Amazon rainforest

The Amazon rainforest (Portuguese: Floresta Amazônica or Amazônia; Spanish: Selva Amazónica, Amazonía or usually Amazonia; French: Forêt amazonienne; Dutch: Amazoneregenwoud), also known in English as Amazonia or the Amazon Jungle, is a moist broadleaf forest in the Amazon biome that covers most of the Amazon basin of South America. This basin encompasses 7,000,000 km2 (2,700,000 sq mi), of which 5,500,000 km2 (2,100,000 sq mi) are covered by the rainforest. This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60% of the rainforest, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and France (French Guiana). States or departments in four nations contain "Amazonas" in their names. The Amazon represents over half of the planet's remaining rainforests,[1] and comprises the largest and most biodiverse tract of tropical rainforest in the world, with an estimated 390 billion individual trees divided into 16,000 species.[2]

Amazon rainforest
Amazon Manaus forest
Amazon rainforest, near Manaus, Brazil
Amazon rainforest
Map of the Amazon rainforest ecoregions as delineated by the WWF. The yellow line approximately encloses the Amazon drainage basin. National boundaries are shown in black.
(Satellite image from NASA)
LocationBrazil, Peru, Colombia, Venezuela, Ecuador, Bolivia, Guyana, Suriname, France (French Guiana)
CoordinatesCoordinates: 3°S 60°W / 3°S 60°W
Area5,500,000 km2 (2,100,000 sq mi)


The name Amazon is said to arise from a war Francisco de Orellana fought with the Tapuyas and other tribes. The women of the tribe fought alongside the men, as was their custom.[3] Orellana derived the name Amazonas from the Amazons of Greek mythology, described by Herodotus and Diodorus.[3]



Amazon CIAT (2)
Aerial view of the Amazon rainforest, near Manaus

The rainforest likely formed during the Eocene era. It appeared following a global reduction of tropical temperatures when the Atlantic Ocean had widened sufficiently to provide a warm, moist climate to the Amazon basin. The rainforest has been in existence for at least 55 million years, and most of the region remained free of savanna-type biomes at least until the current ice age, when the climate was drier and savanna more widespread.[4][5]

Following the Cretaceous–Paleogene extinction event, the extinction of the dinosaurs and the wetter climate may have allowed the tropical rainforest to spread out across the continent. From 66–34 Mya, the rainforest extended as far south as 45°. Climate fluctuations during the last 34 million years have allowed savanna regions to expand into the tropics. During the Oligocene, for example, the rainforest spanned a relatively narrow band. It expanded again during the Middle Miocene, then retracted to a mostly inland formation at the last glacial maximum.[6] However, the rainforest still managed to thrive during these glacial periods, allowing for the survival and evolution of a broad diversity of species.[7]

Campo12Foto 2
Aerial view of the Amazon rainforest.

During the mid-Eocene, it is believed that the drainage basin of the Amazon was split along the middle of the continent by the Purus Arch. Water on the eastern side flowed toward the Atlantic, while to the west water flowed toward the Pacific across the Amazonas Basin. As the Andes Mountains rose, however, a large basin was created that enclosed a lake; now known as the Solimões Basin. Within the last 5–10 million years, this accumulating water broke through the Purus Arch, joining the easterly flow toward the Atlantic.[8][9]

There is evidence that there have been significant changes in Amazon rainforest vegetation over the last 21,000 years through the Last Glacial Maximum (LGM) and subsequent deglaciation. Analyses of sediment deposits from Amazon basin paleolakes and from the Amazon Fan indicate that rainfall in the basin during the LGM was lower than for the present, and this was almost certainly associated with reduced moist tropical vegetation cover in the basin.[10] There is debate, however, over how extensive this reduction was. Some scientists argue that the rainforest was reduced to small, isolated refugia separated by open forest and grassland;[11] other scientists argue that the rainforest remained largely intact but extended less far to the north, south, and east than is seen today.[12] This debate has proved difficult to resolve because the practical limitations of working in the rainforest mean that data sampling is biased away from the center of the Amazon basin, and both explanations are reasonably well supported by the available data.

Sahara Desert dust windblown to the Amazon

More than 56% of the dust fertilizing the Amazon rainforest comes from the Bodélé depression in Northern Chad in the Sahara desert. The dust contains phosphorus, important for plant growth. The yearly Sahara dust replaces the equivalent amount of phosphorus washed away yearly in Amazon soil from rains and floods.[13] Up to 50 million tonnes of Sahara dust per year are blown across the Atlantic Ocean.[14][15] NASA Video.

NASA's CALIPSO satellite has measured the amount of dust transported by wind from the Sahara to the Amazon: an average 182 million tons of dust are windblown out of the Sahara each year, at 15 degrees west longitude, across 1,600 miles (2,600 km) over the Atlantic Ocean (some dust falls into the Atlantic), then at 35 degrees West longitude at the eastern coast of South America, 27.7 million tons (15%) of dust fall over the Amazon basin, 132 million tons of dust remain in the air, 43 million tons of dust are windblown and falls on the Caribbean Sea, past 75 degrees west longitude.[16]

CALIPSO uses a laser range finder to scan the Earth's atmosphere for the vertical distribution of dust and other aerosols. CALIPSO regularly tracks the Sahara-Amazon dust plume. CALIPSO has measured variations in the dust amounts transported – an 86 percent drop between the highest amount of dust transported in 2007 and the lowest in 2011.

A possibility causing the variation is the Sahel, a strip of semi-arid land on the southern border of the Sahara. When rain amounts in the Sahel are higher, the volume of dust is lower. The higher rainfall could make more vegetation grow in the Sahel, leaving less sand exposed to winds to blow away.[17]

Human activity

Índios isolados no Acre 5
Members of an uncontacted tribe encountered in the Brazilian state of Acre in 2009.

