Allosauroidea

Allosauroidea is a superfamily or clade of theropod dinosaurs which contains four families — the Metriacanthosauridae, Allosauridae, Carcharodontosauridae, and Neovenatoridae. Allosauroids, alongside the family Megalosauroidea, were among the apex predators that were active during the Middle Jurassic to Late Cretaceous periods.[2] Of the fourteen allosauroid taxa, five are known for specimens with relatively complete skulls; the taxa are Allosaurus, Sinraptor, Yangchuanosaurus, Carchardontosaurus, and Acrocanthosaurus.[3] The most famous and best understood allosauroid is the North American genus Allosaurus.

The oldest-known allosauroid, Shidaisaurus jinae, appeared in the early Middle Jurassic (probably Bajocian stage) of China. The last known definitive surviving members of the group died out around 93 million years ago in Asia (Shaochilong) and South America (Mapusaurus), though the megaraptorans may belong to the group as well. Additional, but highly fragmentary, remains probably belonging to carcharodontosaurids have been found from the Late Maastrichtian (70-66 Ma ago) in Brazil. An alternative interpretation is to attribute the remains to abelisaurids, which share the distinct pattern of curved wrinkled enamel found in the Brazilian remains with the carcharodontosaurids. This similarity between abelisaurids and carcharodontosaurids means that a definitive match between the Brazilian fossil and carcharodontosaurids cannot be made.[4]

Allosauroids had long, narrow skulls, large orbits, three-fingered hands, and usually had "horns" or ornamental crests on their heads. Although allosauroids vary in size, the group maintains a similar center of mass and hip position on their bodies.[5] Allosauroids also exhibit reptilian-style immune systems, secreting fibrin at injured sites to prevent infections from spreading through the bloodstream. This characteristic has been observed by examining injuries and infections on allosauroid bones.[6] It is possible that allosauroids were social animals, as many remains of allosauroids have been found in close proximity to each other.[6] Allosauroids were likely active predators, and from studying endocasts, probably best responded to odors and loud low-frequency noises.[7]

Allosauroidea
Temporal range:
Middle JurassicLate Cretaceous, 175.6–91 Ma
Possible Late Maastrichtian record
Allosaurus skull SDNHM
Allosaurus fragilis skull, San Diego Natural History Museum
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Order: Saurischia
Suborder: Theropoda
Infraorder: Carnosauria
Superfamily: Allosauroidea
Marsh, 1878
Type species
Allosaurus fragilis
Marsh, 1877
Subgroups[1]

Classification

Allosauroidea skull comparison
Allosauroidea skull comparison
Allosauroidea
The cladogram of the classification of Allosauroidea

The clade Allosauroidea was originally proposed by Phil Currie and Zhao (1993; p. 2079), and later used as an undefined stem-based taxon by Paul Sereno (1997). Sereno (1998; p. 64) was the first to provide a stem-based definition for the Allosauroidea, defining the clade as "All neotetanurans closer to Allosaurus than to Neornithes." Kevin Padian (2007) used a node-based definition, defined the Allosauroidea as Allosaurus, Sinraptor, their most recent common ancestor, and all of its descendants. Thomas R. Holtz and colleagues (2004; p. 100) and Phil Currie and Ken Carpenter (2000), among others, have followed this node-based definition. Of the allosauroids, sinraptorids make up the most basal group.[8]

However, in some analyses (such as Currie & Carpenter, 2000), the placement of the carcharodontosaurids relative to the allosaurids and sinraptorids is uncertain, and therefore it is uncertain whether or not the carcharodontosaurids are allosauroids (Currie & Carpenter, 2000).

