Acetyl-CoA

Acetyl-CoA (acetyl coenzyme A) is a molecule that participates in many biochemical reactions in protein, carbohydrate and lipid metabolism.[1] Its main function is to deliver the acetyl group to the citric acid cycle (Krebs cycle) to be oxidized for energy production. Coenzyme A (CoASH or CoA) consists of a β-mercaptoethylamine group linked to the vitamin pantothenic acid through an amide linkage [2] and 3'-phosphorylated ADP. The acetyl group (indicated in blue in the structural diagram on the right) of acetyl-CoA is linked to the sulfhydryl substituent of the β-mercaptoethylamine group. This thioester linkage is a "high energy" bond, which is particularly reactive. Hydrolysis of the thioester bond is exergonic (−31.5 kJ/mol).

CoA is acetylated to acetyl-CoA by the breakdown of carbohydrates through glycolysis and by the breakdown of fatty acids through β-oxidation. Acetyl-CoA then enters the citric acid cycle, where the acetyl group is oxidized to carbon dioxide and water, and the energy released captured in the form of 11 ATP and one GTP per acetyl group.

Konrad Bloch and Feodor Lynen were awarded the 1964 Nobel Prize in Physiology and Medicine for their discoveries linking acetyl-CoA and fatty acid metabolism. Fritz Lipmann won the Nobel Prize in 1953 for his discovery of the cofactor coenzyme A.

Acetyl-CoA
Acetyl-CoA-2D colored
Acetyl-CoA-3D-vdW
Names
IUPAC name
S-[2-[3-[[(2R)-4-[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-4-hydroxy-3-phosphonooxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-hydroxyphosphoryl]oxy-2-hydroxy-3,3-dimethylbutanoyl]amino]propanoylamino]ethyl] ethanethioate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.000.719
KEGG
MeSH Acetyl+Coenzyme+A
Properties
C23H38N7O17P3S
Molar mass 809.57 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Direct synthesis

The acetylation of CoA is determined by the carbon sources.[3][4]

Extramitochondrial

Intramitochondrial

Pyruvate dehydrogenase complex reaction
Pyruvate dehydrogenase complex reaction
  • At high glucose levels, acetyl-CoA is produced through glycolysis.[10] Pyruvate undergoes oxidative decarboxylation in which it loses its carboxyl group (as carbon dioxide) to form acetyl-CoA, giving off 33.5 kJ/mol of energy. The oxidative conversion of pyruvate into acetyl-CoA is referred to as the pyruvate dehydrogenase reaction. It is catalyzed by the pyruvate dehydrogenase complex. Other conversions between pyruvate and acetyl-CoA are possible. For example, pyruvate formate lyase disproportionates pyruvate into acetyl-CoA and formic acid.

Functions

Intermediates in various pathways

Interactive pathway map

Click on genes, proteins and metabolites below to visit Gene Wiki pages and related Wikipedia articles. The pathway can be downloaded and edited at WikiPathways.

[[File:
TCACycle_WP78go to articlego to articlego to articlego to articlego to HMDBgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to HMDBgo to articlego to articlego to HMDBgo to articlego to articlego to HMDBgo to articlego to articlego to HMDBgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
TCACycle_WP78go to articlego to articlego to articlego to articlego to HMDBgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to HMDBgo to articlego to articlego to HMDBgo to articlego to articlego to HMDBgo to articlego to articlego to HMDBgo to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to articlego to articlego to article
|{{{bSize}}}px|alt=TCA Cycle edit]]
TCA Cycle edit
[[File:
Statin_Pathway_WP430go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
Statin_Pathway_WP430go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to article
|px|alt=Statin Pathway edit]]
Statin Pathway edit