Based on archaeological evidence from an excavation at Caverna da Pedra Pintada, human inhabitants first settled in the Amazon region at least 11,200 years ago.[18] Subsequent development led to late-prehistoric settlements along the periphery of the forest by AD 1250, which induced alterations in the forest cover.[19]

Fazenda Colorada
Geoglyphs on deforested land in the Amazon rainforest, Acre.

For a long time, it was thought that the Amazon rainforest was only ever sparsely populated, as it was impossible to sustain a large population through agriculture given the poor soil. Archeologist Betty Meggers was a prominent proponent of this idea, as described in her book Amazonia: Man and Culture in a Counterfeit Paradise. She claimed that a population density of 0.2 inhabitants per square kilometre (0.52/sq mi) is the maximum that can be sustained in the rainforest through hunting, with agriculture needed to host a larger population.[20] However, recent anthropological findings have suggested that the region was actually densely populated. Some 5 million people may have lived in the Amazon region in AD 1500, divided between dense coastal settlements, such as that at Marajó, and inland dwellers.[21] By 1900, the population had fallen to 1 million and by the early 1980s it was less than 200,000.[21]

The first European to travel the length of the Amazon River was Francisco de Orellana in 1542.[22] The BBC's Unnatural Histories presents evidence that Orellana, rather than exaggerating his claims as previously thought, was correct in his observations that a complex civilization was flourishing along the Amazon in the 1540s. It is believed that the civilization was later devastated by the spread of diseases from Europe, such as smallpox.[23]

Since the 1970s, numerous geoglyphs have been discovered on deforested land dating between AD 1–1250, furthering claims about Pre-Columbian civilizations.[24][25] Ondemar Dias is accredited with first discovering the geoglyphs in 1977, and Alceu Ranzi is credited with furthering their discovery after flying over Acre.[23][26] The BBC's Unnatural Histories presented evidence that the Amazon rainforest, rather than being a pristine wilderness, has been shaped by man for at least 11,000 years through practices such as forest gardening and terra preta.[23] Terra preta is found over large areas in the Amazon forest; and is now widely accepted as a product of indigenous soil management. The development of this fertile soil allowed agriculture and silviculture in the previously hostile environment; meaning that large portions of the Amazon rainforest are probably the result of centuries of human management, rather than naturally occurring as has previously been supposed.[27] In the region of the Xingu tribe, remains of some of these large settlements in the middle of the Amazon forest were found in 2003 by Michael Heckenberger and colleagues of the University of Florida. Among those were evidence of roads, bridges and large plazas.[28] On 3 September 1989, Varig Flight 254 crashed into Amazon, killing 13 out of the 54 people on board.[29] On 26 September 2006, Gol Transportes Aéreos Flight 1907, a Boeing 737-800, collided with an embraer Legacy 600 above the amazon. The legacy jet landed safely, but flight 1907 lost control, broke up in mid-air, and crashed into the amazon, killing all 154 people onboard.[30]


Giant Waxy Monkey Frog
Deforestation in the Amazon rainforest threatens many species of tree frogs, which are very sensitive to environmental changes (pictured: giant leaf frog)
Ara macao - two at Lowry Park Zoo
Scarlet macaw, which is indigenous to the American tropics.

Wet tropical forests are the most species-rich biome, and tropical forests in the Americas are consistently more species rich than the wet forests in Africa and Asia.[31] As the largest tract of tropical rainforest in the Americas, the Amazonian rainforests have unparalleled biodiversity. One in ten known species in the world lives in the Amazon rainforest.[32] This constitutes the largest collection of living plants and animal species in the world.

The region is home to about 2.5 million insect species,[33] tens of thousands of plants, and some 2,000 birds and mammals. To date, at least 40,000 plant species, 2,200 fishes,[34] 1,294 birds, 427 mammals, 428 amphibians, and 378 reptiles have been scientifically classified in the region.[35] One in five of all bird species are found in the Amazon rainforest, and one in five of the fish species live in Amazonian rivers and streams. Scientists have described between 96,660 and 128,843 invertebrate species in Brazil alone.[36]

The biodiversity of plant species is the highest on Earth with one 2001 study finding a quarter square kilometer (62 acres) of Ecuadorian rainforest supports more than 1,100 tree species.[37] A study in 1999 found one square kilometer (247 acres) of Amazon rainforest can contain about 90,790 tonnes of living plants. The average plant biomass is estimated at 356 ± 47 tonnes per hectare.[38] To date, an estimated 438,000 species of plants of economic and social interest have been registered in the region with many more remaining to be discovered or catalogued.[39] The total number of tree species in the region is estimated at 16,000.[2]

Bauhinia guianensis, mature liana (9340889588)
A giant, bundled liana in western Brazil

The green leaf area of plants and trees in the rainforest varies by about 25% as a result of seasonal changes. Leaves expand during the dry season when sunlight is at a maximum, then undergo abscission in the cloudy wet season. These changes provide a balance of carbon between photosynthesis and respiration.[40]

The rainforest contains several species that can pose a hazard. Among the largest predatory creatures are the black caiman, jaguar, cougar, and anaconda. In the river, electric eels can produce an electric shock that can stun or kill, while piranha are known to bite and injure humans.[41] Various species of poison dart frogs secrete lipophilic alkaloid toxins through their flesh. There are also numerous parasites and disease vectors. Vampire bats dwell in the rainforest and can spread the rabies virus.[42] Malaria, yellow fever and Dengue fever can also be contracted in the Amazon region.

Isulas (8583611782)

Bullet ants have an extremely painful sting

Many parrots -Anangu, Yasuni National Park, Ecuador -clay lick-8

Parrots at clay lick in Yasuni National Park, Ecuador


Operação Hymenaea, Julho-2016 (29399454651)
Deforestation in the Maranhão state of Brazil, 2016

Deforestation is the conversion of forested areas to non-forested areas. The main sources of deforestation in the Amazon are human settlement and development of the land.[43] Prior to the early 1960s, access to the forest's interior was highly restricted, and the forest remained basically intact.[44] Farms established during the 1960s were based on crop cultivation and the slash and burn method. However, the colonists were unable to manage their fields and the crops because of the loss of soil fertility and weed invasion.[45] The soils in the Amazon are productive for just a short period of time, so farmers are constantly moving to new areas and clearing more land.[45] These farming practices led to deforestation and caused extensive environmental damage.[46] Deforestation is considerable, and areas cleared of forest are visible to the naked eye from outer space.