The cladogram presented here is simplified after the 2012 analysis by Carrano, Benson and Sampson after the exclusion of three "wildcard" taxa Poekilopleuron, Xuanhanosaurus and Streptospondylus.[1]

Allosauroidea

MetriacanthosauridaeYangchuanosaurus NT (flipped)

Allosauria

AllosauridaeAllosaurus Revised

Carcharodontosauria

NeovenatoridaeNeovenator

CarcharodontosauridaeCarcharodontosaurus

Description

Allosauroids share certain distinctive features, one of which is a triangular-shaped pubic boot.[9] Allosauroids have 3 fingers per hand, with the second and third digit being approximately equal in length. The femur is larger than the tibia. Another defining feature of allosauroids is that the chevron bases on their tails have anterior and posterior bone growth.[10] The body of allosauroids can reach up to 10 meters in length; the length of the body from the tail to the hip is between 54% and 62% of the total body length, and the length of the body from the head to the hip is between 38% and 46% of the total body length.[5] Allosauroids scaled their limbs relative to their body in a way similar to how other large therapods, like the tyrannosaurids, did.[11] During the Cretaceous, some allosauroids grew to sizes similar to those of the largest tyrannosaurids.[12] These large allosauroids lived in the same time period as the other large therapods found in the upper Morrison and Tendaguru formations.[8]

Allosauroids maintained a similar center of mass across all sizes, which is found to be between 37% and 58% of the femoral length anterior to the hip. Other similarities across all allosauroids include the structure of their hind limb and pelvis. The pelvis in particular is thought to be designed to reduce stress regardless of body size. In particular, the way the femur is inclined reduces the bending and torsion stress. Furthermore, like other animals with tails, allosauroids possess a caudofemoralis longus (CFL) muscle that allowed them to flex theirs. Larger allosauroids are found to have a lower CFL muscle-to-body-mass proportion that smaller allosauroids.[5]

In addition to body similarities, allosauroids are also united by certain skull features. Some of the defining ones include a smaller mandibular fenestra, a short quadrate bone, and a short connection between the braincase and the palate.[13] Allosauroid skulls are about 2.5 to 3 times longer as they are tall.[8] Their narrow skull along with their serrated teeth allow allosauroids to better slice flesh off of their prey. Allosauroid teeth are flat and have equally-sized denticles on both edges. The flat side of the tooth face the sides of the skull, while the edges align on the same plane as the skull.[14] From analyzing the skull of different allosauroids, the volume of the cranial vault ranges between 95 milliliters in Sinraptor to 250 milliliters in Giganotosaurus.[15]

Paleobiology and Behavior

Multiple severe injuries have been found on allosauroid remains, which implies that allosauroids were frequently in dangerous situations and supports the hypothesis of an active, predatory lifestyle. Despite the multitude of injuries, only a few of those injuries show signs of infection. For those injuries that did become infected, the infections were usually local to the site of the injury, implying that the allosauroid immune response was able to quickly stop any infection from spreading to the rest of the body. This type of immune response is similar to modern reptilian immune responses; reptiles secrete fibrin near infected areas and localize the infection before it can spread via the bloodstream.[6]

The injuries were also found to be mostly healed. This healing may indicate that allosauroids had an intermediate metabolic rate, similar to non-avian reptiles, which means they require fewer nutrients in order to survive. A lower nutrient requirement means allosauroids do not need to undertake frequent hunts, which lowers their risk of sustaining traumatic injuries.[6]

Although the remains of other large therapods like tyrannosaurids bear evidence of fighting within their species and with other predators, the remains of allosauroids do not bear much evidence of injuries from therapod combat. Most notably, despite a good fossil record, allosauroid skulls lack the distinctive face-biting wounds that are common in tyrannosaurid skulls, leaving open the question of if allosauroids engaged in interspecies and intraspecies fighting.[16] Allosauroid remains are also often found in groups, which implies social behavior. While there are alternative explanations for the groupings, like predator traps or habitat reduction due to drought, the frequency of finding allosauroid remains in groups supports the social animal theory. As social animals, allosauroids would share the burden of hunting, allowing injured members of the pack to recover faster.[6]

Paleobiogeography

The paleobiogeographical history of allosauroids closely follows the order that Pangaea separated into the modern continents.[17] By the Middle Jurassic period, tetanurans had spread to every continent and diverged into the allosauroids and the coelurosaurs.[12] Allosauroids first appeared in the Middle Jurassic period and were the first giant taxa (weighing more than 2 tons) in theropod history. Along with members of the superfamily Megalosauroidea, allosauroids were the apex predators that occupied the Middle Jurassic to the early Late Cretaceous periods.[2] Allosauroids have been found in North America, South America, Europe, Africa, and Asia.[17] Specifically, a world-wide dispersal of carcharodontosauroids likely happened in the Early Cretaceous. It has been hypothesized that the dispersal involved Italy’s Apulia region (the “heel” of the Italian peninsula), which was connected to Africa by a land bridge during the Early Cretaceous period; various dinosaur footprints found in Apulia support this theory.[3]

