasses a great variety of local and regional anesthetic techniques.

Local anesthetic

A local anesthetic (LA) is a medication that causes absence of pain sensation. When it is used on specific nerve pathways (local anesthetic nerve block), paralysis (loss of muscle power) also can be achieved.

Clinical LAs belong to one of two classes: aminoamide and aminoester local anesthetics. Synthetic LAs are structurally related to cocaine. They differ from cocaine mainly in that they have a very low abuse potential and do not produce hypertension or (with few exceptions) vasoconstriction.

They are used in various techniques of local anesthesia such as:

Topical anesthesia (surface)

Topical administration of cream, gel, ointment, liquid, or spray of anaesthetic dissolved in DMSO or other solvents/carriers for deeper absorption

Infiltration

Brachial plexus block

Epidural (extradural) block

Spinal anesthesia (subarachnoid block)

Iontophoresis

Meet Your Meat

Meet Your Meat is a 2002 documentary about factory farming created by People for the Ethical Treatment of Animals (PETA), narrated by Alec Baldwin, and directed by Bruce Friedrich and Cem Akin. The documentary explores the treatment of animals in modern animal agriculture (also known as industrial agriculture or factory farming). The film runs 12 minutes long.

The film documents several cases of cruelty to animals, including:

Egg-laying hens live in crowded cages, six or seven hens to one battery cage the size of a file drawer.

Cattle are castrated, their horns are removed and third-degree burns (livestock branding) are inflicted on them, all without anesthetic.

Cows used for their milk have calves removed from them shortly after birth. These calves are sent to veal farms.

Chickens bred and drugged to grow so quickly that their hearts, lungs, and limbs often can't keep up.

Mother pigs (sows) are confined to gestation crates that are so small that the pigs cannot turn around or even lie down.

Chickens' and turkeys' beaks are burned or cut off without anesthetic.

Meet Your Meat helped influence Burger King to adopt more humane policies.

Nerve block

Nerve block or regional nerve blockade is any deliberate interruption of signals traveling along a nerve, often for the purpose of pain relief. Local anesthetic nerve block (sometimes referred to as simply "nerve block") is a short-term block, usually lasting hours or days, involving the injection of an anesthetic, a corticosteroid, and other agents onto or near a nerve. Neurolytic block, the deliberate temporary degeneration of nerve fibers through the application of chemicals, heat, or freezing, produces a block that may persist for weeks, months, or indefinitely. Neurectomy, the cutting through or removal of a nerve or a section of a nerve, usually produces a permanent block. Because neurectomy of a sensory nerve is often followed, months later, by the emergence of new, more intense pain, sensory nerve neurectomy is rarely performed.

The concept of nerve block sometimes includes central nerve block, which includes epidural and spinal anaesthesia.

Procaine

Procaine is a local anesthetic drug of the amino ester group. It is used primarily to reduce the pain of intramuscular injection of penicillin, and it is also used in dentistry. Owing to the ubiquity of the trade name Novocain, in some regions, procaine is referred to generically as novocaine. It acts mainly as a sodium channel blocker. Today it is used therapeutically in some countries due to its sympatholytic, anti-inflammatory, perfusion-enhancing, and mood-enhancing effects.Procaine was first synthesized in 1905, shortly after amylocaine. It was created by the German chemist Alfred Einhorn who gave the chemical the trade name Novocaine, from the Latin nov- (meaning "new") and -caine, a common ending for alkaloids used as anesthetics. It was introduced into medical use by surgeon Heinrich Braun. Prior to the discovery of amylocaine and procaine, cocaine was a commonly used local anesthetic. Einhorn wished his new discovery to be used for amputations, but surgeons preferred general anesthetic. Dentists, however, found it very useful.

Topical anesthetic

A topical anesthetic is a local anesthetic that is used to numb the surface of a body part. They can be used to numb any area of the skin as well as the front of the eyeball, the inside of the nose, ear or throat, the anus and the genital area. Topical anesthetics are available in creams, ointments, aerosols, sprays, lotions, and jellies. Examples include benzocaine, butamben, dibucaine, lidocaine, oxybuprocaine, pramoxine, proparacaine, proxymetacaine, and tetracaine (also named amethocaine).

Vinyl ether

Vinyl ether is the organic compound with the formula O(CH=CH2)2. It is a colorless, volatile liquid. Under the tradename vinethene, vinyl ether was once used as an inhalation anesthetic. The analytical techniques used to study its pharmacology laid the groundwork for the testing of new anesthetic agents. Many divinyl ether derivatives of fatty acids exist in nature.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.