In the 1970s, construction began on the Trans-Amazonian highway. This highway represented a major threat to the Amazon rainforest.[47] The highway still has not been completed, limiting the environmental damage.

Between 1991 and 2000, the total area of forest lost in the Amazon rose from 415,000 to 587,000 square kilometres (160,000 to 227,000 sq mi), with most of the lost forest becoming pasture for cattle.[48] Seventy percent of formerly forested land in the Amazon, and 91% of land deforested since 1970, have been used for livestock pasture.[49][50] Currently, Brazil is the second-largest global producer of soybeans after the United States. New research however, conducted by Leydimere Oliveira et al., has shown that the more rainforest is logged in the Amazon, the less precipitation reaches the area and so the lower the yield per hectare becomes. So despite the popular perception, there has been no economical advantage for Brazil from logging rainforest zones and converting these to pastoral fields.[51]

The needs of soy farmers have been used to justify many of the controversial transportation projects that are currently developing in the Amazon. The first two highways successfully opened up the rainforest and led to increased settlement and deforestation. The mean annual deforestation rate from 2000 to 2005 (22,392 km2 or 8,646 sq mi per year) was 18% higher than in the previous five years (19,018 km2 or 7,343 sq mi per year).[52] Although deforestation has declined significantly in the Brazilian Amazon between 2004 and 2014, there has been an increase to the present day.[53]

Since the discovery of fossil fuel reservoirs in the Amazon rainforest, oil drilling activity has steadily increased, peaking in the Western Amazon in the 1970s and ushering another drilling boom in the 2000s.[54] As oil companies have to set up their operations by opening roads through forests, which often contributes to deforestation in the region.[55]


NASA satellite observation of deforestation in the Mato Grosso state of Brazil. The transformation from forest to farm is evident by the paler square shaped areas under development.

Fires and Deforestation on the Amazon Frontier, Rondonia, Brazil - August 12, 2007

Fires and deforestation in the state of Rondônia.

Fires and Deforestation on the Amazon Frontier, Rondonia, Brazil - September 30, 2007

One consequence of forest clearing in the Amazon: thick smoke that hangs over the forest.

Deforestation of Rainforest

Impact of Deforestation on Natural Habitat of Trees

Conservation and climate change

Amazon CIAT (5)
Amazon rainforest

Environmentalists are concerned about loss of biodiversity that will result from destruction of the forest, and also about the release of the carbon contained within the vegetation, which could accelerate global warming. Amazonian evergreen forests account for about 10% of the world's terrestrial primary productivity and 10% of the carbon stores in ecosystems[56] – of the order of 1.1 × 1011 metric tonnes of carbon.[57] Amazonian forests are estimated to have accumulated 0.62 ± 0.37 tons of carbon per hectare per year between 1975 and 1996.[57]

One computer model of future climate change caused by greenhouse gas emissions shows that the Amazon rainforest could become unsustainable under conditions of severely reduced rainfall and increased temperatures, leading to an almost complete loss of rainforest cover in the basin by 2100.[58][59] However, simulations of Amazon basin climate change across many different models are not consistent in their estimation of any rainfall response, ranging from weak increases to strong decreases.[60] The result indicates that the rainforest could be threatened though the 21st century by climate change in addition to deforestation.

In 1989, environmentalist C.M. Peters and two colleagues stated there is economic as well as biological incentive to protecting the rainforest. One hectare in the Peruvian Amazon has been calculated to have a value of $6820 if intact forest is sustainably harvested for fruits, latex, and timber; $1000 if clear-cut for commercial timber (not sustainably harvested); or $148 if used as cattle pasture.[61]

As indigenous territories continue to be destroyed by deforestation and ecocide, such as in the Peruvian Amazon[62] indigenous peoples' rainforest communities continue to disappear, while others, like the Urarina continue to struggle to fight for their cultural survival and the fate of their forested territories. Meanwhile, the relationship between non-human primates in the subsistence and symbolism of indigenous lowland South American peoples has gained increased attention, as have ethno-biology and community-based conservation efforts.

From 2002 to 2006, the conserved land in the Amazon rainforest has almost tripled and deforestation rates have dropped up to 60%. About 1,000,000 square kilometres (250,000,000 acres) have been put onto some sort of conservation, which adds up to a current amount of 1,730,000 square kilometres (430,000,000 acres).[63]

In April 2019 the court in Ecuador stopped oil exploration activities in 1,800 square kilometers of the Amazon rainforest[64]

Greenhouse Gas by Sector

Anthropogenic emission of greenhouse gases broken down by sector for the year 2000.

September Smoke Over the Amazon from 2005-2008

Aerosols over the Amazon each September for four burning seasons (2005 through 2008). The aerosol scale (yellow to dark reddish-brown) indicates the relative amount of particles that absorb sunlight.

Roots by cesarpb

Aerial roots of red mangrove on an Amazonian river.

A 2009 study found that a 4 °C rise in global temperatures by 2100 would kill 85% of the Amazon rainforest while a temperature rise of 3 °C would kill some 75% of the Amazon.[65]

Deforestation in the Amazon rainforest region have negative impact on local climate.It was one of the main reason that cause the severe Drought of 2014-2015 in Brazil[66][67] This is because the moisture from the forests is important to the rainfall in Brazil, Paraguay, Argentina. Half of the rainfall in the Amazon area is produced by the forests.[68]

Remote sensing

Afternoon Clouds over the Amazon Rainforest
This image reveals how the forest and the atmosphere interact to create a uniform layer of "popcorn-shaped" cumulus clouds.