Allosauroids were present in both the northern and southern continents during the Jurassic and Early Cretaceous, but they were later displaced by the tyrannosauroids in North America and Asia during the Late Cretaceous. This is likely due to regional extinction events, which, along with increased species isolation through the severing of land connections between the continents, differentiated many dinosaurs in the Late Cretaceous.[12]

Cryolophosaurus is the oldest allosauroid tetanuran and was discovered in Antarctica. Upon examination, Cryolophosaurus’ body structure is very similar to those of other allosauroids found in other Upper Jurassic rocks.[12] Neovenator salerii, found in England, was the first allosauroid attributed to Europe.[8] Allosauroid remains found in Tanzania and Australia have confirmed that allosauroids survived into the Early Cretaceous.

CPT-1980

CPT-1980 is the museum catalog number for an isolated, 9.83 centimetres (3.87 in), allosauroid tooth crown currently housed at the Museo Fundación Conjunto Paleontológico de Teruel.[18] In 2009, the tooth was compared to another allosauroid tooth from Portugal that measured 12.7 centimetres (5.0 in). Analysis led to the conclusion that CPT-1980 is the largest theropod tooth ever discovered in Spain. This tooth was discovered by locals near Riodeva, Teruel in the Villar del Arzobispo Formation, more specifically known as RD-39. The rocks have been dated to the Tithonian-Berriasian stages (Late Jurassic-Early Cretaceous).[18]