See also

References

  1. ^ "Acetyl CoA Crossroads". chemistry.elmhurst.edu. Retrieved 2016-11-08.
  2. ^ "Fatty Acids -- Structure of Acetyl CoA". library.med.utah.edu. Retrieved 2017-06-02.
  3. ^ Hynes, Michael J.; Murray, Sandra L. (2010-07-01). "ATP-Citrate Lyase Is Required for Production of Cytosolic Acetyl Coenzyme A and Development in Aspergillus nidulans". Eukaryotic Cell. 9 (7): 1039–1048. doi:10.1128/EC.00080-10. ISSN 1535-9778. PMC 2901662. PMID 20495057.
  4. ^ Wellen, Kathryn E.; Thompson, Craig B. (2012-04-01). "A two-way street: reciprocal regulation of metabolism and signalling". Nature Reviews Molecular Cell Biology. 13 (4): 270–276. doi:10.1038/nrm3305. ISSN 1471-0072. PMID 22395772.
  5. ^ Storey, Kenneth B. (2005-02-25). Functional Metabolism: Regulation and Adaptation. John Wiley & Sons. ISBN 9780471675570.
  6. ^ "ACLY ATP citrate lyase [Homo sapiens (human)] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2016-11-06.
  7. ^ Ragsdale, S. W. (2004). "Life with carbon monoxide". CRC Critical Reviews in Biochemistry and Molecular Biology. 39: 165–195.
  8. ^ Chatterjea (2004-01-01). Textbook of Biochemistry for Dental/Nursing/Pharmacy Students. Jaypee Brothers Publishers. ISBN 9788180612046.
  9. ^ a b Berg, Jeremy M.; Tymoczko, John L.; Stryer, Lubert (2002). Biochemistry (5th ed.). W. H. Freeman. ISBN 978-0716730514.
  10. ^ Blackstock, James C. (2014-06-28). Guide to Biochemistry. Butterworth-Heinemann. ISBN 9781483183671.
  11. ^ Houten, Sander Michel; Wanders, Ronald J. A. (2010-03-02). "A general introduction to the biochemistry of mitochondrial fatty acid β-oxidation". Journal of Inherited Metabolic Disease. 33 (5): 469–477. doi:10.1007/s10545-010-9061-2. ISSN 0141-8955. PMC 2950079. PMID 20195903.
  12. ^ a b c d e f g Stryer, Lubert (1995). Biochemistry (Fourth ed.). New York: W.H. Freeman and Company. pp. 510–515, 559–565, 581–613, 614–623, 775–778. ISBN 978-0-7167-2009-6.
  13. ^ "Oxidation of fatty acids". 2013-10-11.
  14. ^ "Ketone body metabolism". University of Waterloo.
  15. ^ a b Ferre, P.; F. Foufelle (2007). "SREBP-1c Transcription Factor and Lipid Homeostasis: Clinical Perspective". Hormone Research. 68 (2): 72–82. doi:10.1159/000100426. PMID 17344645. Retrieved 2010-08-30. this process is outlined graphically in page 73
  16. ^ a b Voet, Donald; Judith G. Voet; Charlotte W. Pratt (2006). Fundamentals of Biochemistry, 2nd Edition. John Wiley and Sons, Inc. pp. 547, 556. ISBN 978-0-471-21495-3.
  17. ^ Fatland, B. L. (2005). "Reverse Genetic Characterization of Cytosolic Acetyl-CoA Generation by ATP-Citrate Lyase in Arabidopsis". The Plant Cell Online. 17 (1): 182–203. doi:10.1105/tpc.104.026211. PMC 544498. PMID 15608338.
  18. ^ Yi, C. H.; Vakifahmetoglu-Norberg, H.; Yuan, J. (2011-01-01). "Integration of Apoptosis and Metabolism". Cold Spring Harbor Symposia on Quantitative Biology. 76: 375–387. doi:10.1101/sqb.2011.76.010777. ISSN 0091-7451. PMID 22089928.
  19. ^ Pettit, Flora H.; Pelley, John W.; Reed, Lester J. (1975-07-22). "Regulation of pyruvate dehydrogenase kinase and phosphatase by acetyl-CoA/CoA and NADH/NAD ratios". Biochemical and Biophysical Research Communications. 65 (2): 575–582. doi:10.1016/S0006-291X(75)80185-9.
  20. ^ Jitrapakdee, Sarawut; Maurice, Martin St.; Rayment, Ivan; Cleland, W. Wallace; Wallace, John C.; Attwood, Paul V. (2008-08-01). "Structure, Mechanism and Regulation of Pyruvate Carboxylase". The Biochemical Journal. 413 (3): 369–387. doi:10.1042/BJ20080709. ISSN 0264-6021. PMC 2859305. PMID 18613815.

External links

(acetyl-CoA carboxylase) kinase

In enzymology, a [acetyl-CoA carboxylase] kinase (EC 2.7.11.27) is an enzyme that catalyzes the chemical reaction

ATP + [acetyl-CoA carboxylase] ADP + [acetyl-CoA carboxylase] phosphate

Thus, the two substrates of this enzyme are ATP and acetyl-CoA carboxylase, whereas its two products are ADP and acetyl-CoA carboxylase phosphate.