The use of remotely sensed data is dramatically improving conservationists' knowledge of the Amazon basin. Given the objectivity and lowered costs of satellite-based land cover analysis, it appears likely that remote sensing technology will be an integral part of assessing the extent and damage of deforestation in the basin.[69] Furthermore, remote sensing is the best and perhaps only possible way to study the Amazon on a large scale.[70]

The use of remote sensing for the conservation of the Amazon is also being used by the indigenous tribes of the basin to protect their tribal lands from commercial interests. Using handheld GPS devices and programs like Google Earth, members of the Trio Tribe, who live in the rainforests of southern Suriname, map out their ancestral lands to help strengthen their territorial claims.[71] Currently, most tribes in the Amazon do not have clearly defined boundaries, making it easier for commercial ventures to target their territories.

To accurately map the Amazon's biomass and subsequent carbon related emissions, the classification of tree growth stages within different parts of the forest is crucial. In 2006, Tatiana Kuplich organized the trees of the Amazon into four categories: (1) mature forest, (2) regenerating forest [less than three years], (3) regenerating forest [between three and five years of regrowth], and (4) regenerating forest [eleven to eighteen years of continued development].[72] The researcher used a combination of Synthetic aperture radar (SAR) and Thematic Mapper (TM) to accurately place the different portions of the Amazon into one of the four classifications.

Impact of early 21st-century Amazon droughts

In 2005, parts of the Amazon basin experienced the worst drought in one hundred years,[73] and there were indications that 2006 may have been a second successive year of drought.[74] A July 23, 2006 article in the UK newspaper The Independent reported the Woods Hole Research Center results, showing that the forest in its present form could survive only three years of drought.[75][76] Scientists at the Brazilian National Institute of Amazonian Research argued in the article that this drought response, coupled with the effects of deforestation on regional climate, are pushing the rainforest towards a "tipping point" where it would irreversibly start to die. It concluded that the forest is on the brink of being turned into savanna or desert, with catastrophic consequences for the world's climate.

According to the World Wide Fund for Nature, the combination of climate change and deforestation increases the drying effect of dead trees that fuels forest fires.[77]

In 2010, the Amazon rainforest experienced another severe drought, in some ways more extreme than the 2005 drought. The affected region was approximate 1,160,000 square miles (3,000,000 km2) of rainforest, compared to 734,000 square miles (1,900,000 km2) in 2005. The 2010 drought had three epicenters where vegetation died off, whereas in 2005, the drought was focused on the southwestern part. The findings were published in the journal Science. In a typical year, the Amazon absorbs 1.5 gigatons of carbon dioxide; during 2005 instead 5 gigatons were released and in 2010 8 gigatons were released.[78][79] Additional severe droughts occurred in 2010, 2015, and 2016.[80]