See also

References

  1. ^ a b Carrano, M. T.; Benson, R. B. J.; Sampson, S. D. (2012). "The phylogeny of Tetanurae (Dinosauria: Theropoda)". Journal of Systematic Palaeontology. 10 (2): 211–300. doi:10.1080/14772019.2011.630927.
  2. ^ a b Benson, Roger B. J.; Carrano, Matthew T.; Brusatte, Stephen L. (January 2010). "A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic". Naturwissenschaften. 97 (1): 71–78. Bibcode:2010NW.....97...71B. doi:10.1007/s00114-009-0614-x. ISSN 0028-1042. PMID 19826771.
  3. ^ a b Eddy, Drew R.; Clarke, Julia A. (2011-03-21). Farke, Andrew (ed.). "New Information on the Cranial Anatomy of Acrocanthosaurus atokensis and Its Implications for the Phylogeny of Allosauroidea (Dinosauria: Theropoda)". PLoS ONE. 6 (3): e17932. doi:10.1371/journal.pone.0017932. ISSN 1932-6203. PMC 3061882. PMID 21445312.
  4. ^ Fernandes de Azevedo, R. P.; Simbras, F. M.; Furtado, M. R.; Candeiro, C. R. A.; Bergqvist, L. P. (2013). "First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the Campanian–Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern Brazil". Cretaceous Research. 40: 131–142. doi:10.1016/j.cretres.2012.06.004.
  5. ^ a b c Bates, Karl T.; Benson, Roger B. J.; Falkingham, Peter L. (2012). "A computational analysis of locomotor anatomy and body mass evolution in Allosauroidea (Dinosauria: Theropoda)". Paleobiology. 38 (3): 486–507. doi:10.1666/10004.1. ISSN 0094-8373.
  6. ^ a b c d e Foth, Christian; Evers, Serjoscha W.; Pabst, Ben; Mateus, Octávio; Flisch, Alexander; Patthey, Mike; Rauhut, Oliver W.M. (2015-05-12). "New insights into the lifestyle of Allosaurus (Dinosauria: Theropoda) based on another specimen with multiple pathologies". PeerJ. 3: e940. doi:10.7717/peerj.940. ISSN 2167-8359. PMC 4435507. PMID 26020001.
  7. ^ Rogers, Scott W. (1999). "Allosaurus, crocodiles, and birds: Evolutionary clues from spiral computed tomography of an endocast". The Anatomical Record. 257 (5): 162–173. doi:10.1002/(SICI)1097-0185(19991015)257:5<162::AID-AR5>3.0.CO;2-W. ISSN 1097-0185.
  8. ^ a b c d Carrano, Matthew T.; Benson, Roger B. J.; Sampson, Scott D. (June 2012). "The phylogeny of Tetanurae (Dinosauria: Theropoda)". Journal of Systematic Palaeontology. 10 (2): 211–300. doi:10.1080/14772019.2011.630927. ISSN 1477-2019.
  9. ^ Holtz, Thomas (December 1998). "A New Phylogeny of the Carnivorous Dinosaurs". Gaia. 15: 5–61. CiteSeerX 10.1.1.211.3044.
  10. ^ Mateus, Octávio. (1997). Lourinhanosaurus antunesi, A New Upper Jurassic Allosauroid (Dinosauria: Theropoda) from Lourinhã, Portugal. Mémorias da Academia Ciêncas de Lisboa. 37.
  11. ^ Bybee, Paul J.; Lee, Andrew H.; Lamm, Ellen-Thérèse (March 2006). "Sizing the Jurassic theropod dinosaurAllosaurus: Assessing growth strategy and evolution of ontogenetic scaling of limbs". Journal of Morphology. 267 (3): 347–359. doi:10.1002/jmor.10406. ISSN 0362-2525. PMID 16380967.
  12. ^ a b c d Sereno, P. C. (1999-06-25). "The Evolution of Dinosaurs". Science. 284 (5423): 2137–2147. doi:10.1126/science.284.5423.2137. PMID 10381873.
  13. ^ Sereno, P. C.; Dutheil, D. B.; Iarochene, M.; Larsson, H. C. E.; Lyon, G. H.; Magwene, P. M.; Sidor, C. A.; Varricchio, D. J.; Wilson, J. A. (1996-05-17). "Predatory Dinosaurs from the Sahara and Late Cretaceous Faunal Differentiation". Science. 272 (5264): 986–991. doi:10.1126/science.272.5264.986. ISSN 0036-8075. PMID 8662584.
  14. ^ Infante, P., et al. Primera Evidencia de Dinosaurios Terópodos En La Formación Mirambel (Barremiense Inferior, Cretácico Inferior) En Castellote, Teruel ; First Evidence of Theropod Dinosaurs from the Mirambel Formation (Lower Barremian, Lower Cretaceous) from Castellote, Teruel. 2005. EBSCOhost, search.ebscohost.com/login.aspx?direct=true&db=edsbas&AN=edsbas.591B2D7E&site=eds-live&scope=site.
  15. ^ Paulina-Carabajal, Ariana & Currie, Philip. (2012). New information on the braincase and endocast of Sinraptor dongi (Theropoda: Allosauroidea): Ethmoidal region, endocranial anatomy and pneumaticity. Vertebrata PalAsiatica. 50. 85-101.
  16. ^ Currie, P. J.; Tanke, D. (1998). "Head-biting behavior in theropod dinosaurs: Paleopathological evidence". ERA. doi:10.7939/r34t6fj1p. Retrieved 2019-05-30.
  17. ^ a b Brusatte, Stephen L.; Sereno, Paul C. (January 2008). "Phylogeny of Allosauroidea (Dinosauria: Theropoda): Comparative analysis and resolution" (PDF). Journal of Systematic Palaeontology. 6 (2): 155–182. doi:10.1017/S1477201907002404. ISSN 1477-2019.
  18. ^ a b Royo-Torres, R.; Cobos, A.; Alcalá, L. (2009). "Diente de un gran dinosaurio terópodo (Allosauroidea) de la Formación Villar del Arzobispo (Titónico-Berriasiense) de Riodeva (España)" [Tooth of a large theropod dinosaur (Allosauroidea) from the Villar del Arzobispo formation (Tithonian-Berriasian) of Riodeva (Spain)]. Estudios Geológicos (in Spanish). 65 (1): 91–99. doi:10.3989/egeol.39708.049.