This enzyme belongs to the family of transferases, specifically those transferring a phosphate group to the sidechain oxygen atom of serine or threonine residues in proteins (protein-serine/threonine kinases). The systematic name of this enzyme class is ATP:[acetyl-CoA carboxylase] phosphotransferase. Other names in common use include acetyl coenzyme A carboxylase kinase (phosphorylating), acetyl-CoA carboxylase bound kinase, acetyl-CoA carboxylase kinase, acetyl-CoA carboxylase kinase (cAMP-independent), acetyl-CoA carboxylase kinase 2, acetyl-CoA carboxylase kinase-2, acetyl-CoA carboxylase kinase-3 (AMP-activated), acetyl-coenzyme A carboxylase kinase, ACK2, ACK3, AMPK, I-peptide kinase, and STK5.

3-hydroxy-3-methylglutaryl-CoA lyase

3-hydroxy-3-methylglutaryl-CoA lyase (or HMG-CoA lyase) is an enzyme that in human is encoded by the HMGCL gene located on chromosome 1. It is a key enzyme in ketogenesis (ketone body formation). It is a ketongenic enzyme in the liver that catalyzes the formation of acetoacetate from HMG-CoA within the mitochondria. It also plays a prominent role in the catabolism of the amino acid leucine.

ATP citrate lyase

ATP citrate lyase is an enzyme that in animals represents an important step in fatty acid biosynthesis. ATP citrate lyase is important in that, by converting citrate to acetyl CoA, it links the metabolism of carbohydrates, which yields citrate as an intermediate, and the production of fatty acids, which requires acetyl CoA.

In plants, ATP citrate lyase generates cytosolic acetyl-CoA precursor of thousands of specialized metabolites including waxes, sterols, and polyketides.

Acetyl-CoA carboxylase

Acetyl-CoA carboxylase (ACC) is a biotin-dependent enzyme that catalyzes the irreversible carboxylation of acetyl-CoA to produce malonyl-CoA through its two catalytic activities, biotin carboxylase (BC) and carboxyltransferase (CT). ACC is a multi-subunit enzyme in most prokaryotes and in the chloroplasts of most plants and algae, whereas it is a large, multi-domain enzyme in the endoplasmic reticulum of most eukaryotes. The most important function of ACC is to provide the malonyl-CoA substrate for the biosynthesis of fatty acids. The activity of ACC can be controlled at the transcriptional level as well as by small molecule modulators and covalent modification. The human genome contains the genes for two different ACCs—ACACA and ACACB.

Acetyl—CoA synthetase

Acetyl—CoA synthetase (ACS) or Acetate—CoA ligase is an enzyme (EC 6.2.1.1) involved in metabolism of acetate. It is in the ligase class of enzymes, meaning that it catalyzes the formation of a new chemical bond between two large molecules.

Beta oxidation

In biochemistry and metabolism, beta-oxidation is the catabolic process by which fatty acid molecules are broken down in the cytosol in prokaryotes and in the mitochondria in eukaryotes to generate acetyl-CoA, which enters the citric acid cycle, and NADH and FADH2, which are co-enzymes used in the electron transport chain. It is named as such because the beta carbon of the fatty acid undergoes oxidation to a carbonyl group. Beta-oxidation is primarily facilitated by the mitochondrial trifunctional protein, an enzyme complex associated with the inner mitochondrial membrane, although very long chain fatty acids are oxidized in peroxisomes.

The overall reaction for one cycle of beta oxidation is:

Cn-acyl-CoA + FAD + NAD+ + H2O + CoA → Cn-2-acyl-CoA + FADH2 + NADH + H+ + acetyl-CoA

Citrate synthase

The enzyme citrate synthase E.C. 2.3.3.1 (previously 4.1.3.7)] exists in nearly all living cells and stands as a pace-making enzyme in the first step of the citric acid cycle (or Krebs cycle). Citrate synthase is localized within eukaryotic cells in the mitochondrial matrix, but is encoded by nuclear DNA rather than mitochondrial. It is synthesized using cytoplasmic ribosomes, then transported into the mitochondrial matrix.

Citrate synthase is commonly used as a quantitative enzyme marker for the presence of intact mitochondria. Maximal activity of citrate synthase indicates the mitochondrial content of skeletal muscle. The maximal activity can be increased by endurance training or high-intensity interval training, but maximal activity is increased more with high-intensity interval training.Citrate synthase catalyzes the condensation reaction of the two-carbon acetate residue from acetyl coenzyme A and a molecule of four-carbon oxaloacetate to form the six-carbon citrate:

acetyl-CoA + oxaloacetate + H2O → citrate + CoA-SH

Oxaloacetate is regenerated after the completion of one round of the Krebs cycle.