See also


  1. ^ "WNF: Places: Amazon". Retrieved June 4, 2016.
  2. ^ a b "Field Museum scientists estimate 16,000 tree species in the Amazon". Field Museum. October 17, 2013. Retrieved October 18, 2013.
  3. ^ a b Taylor, Isaac (1898). Names and Their Histories: A Handbook of Historical Geography and Topographical Nomenclature. London: Rivingtons. ISBN 978-0-559-29668-0. Retrieved October 12, 2008.
  4. ^ Morley, Robert J. (2000). Origin and Evolution of Tropical Rain Forests. Wiley. ISBN 978-0-471-98326-2.
  5. ^ Burnham, Robyn J.; Johnson, Kirk R. (2004). "South American palaeobotany and the origins of neotropical rainforests". Philosophical Transactions of the Royal Society. 359 (1450): 1595–1610. doi:10.1098/rstb.2004.1531. PMC 1693437. PMID 15519975.
  6. ^ Maslin, Mark; Malhi, Yadvinder; Phillips, Oliver; Cowling, Sharon (2005). "New views on an old forest: assessing the longevity, resilience and future of the Amazon rainforest" (PDF). Transactions of the Institute of British Geographers. 30 (4): 477–499. doi:10.1111/j.1475-5661.2005.00181.x. Archived from the original (PDF) on October 1, 2008. Retrieved September 25, 2008.
  7. ^ Malhi, Yadvinder; Phillips, Oliver (2005). Tropical Forests & Global Atmospheric Change. Oxford University Press. ISBN 978-0-19-856706-6.
  8. ^ Costa, João Batista Sena; Bemerguy, Ruth Léa; Hasui, Yociteru; Borges, Maurício da Silva (2001). "Tectonics and paleogeography along the Amazon river". Journal of South American Earth Sciences. 14 (4): 335–347. Bibcode:2001JSAES..14..335C. doi:10.1016/S0895-9811(01)00025-6.
  9. ^ Milani, Edison José; Zalán, Pedro Victor (1999). "An outline of the geology and petroleum systems of the Paleozoic interior basins of South America" (PDF). Episodes. 22 (3): 199–205. Archived from the original (PDF) on October 1, 2008. Retrieved September 25, 2008.
  10. ^ Colinvaux, Paul A.; Oliveira, Paulo E. De (2000). "Palaeoecology and climate of the Amazon basin during the last glacial cycle". Journal of Quaternary Science. 15 (4): 347–356. Bibcode:2000JQS....15..347C. doi:10.1002/1099-1417(200005)15:4<347::AID-JQS537>3.0.CO;2-A.
  11. ^ Van Der Hammen, Thomas; Hooghiemstra, Henry (2000). "Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia". Quaternary Science Reviews. 19 (8): 725. Bibcode:2000QSRv...19..725V. CiteSeerX doi:10.1016/S0277-3791(99)00024-4.
  12. ^ Colinvaux, P.A.; De Oliveira, P.E.; Bush, M.B. (January 2000). "Amazonian and neotropical plant communities on glacial time-scales: The failure of the aridity and refuge hypotheses". Quaternary Science Reviews. 19 (1–5): 141–169. Bibcode:2000QSRv...19..141C. doi:10.1016/S0277-3791(99)00059-1.
  13. ^ Yu, Hongbin (2015). "The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations". Geophysical Research Letters. 42 (6): 1984–1991. Bibcode:2015GeoRL..42.1984Y. doi:10.1002/2015GL063040.
  14. ^ "Dust to gust". EurekAlert!. AAAS. 28 Dec 2006. URL accessed 2006-12-29.
  15. ^ Koren, Ilan; et al. (2006). "The Bodélé depression: a single spot in the Sahara that provides most of the mineral dust to the Amazon forest (abstract)". Environmental Research Letters. 1 (1): 014005. Bibcode:2006ERL.....1a4005K. doi:10.1088/1748-9326/1/1/014005. Retrieved January 1, 2007.
  16. ^ NASA 2015-02-22 NASA Satellite Reveals How Much Saharan Dust Feeds Amazon's Plants
  17. ^ "Desert Dust Feeds Amazon Forests – NASA Science".
  18. ^ Roosevelt, A.C.; da Costa, M. Lima; Machado, C. Lopes; Michab, M.; Mercier, N.; Valladas, H.; Feathers, J.; Barnett, W.; da Silveira, M. Imazio; Henderson, A.; Sliva, J.; Chernoff, B.; Reese, D.S.; Holman, J.A.; Toth, N.; Schick, K. (April 19, 1996). "Paleoindian Cave Dwellers in the Amazon: The Peopling of the Americas". Science. 272 (5260): 373–384. Bibcode:1996Sci...272..373R. doi:10.1126/science.272.5260.373.
  19. ^ Heckenberger, Michael J.; Kuikuro, Afukaka; Kuikuro, Urissapá Tabata; Russell, J. Christian; Schmidt, Morgan; Fausto, Carlos; Franchetto, Bruna (September 19, 2003). "Amazonia 1492: Pristine Forest or Cultural Parkland?". Science. 301 (5640): 1710–1714. Bibcode:2003Sci...301.1710H. doi:10.1126/science.1086112. PMID 14500979.
  20. ^ Meggers, Betty J. (December 19, 2003). "Revisiting Amazonia Circa 1492". Science. 302 (5653): 2067–2070. doi:10.1126/science.302.5653.2067b. PMID 14684803.
  21. ^ a b Chris C. Park (2003). Tropical Rainforests. Routledge. p. 108. ISBN 978-0-415-06239-8.
  22. ^ Smith, A (1994). Explorers of the Amazon. Chicago: University of Chicago Press. ISBN 978-0-226-76337-8.
  23. ^ a b c "Unnatural Histories – Amazon". BBC Four.
  24. ^ Simon Romero (January 14, 2012). "Once Hidden by Forest, Carvings in Land Attest to Amazon's Lost World". The New York Times.
  25. ^ Martti Pärssinen; Denise Schaan; Alceu Ranzi (2009). "Pre-Columbian geometric earthworks in the upper Purús: a complex society in western Amazonia". Antiquity. 83 (322): 1084–1095. doi:10.1017/s0003598x00099373.
  26. ^ Junior, Gonçalo (October 2008). "Amazonia lost and found". Pesquisa (ed.220).
  27. ^ The influence of human alteration has been generally underestimated, reports Darna L. Dufour: "Much of what has been considered natural forest in Amazonia is probably the result of hundreds of years of human use and management." "Use of Tropical Rainforests by Native Amazonians," BioScience 40, no. 9 (October 1990):658. For an example of how such peoples integrated planting into their nomadic lifestyles, see Rival, Laura (1993). "The Growth of Family Trees: Understanding Huaorani Perceptions of the Forest". Man. 28 (4): 635–652. doi:10.2307/2803990. JSTOR 2803990.
  28. ^ Heckenberger, M.J.; Kuikuro, A; Kuikuro, UT; Russell, JC; Schmidt, M; Fausto, C; Franchetto, B (September 19, 2003), "Amazonia 1492: Pristine Forest or Cultural Parkland?", Science (published 2003), 301 (5640), pp. 1710–14, Bibcode:2003Sci...301.1710H, doi:10.1126/science.1086112, PMID 14500979
  29. ^
  30. ^
  31. ^ Turner, I.M. 2001. The ecology of trees in the tropical rain forest. Cambridge University Press, Cambridge. ISBN 0-521-80183-4
  32. ^ "Amazon Rainforest, Amazon Plants, Amazon River Animals". World Wide Fund for Nature. Archived from the original on May 17, 2008. Retrieved May 6, 2008.
  33. ^ "Photos / Pictures of the Amazon Rainforest". Archived from the original on December 17, 2008. Retrieved December 18, 2008.
  34. ^ James S. Albert; Roberto E. Reis (March 8, 2011). Historical Biogeography of Neotropical Freshwater Fishes. University of California Press. p. 308. Archived from the original on June 30, 2011. Retrieved June 28, 2011.
  35. ^ Da Silva; Jose Maria Cardoso; et al. (2005). "The Fate of the Amazonian Areas of Endemism". Conservation Biology. 19 (3): 689–694. doi:10.1111/j.1523-1739.2005.00705.x.
  36. ^ Lewinsohn, Thomas M.; Paulo Inácio Prado (June 2005). "How Many Species Are There in Brazil?". Conservation Biology. 19 (3): 619–624. doi:10.1111/j.1523-1739.2005.00680.x.
  37. ^ Wright, S. Joseph (October 12, 2001). "Plant diversity in tropical forests: a review of mechanisms of species coexistence". Oecologia. 130 (1): 1–14. Bibcode:2002Oecol.130....1W. doi:10.1007/s004420100809. PMID 28547014.
  38. ^ Laurance, William F.; Fearnside, Philip M.; Laurance, Susan G.; Delamonica, Patricia; Lovejoy, Thomas E.; Rankin-de Merona, Judy M.; Chambers, Jeffrey Q.; Gascon, Claude (June 14, 1999). "Relationship between soils and Amazon forest biomass: a landscape-scale study". Forest Ecology and Management. 118 (1–3): 127–138. doi:10.1016/S0378-1127(98)00494-0.