Further reading

  • Currie, P. J.; Zhao, X. (1993). "A new carnosaur (Dinosauria, Theropoda) from the Upper Jurassic of Xinjiang, People's Republic of China". Canadian Journal of Earth Sciences. 30 (10): 2037–2081. doi:10.1139/e93-179.
  • Holtz, T. R., Jr. and Osmólska H. 2004. Saurischia; pp. 21–24 in D. B. Weishampel, P. Dodson, and H. Osmólska (eds.), The Dinosauria (2nd ed.), University of California Press, Berkeley.
  • Sereno, P. C. (1997). "The origin and evolution of dinosaurs". Annual Review of Earth and Planetary Sciences. 25: 435–489. Bibcode:1997AREPS..25..435S. doi:10.1146/annurev.earth.25.1.435.
  • Sereno, P. C. (1998). "A rationale for phylogenetic definitions, with application to the higher-level taxonomy of Dinosauria". Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen. 210: 41–83. doi:10.1127/njgpa/210/1998/41.
  • Fernandes De Azevedo, Rodrigo P.; Simbras, Felipe Medeiros; Furtado, Miguel Rodrigues; Candeiro, Carlos Roberto A.; Bergqvist, Lílian Paglarelli (2013). "First Brazilian carcharodontosaurid and other new theropod dinosaur fossils from the Campanian–Maastrichtian Presidente Prudente Formation, São Paulo State, southeastern Brazil". Cretaceous Research. 40: 131–142. doi:10.1016/j.cretres.2012.06.004.
Averostra

Averostra, or "bird snouts", is a clade that includes most theropod dinosaurs that have a promaxillary fenestra (fenestra promaxillaris), an extra opening in the front outer side of the maxilla, the bone that makes up the upper jaw. Two groups of averostrans, the Ceratosauria and the Orionides, survived into the Cretaceous period. When the Cretaceous–Paleogene extinction event occurred, ceratosaurians and two groups of orionideans within the clade Coelurosauria, the Tyrannosauroidea and Maniraptoriformes, were still extant. Only one subgroup of maniraptoriformes, Aves, survived the extinction event and persisted to the present day.

Avetheropoda

Avetheropoda, or "bird theropods", is a clade that includes carnosaurians and coelurosaurs to the exclusion of other dinosaurs.

Carnosauria

Carnosauria is a large group of predatory dinosaurs that lived during the Jurassic and Cretaceous periods. While it originally contained a wide assortment of giant theropods that were not closely related, the group has since been defined to encompass only the allosaurs and their closest kin. Starting from the 1990s, scientists have discovered some very large carnosaurs in the carcharodontosaurid family, such as Giganotosaurus and Tyrannotitan which are among the largest known predatory dinosaurs.

Distinctive characteristics of carnosaurs include large eyes, a long narrow skull and modifications of the legs and pelvis such as the thigh (femur) being longer than the shin (tibia).

Carnosaurs first appeared in the Middle Jurassic, around 176 mya. The last definite known carnosaurs, the carcharodontosaurs, became extinct in the Turonian epoch of the Cretaceous, roughly 90 mya; reportedly later remains of carcharodontosaurids, from the Campanian and Maastrichtian epochs, are possibly misidentified remains of abelisaurids. The phylogenetically problematic megaraptorans, which may not be carnosaurs, became extinct around 84 mya. Remains probably belonging to carcharodontosaurids have been found from the late Maastrichtian

(70-66 Ma ago) in Brazil.

Cerapoda

Cerapoda ("ceratopsians and ornithopods") is a clade of the dinosaur order Ornithischia.

Chilesaurus

Chilesaurus is an extinct genus of herbivorous dinosaur. The type and only species is Chilesaurus diegosuarezi. Chilesaurus lived about 145 million years ago (Mya) in the Late Jurassic period of Chile. Showing a combination of traits from theropods, ornithischians, and sauropodomorphs, this genus has far-reaching implications for the evolution of dinosaurs, such as whether the traditional saurischian-ornithischian split is superior or inferior to the newly proposed group Ornithoscelida.

