In biology, altricial species are those in which the young are incapable of moving around on their own soon after hatching or being born. The word is derived from the Latin root alere, meaning "to nurse, to rear, or to nourish" and indicates the need for young to be fed and taken care of for a long duration.[1] By contrast, species whose young are immediately or quickly mobile are called precocial.

Altricial chicks
Altricial young birds.


Black African Baby With Pale Appareance At Birth
A human baby. Humans are among the best-known altricial organisms.

In bird and mammal biology, altricial species are those species whose newly hatched or born young are relatively immobile, lack hair or down, are not able to obtain food on their own, and must be cared for by adults; closed eyes are common, though not ubiquitous. Altricial young are born helpless and require care for a length of time. Among birds, these include herons, hawks, woodpeckers, owls, cuckoos and most passerines. Among mammals, marsupials and most rodents are altricial. Domestic cats, dogs, and humans are some of the best-known altricial organisms.[2] For example, newborn domestic cats cannot see, hear, maintain their own body temperature, or gag, and require external stimulation to defecate and urinate.[3] The larvae of some insects may also be considered altricial as well. In particular, the larvae of eusocial insects such as ants, bees, and wasps are immobile and helpless grubs that are completely dependent on the workers tending to them.

At the opposite end of the spectrum are precocial animals in which the young have open eyes, have hair or down, have large brains, and are immediately mobile and somewhat able to flee from, or defend themselves against, predators. For example, with ground-nesting birds such as ducks or turkeys, the young are ready to leave the nest in one or two days. Among mammals, most ungulates are precocial, being able to walk almost immediately after birth. Beyond the precocial are the superprecocial animals, such as the megapode birds, which hatch with full flight feathers.[4]


Different animals employ different precocial and altricial strategies; there is no clear distinction between the two states, and a wide range of intermediate states.[1] The ability of the parents to obtain nutrition and contribute to the pre-natal and post-natal development of their young appears to be associated.

Precocial birds are able to provide protein-rich eggs and thus their young hatch in the fledgling stage – able to protect themselves from predators (ducks or turkeys) and the females have less post-natal involvement. Altricial birds are less able to contribute nutrients in the pre-natal stage; their eggs are smaller and their young still in need of much attention and protection from predators. This may be related to r/K selection; however, this association fails with a number of cases.[5]

In birds, altricial young usually grow faster than precocial young. This is hypothesized to occur so that exposure to predators during the nestling stage of development can be minimized.[6]

In the case of mammals it has been suggested that large adult body sizes favor production of large, precocious young, which develop with a long gestation period. Large young may be associated with long lifespan, extended reproductive period, and reduced litter size. It has been suggested that altricial strategies in mammals may be favoured if there is a selective advantage to mothers that are capable of resorbing embryos in early stages of development.[7] Some ecological niches require young to be precocial for survival, such as cetaceans: restricted to water, and immobile, their helpless young would quickly drown.


In birds, the terms Aves altrices and Aves precoces was introduced by Carl Jakob Sundevall (1836) and the terms nidifugous and nidicolous by Lorenz Oken in 1816. The two classifications were considered identical in early times, but the meanings are slightly different, in that "altricial" and "precocial" refer to developmental stage, while "nidifugous" and "nidicolous" refer to leaving or staying at the nest.[5]

The two strategies result in different brain sizes of the newborns compared to adults. Precocial animals' brains are large at birth relative to their body size, hence their ability to fend for themselves. However, as adults, their brains are not much bigger or more able. Altricial animals' brains are relatively small at birth, thus their need for care and protection, but their brains continue to grow. As adults, altricial animals end up with comparatively larger brains than their precocial counterparts. Thus the altricial species have a wider skill set at maturity.[1]

See also


  1. ^ a b c Ehrlich, Paul (1988). The Birder's Handbook. New York: Simon & Schuster. ISBN 0-671-65989-8.
  2. ^ Arterberry, Martha E. (2000). The Cradle of Knowledge. Development of Perception in Infancy. Cambridge: MIT Press. p. 27. ISBN 9780262611527.
  3. ^ Hannah Shaw. "Determining a Kitten's Age".
  4. ^ Starck, J.M.; Ricklefs, R.E. (1998). Avian Growth and Development. Evolution within the altricial precocial spectrum. New York: Oxford University Press. ISBN 0-19-510608-3.
  5. ^ a b Starck, J. (1998). Avian Growth and Development. Oxford Oxfordshire: Oxford University Press. ISBN 0-19-510608-3.
  6. ^ Kahl, M. Philip (1962). "Bioenergetics of growth in nestling wood storks". The Condor. 64 (3): 169–183. doi:10.2307/1365200. ISSN 0010-5422.
  7. ^ Eisenberg, John (1981). The Mammalian Radiations. London: Athlone Press. ISBN 0-485-30008-7.

External links


Confuciusornis is a genus of primitive crow-sized birds from the Early Cretaceous Period of the Yixian and Jiufotang Formations of China, dating from 125 to 120 million years ago. Like modern birds, Confuciusornis had a toothless beak, but close relatives of modern birds such as Hesperornis and Ichthyornis were toothed, indicating that the loss of teeth occurred convergently in Confuciusornis and living birds. It is the oldest known bird to have a beak. It was named after the Chinese moral philosopher Confucius (551–479 BC). Confuciusornis is one of the most abundant vertebrates found in the Yixian Formation, and several hundred complete, articulated specimens have been found.

Obstetrical dilemma

The obstetrical dilemma is a hypothesis to explain why humans often require assistance from other humans during childbirth to avoid complications, whereas most non-human primates give birth alone with relatively little difficulty. The obstetrical dilemma posits that this is due to the biological trade-off imposed by two opposing evolutionary pressures in the development of the human pelvis. As human ancestor species (hominids) developed bipedal locomotion (the ability to walk upright), decreasing the size of the bony birth canal, they also developed ever larger skulls, which required a wider obstetrical pelvic area to accommodate this trend in hominid infants.

Parental investment

Parental investment, in evolutionary biology and evolutionary psychology, is any parental expenditure (e.g. time, energy, resources) that benefits offspring. Parental investment may be performed by both males and females (biparental care), females alone (exclusive maternal care) or males alone (exclusive paternal care). Care can be provided at any stage of the offspring's life, from pre-natal (e.g. egg guarding and incubation in birds, and placental nourishment in mammals) to post-natal (e.g. food provisioning and protection of offspring).

Parental investment theory, a term coined by Robert Trivers in 1972, predicts that the sex that invests more in its offspring will be more selective when choosing a mate, and the less-investing sex will have intra-sexual competition for access to mates. This theory has been influential in explaining sex differences in sexual selection and mate preferences, throughout the animal kingdom and in humans.

Standard Event System

The "Standard Event System" (SES) to Study Vertebrate Embryos was developed in 2009 to establish a common language in comparative embryology. Homologous developmental characters are defined therein and should be recognisable in all vertebrate embryos. The SES includes a protocol on how to describe and depict vertebrate embryonic characters. The SES was initially developed for external developmental characters of organogenesis, particularly for turtle embryos. However, it is expandable both taxonomically and in regard to anatomical or molecular characters. This article should act as an overview on the species staged with SES and document the expansions of this system. New entries need to be validated based on the citation of scientific publications. The guideline on how to establish new SES-characters and to describe species can be found in the original paper of Werneburg (2009).SES-characters are used to reconstruct ancestral developmental sequences in evolution such as that of the last common ancestor of placental mammals. Also the plasticity of developmental characters can be documented and analysed.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.