  39. ^ "Amazon Rainforest". South AmericaTravel Guide. Archived from the original on August 12, 2008. Retrieved August 19, 2008.
  40. ^ Mynenia, Ranga B.; et al. (March 13, 2007). "Large seasonal swings in leaf area of Amazon rainforests". Proceedings of the National Academy of Sciences. 104 (12): 4820–4823. Bibcode:2007PNAS..104.4820M. doi:10.1073/pnas.0611338104. PMC 1820882. PMID 17360360.
  41. ^ "Piranha 'less deadly than feared'". BBC News. July 2, 2007. Archived from the original on July 7, 2007. Retrieved July 2, 2007.
  42. ^ da Rosa; Elizabeth S. T.; et al. (August 2006). "Bat-transmitted Human Rabies Outbreaks, Brazilian Amazon". Emerging Infectious Diseases. 12 (8): 1197–1202. doi:10.3201/eid1708.050929. PMC 3291204. PMID 16965697.
  43. ^ Various (2001). Bierregaard, Richard; Gascon, Claude; Lovejoy, Thomas E.; Mesquita, Rita (eds.). Lessons from Amazonia: The Ecology and Conservation of a Fragmented Forest. Yale University Press. ISBN 978-0-300-08483-2.
  44. ^ Kirby, Kathryn R.; Laurance, William F.; Albernaz, Ana K.; Schroth, Götz; Fearnside, Philip M.; Bergen, Scott; M. Venticinque, Eduardo; Costa, Carlos da (2006). "The future of deforestation in the Brazilian Amazon" (PDF). Futures. 38 (4): 432–453. CiteSeerX doi:10.1016/j.futures.2005.07.011.
  45. ^ a b Watkins and Griffiths, J. (2000). Forest Destruction and Sustainable Agriculture in the Brazilian Amazon: a Literature Review (Doctoral dissertation, The University of Reading, 2000). Dissertation Abstracts International, 15–17
  46. ^ Williams, M. (2006). Deforesting the Earth: From Prehistory to Global Crisis (Abridged ed.). Chicago: The University of Chicago Press. ISBN 978-0-226-89947-3.
  47. ^ "Impacts and Causes of Deforestation in the Amazon Basin".
  48. ^ Centre for International Forestry Research (CIFOR) (2004)
  49. ^ Steinfeld, Henning; Gerber, Pierre; Wassenaar, T.D.; Castel, Vincent (2006). Livestock's Long Shadow: Environmental Issues and Options. Food and Agriculture Organization of the United Nations. ISBN 978-92-5-105571-7. Archived from the original on July 26, 2008. Retrieved August 19, 2008.
  50. ^ Margulis, Sergio (2004). Causes of Deforestation of the Brazilian Amazon (PDF). World Bank Working Paper No. 22. Washington, DC: The World Bank. ISBN 978-0-8213-5691-3. Archived (PDF) from the original on September 10, 2008. Retrieved September 4, 2008.
  51. ^ Research paper of Leydimere Oliveira on the amazon Archived 2013-08-03 at
  52. ^ Barreto, P.; Souza Jr. C.; Noguerón, R.; Anderson, A. & Salomão, R. 2006. Human Pressure on the Brazilian Amazon Forests. Imazon. Retrieved September 28, 2006. (The Imazon web site contains many resources relating to the Brazilian Amazonia.)
  53. ^ "INPE: Estimativas Anuais desde 1988 até 2009".
  54. ^ "Oil Drilling Contaminated Western Amazon".
  55. ^ "Oil and Gas Extraction in the Amazon".
  56. ^ Melillo, J.M.; McGuire, A.D.; Kicklighter, D.W.; Moore III, B.; Vörösmarty, C.J.; Schloss, A.L. (May 20, 1993). "Global climate change and terrestrial net primary production". Nature. 363 (6426): 234–240. Bibcode:1993Natur.363..234M. doi:10.1038/363234a0.
  57. ^ a b Tian, H.; Melillo, J.M.; Kicklighter, D.W.; McGuire, A.D.; Helfrich III, J.; Moore III, B.; Vörösmarty, C.J. (July 2000). "Climatic and biotic controls on annual carbon storage in Amazonian ecosystems". Global Ecology and Biogeography. 9 (4): 315–335. doi:10.1046/j.1365-2699.2000.00198.x.
  58. ^ Cox, Betts, Jones, Spall and Totterdell. 2000. "Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model". Nature, November 9, 2000. (subscription required)
  59. ^ Radford, T. 2002. "World may be warming up even faster". The Guardian.
  60. ^ Houghton, J.T. et al. 2001. "Climate Change 2001: The Scientific Basis" Archived May 7, 2006, at the Wayback Machine. Intergovernmental Panel on Climate Change.
  61. ^ Peters, C.M.; Gentry, A.H.; Mendelsohn, R. O. (1989). "Valuation of an Amazonian forest". Nature. 339 (6227): 656–657. Bibcode:1989Natur.339..655P. doi:10.1038/339655a0.
  62. ^ Dean, Bartholomew. (2003) State Power and Indigenous Peoples in Peruvian Amazonia: A Lost Decade, 1990–2000. In The Politics of Ethnicity Indigenous Peoples in Latin American States David Maybury-Lewis, Ed. Harvard University Press
  63. ^ Cormier, L. (April 16, 2006). "A Preliminary Review of Neotropical Primates in the Subsistence and Symbolism of Indigenous Lowland South American Peoples". Ecological and Environmental Anthropology. 2 (1): 14–32. Archived from the original on December 21, 2008. Retrieved September 4, 2008.
  64. ^ "Ecuador Amazon tribe win first victory against oil companies". Devdiscourse. April 27, 2019. Retrieved April 28, 2019.
  65. ^ David Adam (March 11, 2009). "Amazon could shrink by 85% due to climate change, scientists say". the Guardian.
  66. ^ Watts, Jonathan (November 28, 2017). "The Amazon effect: how deforestation is starving São Paulo of water". The Guardian. Retrieved November 8, 2018.
  67. ^ Verchot, Louis (January 29, 2015). "The science is clear: Forest loss behind Brazil's drought". Center for International Forestry Research (CIFOR). Retrieved November 8, 2018.
  68. ^ E. Lovejoy, Thomas; Nobre, Carlos (February 21, 2018). "Amazon Tipping Point". Science Advances. 4 (2): eaat2340. Bibcode:2018SciA....4.2340L. doi:10.1126/sciadv.aat2340. PMC 5821491. PMID 29492460.
  69. ^ Wynne, R.H.; Joseph, K.A.; Browder, J.O.; Summers, P.M. (2007). "A Preliminary Review of Neotropical Primates in the Subsistence and Symbolism of Indigenous Lowland South American Peoples". International Journal of Remote Sensing. 28 (6): 1299–1315. Bibcode:2007IJRS...28.1299W. doi:10.1080/01431160600928609. Archived from the original on December 21, 2008. Retrieved September 4, 2008.
  70. ^ Asner, Gregory P.; Knapp, David E.; Cooper, Amanda N.; Bustamante, Mercedes M.C.; Olander, Lydia P. (June 2005). "Ecosystem Structure throughout the Brazilian Amazon from Landsat Observations and Automated Spectral Unmixing". Earth Interactions. 9 (1): 1–31. Bibcode:2005EaInt...9g...1A. doi:10.1175/EI134.1.
  71. ^ Isaacson, Andy. 2007. With the Help of GPS, Amazonian Tribes Reclaim the Rain Forest. Wired 15.11:
  72. ^ Kuplich, Tatiana M. (October 2006). "Classifying regenerating forest stages in Amazônia using remotely sensed images and a neural network". Forest Ecology and Management. 234 (1–3): 1–9. doi:10.1016/j.foreco.2006.05.066.
  73. ^ "Amazon Drought Worst in 100 Years".
  74. ^ Drought Threatens Amazon Basin – Extreme conditions felt for second year running, Paul Brown, The Guardian, 16 July 2006. Retrieved 23 August 2014
  75. ^ "Amazon rainforest 'could become a desert'" Archived August 6, 2006, at the Wayback Machine, The Independent, July 23, 2006. Retrieved September 28, 2006.
  76. ^ "Dying Forest: One year to save the Amazon", The Independent, July 23, 2006. Retrieved 23 August 2014.
  77. ^ "Climate change a threat to Amazon rainforest, warns WWF", World Wide Fund for Nature, March 22, 2006. Retrieved 23 August 2014.
  78. ^ 2010 Amazon drought record: 8 Gt extra CO2, Rolf Schuttenhelm, Bits Of Science, 4 February 2011. Retrieved 23 August 2014
  79. ^ "Amazon drought 'severe' in 2010, raising warming fears", BBC News, 3 February 2011. Retrieved 23 August 2014
  80. ^ Abraham, John (August 3, 2017). "Study finds human influence in the Amazon's third 1-in-100 year drought since 2005". the Guardian.