Chuandongocoelurus

Chuandongocoelurus ( chwahn-DONG-ə-si-LEWR-əs) is a genus of carnivorous tetanuran theropod dinosaur from the Jurassic of China.

Dinosauriformes

Dinosauriformes is a clade of archosaurian reptiles that include the dinosaurs and their most immediate relatives. All dinosauriformes are distinguished by several features, such as shortened forelimbs and a partially to fully perforated acetabulum, the hole in the hip socket traditionally used to define dinosaurs. The oldest known member is Asilisaurus, dating to about 245 million years ago in the Anisian age of the middle Triassic period.

Haya griva

Haya is an extinct genus of basal neornithischian dinosaur known from Mongolia.

Jingshanosaurus

Jingshanosaurus (meaning "Jingshan lizard") is a genus of sauropodomorph dinosaurs from the early Jurassic period.

Lourinhanosaurus

Lourinhanosaurus (meaning "Lourinhã lizard") was a genus of carnivorous theropod dinosaur that lived during the Late Jurassic Period (Kimmeridgian/Tithonian) in Portugal. It is one of many large predators discovered at the Lourinhã Formation and probably competed with coeval Torvosaurus gurneyi, Allosaurus europaeus, and Ceratosaurus.

Megalosauroidea

Megalosauroidea (meaning 'great/big lizard forms') is a superfamily (or clade) of tetanuran theropod dinosaurs that lived from the Middle Jurassic to the Late Cretaceous period. The group is defined as Megalosaurus bucklandii and all taxa sharing a more recent common ancestor with it than with Allosaurus fragilis or Passer domesticus. Members of the group include Spinosaurus, Megalosaurus, and Torvosaurus.

Megaraptora

Megaraptora is a clade of carnivorous theropod dinosaurs with elongated hand claws and controversial relations to other theropods.Megaraptorans are incompletely known, and no complete megaraptoran skeleton has been found. However, they still possessed a number of unique features. Their forelimbs were large and strongly built, and the ulna bone had a unique shape in members of the family Megaraptoridae, a subset of megaraptorans which excludes Fukuiraptor. The first two fingers were elongated, with massive curved claws, while the third finger was small. Megaraptoran skull material is very incomplete, but a juvenile Megaraptor described in 2014 preserved a portion of the snout, which was long and slender. Leg bones referred to megaraptorans were also quite slender and similar to those of coelurosaurs adapted for running. Although megaraptorans were thick-bodied theropods, their bones were heavily pneumatized, or filled with air pockets. The vertebrae, ribs, and the ilium bone of the hip were pneumatized to an extent which was very rare among theropods, only seen elsewhere in taxa such as Neovenator. Other characteristic features include opisthocoelous neck vertebrae and compsognathid-like teeth.The clade was originally named in 2010 as a subset of the family Neovenatoridae, a group of lightly-built allosauroids related to the massive carcharodontosaurids such as Giganotosaurus and Carcharodontosaurus. A 2013 phylogenetic analysis by Fernando Novas and his colleagues disagreed with this classification scheme, and instead argued that the megaraptorans evolved deep within Tyrannosauroidea, a superfamily of basal coelurosaurs including the famous Tyrannosaurus. Subsequent refinements to Novas's data and methodologies have supported a third position for the group, at the base of Coelurosauria among other controversial theropods such as Gualicho, but not within the Tyrannosauroidea. Regardless of their position, it is clear that megaraptorans experienced a large amount of convergent evolution with either Neovenator-like allosauroids or basal coelurosaurs.Megaraptorans were most diverse in the early Late Cretaceous of South America, particularly Patagonia. However, they had a widespread distribution. Fukuiraptor, the most basal ("primitive") known member of the group, lived in Japan. Megaraptoran material is also common in Australia, and the largest known predatory dinosaur from the continent, Australovenator, was a megaraptoran.