Further reading

External links

Media related to Amazon Rainforest at Wikimedia Commons

Amazon Watch

Amazon Watch is a nonprofit organization Founded in 1996, and based in Oakland, California, it works to protect the rainforest and advance the rights of indigenous peoples in the Amazon Basin. It partners with indigenous and environmental organizations in Ecuador, Peru, Colombia and Brazil in campaigns for human rights, corporate accountability and the preservation of the Amazon's ecological systems.

Amazon basin

The Amazon Basin is the part of South America drained by the Amazon River and its tributaries. The Amazon drainage basin covers an area of about 6,300,000 km2 (2,400,000 sq mi), or about 35.5 percent that of the South American continent. It is located in the countries of Bolivia, Brazil, Colombia, Ecuador, Guyana, Peru, Suriname and Venezuela.Most of the basin is covered by the Amazon Rainforest, also known as Amazonia. With a 5,500,000 km2 (2,100,000 sq mi) area of dense tropical forest, this is the largest rainforest in the world.

Amazon natural region

Amazonía region in southern Colombia comprises the departments of Amazonas, Caquetá, Guainía, Guaviare, Putumayo and Vaupés, and covers an area of 403,000 km², 35% of Colombia's total territory. The region is mostly covered by tropical rainforest, or jungle, which is a part of the massive Amazon rainforest.

Andean states

The Andean states (Spanish: Estados Andinos) are a group of nations in South America connected by the Andes mountain range. "Andean States" is sometimes used to refer to all seven countries that the Andes runs through, regions with a shared culture primarily spread during the times of the Inca Empire (such as the Quechua language and Andean cuisine), or it can be used in a geopolitical sense to designate countries in the region that are members of the Andean Community trade group and have a local (as opposed to European) cultural orientation.

The Andes extend through the western part of South America in following countries:






Argentina (not considered to be geopolitically an Andean State)

Chile (not considered to be geopolitically an Andean State)When grouped as "the Andean states", the emphasis is on the mountainous regions of these countries. For example, the Argentine pampas are not part of the Andean region, but western Argentina along with Chile is part of the Andean region. Venezuela, Colombia, Peru, Ecuador and Bolivia are part of the Andean Community (a trade grouping), and each contains Amazon Rainforest and Amazonian indigenous people as well as Andean mountains.

Cinta Larga

The Cinta Larga (or Cinturão Largo) are a people indigenous to the western Amazon Rainforest of Brazil, numbering around 1300. Their name means "broad belt" in Portuguese, referring to large bark sashes the tribe once wore. The tribe is famous for shadowing Theodore Roosevelt's Roosevelt–Rondon Scientific Expedition, making no contact.

Concepción Province, Peru

Concepción Province is one of nine provinces in the Junín Region in central Peru. Its capital is Concepción.

Notable sites include El convento de Ocopa, which contains a vast library and artefacts that were acquired from the first Spanish expeditions to the Peruvian Amazon rainforest.

Deforestation of the Amazon rainforest

The Amazon rainforest is the largest rainforest in the world, covering an area of 5,500,000 km2 (2,100,000 sq mi). This region includes territory belonging to nine nations. The majority of the forest is contained within Brazil, with 60%, followed by Peru with 13%, Colombia with 10%, and with minor amounts in Venezuela, Ecuador, Bolivia, Guyana, Suriname and France (French Guiana).

More than one third of the Amazon forest belongs to over than 3,344 formally acknowledged Indigenous Territories. Until 2015, only eight percent of Amazonian deforestation occurred in forests inhabited by indigenous peoples, while 88% of occurred in the less than 50% of the Amazon area that is neither indigenous territory nor protected area. Historically, the livelihoods of indigenous Amazonian peoples have depended on the forest for food, shelter, water, fibre, fuel and medicines. The forest is also interconnected with their identity and cosmology. For this reason the deforestation rates are lower in Indigenous Territories, despite pressures encouraging deforestation being stronger.According to 2018 satellite data complied by a deforestation monitoring program called Prodes, deforestation has hit its highest rate in a decade. About 7,900 sq km (3,050 sq miles) of the rainforest was destroyed between August 2017 and July 2018. Most of the deforestation occurred in the states of Mato Grosso and Pará. The BBC reported the environment minister, Edson Duarte, as saying illegal logging was to blame, but critics suggest expanding agriculture is also encroaching on the rainforest. It is suggested that at some point the forest will reach a tipping point, where it will no longer be able to produce enough rainfall to sustain itself.

Department of Cajamarca

Cajamarca (Spanish pronunciation: [kaxaˈmaɾka]; Quechua: Kashamarka; Aymara: Qajamarka) is a department in Peru. The capital is the city of Cajamarca. It is located in the north part of the country and shares a border with Ecuador. It is located at heights reaching 2,700 metres (8,900 ft) above sea level in the Andes Mountain Range, the longest mountain range in the world. Part of its territory includes the Amazon Rainforest, in total the largest in the world.


Kuhikugu is an archaeological site located in Brazil, at the headwaters of the Xingu River, in the Amazon Rainforest. The area around Kuhikugu is located in part of the Xingu National Park today. Kuhikugu was first uncovered by anthropologist Michael Heckenberger, working alongside the local Kuikuro people, who are the likely descendants of the original inhabitants of Kuhikugu.

List of plants of the Amazon rainforest of Brazil

This is a list of plants found in the wild in Amazon Rainforest vegetation of Brazil. The estimates from useful plants suggested that there are 800 plant species of economic or social value in this forest,

according to Giacometti (1990). Additions are currently being made to this list.

Flora definition

Flora is the scientific word for plant.

Napo Province

Napo (Spanish pronunciation: [ˈnapo]) is a province in Ecuador. Its capital is Tena. The province contains the Napo River. The province is low developed without much industrial presence. The thick rainforest is home to many natives that remain isolated by preference, descendants of those who fled the Spanish invasion in the Andes, and the Incas years before. In 2000, the province was the sole remaining majority-indigenous province of Ecuador, with 56.3% of the province either claiming indigenous identity or speaking an indigenous language.This province is one of the many located in Ecuador's section of the Amazon Rainforest.

In Napo province are also Antisana Ecological Reserve and Limoncocha National Biological Reserve.

Peruvian Amazonia

Peruvian Amazonia (Spanish: Amazonía del Perú) is the area of the Amazon rainforest included within the country of Peru, from east of the Andes to the borders with Ecuador, Colombia, Brazil and Bolivia. This region comprises 60% of the country and is marked by a large degree of biodiversity. Peru has the second-largest portion of the Amazon rainforest after the Brazilian Amazon.

Raoni Metuktire

Raoni Metuktire, also known as Chief Raoni or Ropni, born ca. 1930, is a chief of the Kayapo people, a Brazilian Indigenous group from the plain lands of the Mato Grosso and Pará in Brazil, south of the Amazon Basin and along Rio Xingu and its tributaries. He is internationally famous as a living symbol of the fight for the preservation of the Amazon rainforest and indigenous culture.

Satipo Province

Satipo Province (Spanish: Provincia de Satipo) is the largest and easternmost province in the Junín Region, located in the central Amazon rainforest of Peru. Its capital is the town of Satipo.

Save the Amazon Rainforest Organisation

Save the Amazon Rainforest Organization (STARO) was a charity that aimed to save the Amazon rainforest from destruction, and was based in London in the United Kingdom.

Sinchi Amazonic Institute of Scientific Research

The Sinchi Amazonic Institute of Scientific Research (Spanish: Instituto Amazónico de Investigaciones Científicas) is a non-profit research institute of the Government of Colombia charged with carrying out scientific investigations on matters relating to the Amazon Rainforest, the Amazon River and the Amazon Region of Colombia for its better understanding and protection. The word sinchi, is a word in Quechua that means "strong" or "fierce".

The Yage Letters

For the musical group by this name, see The Yage Letters (band).The Yage Letters, first published in 1963, is a collection of correspondence and other writings by Beat Generation authors William S. Burroughs and Allen Ginsberg. It was issued by City Lights Books.

Wildlife of Brazil

The wildlife of Brazil comprises all naturally occurring animals, fungi and plants in the South American country. Home to 60% of the Amazon Rainforest, which accounts for approximately one-tenth of all

species in the world, Brazil is considered to have the greatest biodiversity of any country on the planet. It has the most known species of plants (55,000), freshwater fish (3000) and mammals (over 689). It also ranks third on the list of countries with the most bird species (1832) and second with the most reptile species (744). The number of fungal species is unknown, but is large. Approximately two-thirds of all species worldwide are found in tropical areas, often coinciding with developing countries such as Brazil. Brazil is second only to Indonesia as the country with the most endemic species.

Earth's primary regions

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.