Metriacanthosauridae

Metriacanthosauridae is an extinct family of theropod dinosaurs that lived from the Middle Jurassic to the Early Cretaceous. When broken down into its Greek roots, it means "moderately-spined lizards". The family is split into two subgroups: Metriacanthosaurinae, which includes dinosaurs closely related to Metriacanthosaurus, and another group composed of the close relatives of Yangchuanosaurus. Metriacanthosaurids are considered carnosaurs, belonging to the Allosauroidea superfamily. The group includes species of large range in body size. Of their physical traits, most notable are their neural spines. Their fossils can be found mostly in the Northern hemisphere. Metriacanthosauridae is used as a senior synonym of Sinraptoridae.

Neotheropoda

Neotheropoda (meaning "new theropods") is a clade that includes coelophysoids and more advanced theropod dinosaurs, and the only group of theropods who survived the Triassic–Jurassic extinction event. Yet all of the neotheropods became extinct during the early Jurassic period except for Averostra.

Neovenatoridae

Neovenatoridae is a family of large carnivorous dinosaurs representing a branch of the allosauroids, a large group of carnosaurs that also includes the sinraptorids, carcharodontosaurids, and allosaurids. Compared to other allosauroids, neovenatorids had short, wide shoulder blades, and their ilia (upper hip bones) had many cavities.

Orionides

Orionides is a clade of tetanuran theropod dinosaurs from the Middle Jurassic to the Present. The clade includes most theropod dinosaurs, including birds.

Orodrominae

Orodrominae is a subfamily of parksosaurid dinosaurs from the Cretaceous of North America and Asia.

Tetanurae

Tetanurae (/ˌtɛtəˈnjuːriː/ or "stiff tails") is a clade that includes most theropod dinosaurs, including megalosauroids, allosauroids, tyrannosauroids, ornithomimosaurs, maniraptorans, and birds. Tetanurans are defined as all theropods more closely related to modern birds than to Ceratosaurus and contain the majority of predatory dinosaur diversity. Tetanurae likely diverged from its sister group, Ceratosauria, during the late Triassic. Tetanurae first appeared in the fossil record by the Early Jurassic about 190 mya and by the Middle Jurassic had become globally distributed.The group was named by Jacques Gauthier in 1986 and originally had two main subgroups: Carnosauria and Coelurosauria, the clade containing birds and related dinosaurs such as compsognathids, tyrannosaurids, ornithomimosaurs, and maniraptorans. The original Carnosauria was a polyphyletic group including any large carnivorous theropod. Many of Gauthier’s carnosaurs, such as tyrannosaurids, have since been re-classified as coelurosaurs or primitive tetanurans. Carnosauria has been reclassified as a group containing allosaurids that split from the Coelurosauria at the Neotetanurae/Avetheropoda node. Members of Spinosauroidea are believed to represent basal tetanurans.Tetanuran evolution was characterized by parallel diversification of multiple lineages, repeatedly attaining large body size and similar locomotor morphology. Cryolophosaurus has been claimed as the first true member of the group, but subsequent studies have disagreed on whether it is a dilophosaurid or tetanuran. Arcucci and Coria (2003) classified Zupaysaurus as an early tetanuran, but it was later placed as a sister taxon to the clade containing dilophosaurids, ceratosaurs, and tetanurans.Shared tetanuran features include a ribcage indicating a sophisticated air-sac-ventilated lung system similar to that in modern birds. This character would have been accompanied by an advanced circulatory system. Other tetanuran characterizing features include the absence of the fourth digit of the hand, placement of the maxillary teeth anterior to the orbit, a strap-like scapula, maxillary fenestrae, and stiffened tails. During the Late Jurassic and Early Cretaceous, large spinosaurids and allosaurs flourished but possibly died out in the northern hemisphere before the end of the Cretaceous, and were replaced as apex predators by tyrannosauroid coelurosaurs. At least in South America, carcharodontosaurid allosaurs persisted until the end of the Mesozoic Era, and died out at the same time the non-avian coelurosaurs.

Xixiposaurus

Xixiposaurus is a genus of prosauropod dinosaur which existed in what is now Lower Lufeng Formation, China during the lower Jurassic period. It was first named by Sekiya Toru in 2010 and the type species is Xixiposaurus suni.

Allosauroidea
Basal allosauroids
Metriacanthosauridae
Allosauria

Languages

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.