Oxaloacetate is the first substrate to bind to the enzyme. This induces the enzyme to change its conformation, and creates a binding site for the acetyl-CoA. Only when this citroyl-CoA has formed will another conformational change cause thioester hydrolysis and release coenzyme A. This ensures that the energy released from the thioester bond cleavage will drive the condensation.

Citric acid cycle

The citric acid cycle (CAC) – also known as the TCA cycle (tricarboxylic acid cycle) or the Krebs cycle – is a series of chemical reactions used by all aerobic organisms to release stored energy through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins, into adenosine triphosphate (ATP) and carbon dioxide. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest established components of cellular metabolism and may have originated abiogenically. Even though it is branded as a 'cycle', it is not necessary for metabolites to follow only one specific route; at least three segments of the citric acid cycle have been recognized.The name of this metabolic pathway is derived from the citric acid (a type of tricarboxylic acid, often called citrate, as the ionized form predominates at biological pH) that is consumed and then regenerated by this sequence of reactions to complete the cycle. The cycle consumes acetate (in the form of acetyl-CoA) and water, reduces NAD+ to NADH, and produces carbon dioxide as a waste byproduct. The NADH generated by the citric acid cycle is fed into the oxidative phosphorylation (electron transport) pathway. The net result of these two closely linked pathways is the oxidation of nutrients to produce usable chemical energy in the form of ATP.

In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion. In prokaryotic cells, such as bacteria, which lack mitochondria, the citric acid cycle reaction sequence is performed in the cytosol with the proton gradient for ATP production being across the cell's surface (plasma membrane) rather than the inner membrane of the mitochondrion. The overall yield of energy-containing compounds from the TCA cycle is three NADH, one FADH2, and one GTP.

Ethanol metabolism

Ethanol, an alcohol found in nature and in alcoholic drinks, is metabolized through a complex catabolic metabolic pathway.

Fatty acid metabolism

Fatty acid metabolism consists of catabolic processes that generate energy, and anabolic processes that create biologically important molecules (triglycerides, phospholipids, second messengers, local hormones and ketone bodies).Fatty acids are a family of molecules classified within the lipid macronutrient class. One role of fatty acids in animal metabolism is energy production, captured in the form of adenosine triphosphate (ATP). When compared to other macronutrient classes (carbohydrates and protein), fatty acids yield the most ATP on an energy per gram basis, when they are completely oxidized to CO2 and water by beta oxidation and the citric acid cycle. Fatty acids (mainly in the form of triglycerides) are therefore the foremost storage form of fuel in most animals, and to a lesser extent in plants. In addition, fatty acids are important components of the phospholipids that form the phospholipid bilayers out of which all the membranes of the cell are constructed (the cell wall, and the membranes that enclose all the organelles within the cells, such as the nucleus, the mitochondria, endoplasmic reticulum, and the Golgi apparatus). Fatty acids can also be cleaved, or partially cleaved, from their chemical attachments in the cell membrane to form second messengers within the cell, and local hormones in the immediate vicinity of the cell. The prostaglandins made from arachidonic acid stored in the cell membrane, are probably the most well known group of these local hormones.

Fatty acid synthesis

Fatty acid synthesis is the creation of fatty acids from acetyl-CoA and NADPH through the action of enzymes called fatty acid synthases. This process takes place in the cytoplasm of the cell. Most of the acetyl-CoA which is converted into fatty acids is derived from carbohydrates via the glycolytic pathway. The glycolytic pathway also provides the glycerol with which three fatty acids can combine (by means of ester bonds) to form triglycerides (also known as "triacylglycerols" – to distinguish them from fatty "acids" – or simply as "fat"), the final product of the lipogenic process. When only two fatty acids combine with glycerol and the third alcohol group is phosphorylated with a group such as phosphatidylcholine, a phospholipid is formed. Phospholipids form the bulk of the lipid bilayers that make up cell membranes and surround the organelles within the cells (e.g. the cell nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus etc.)

HADHB

Trifunctional enzyme subunit beta, mitochondrial (TP-beta) also known as 3-ketoacyl-CoA thiolase, acetyl-CoA acyltransferase, or beta-ketothiolase is an enzyme that in humans is encoded by the HADHB gene.HADHB is a subunit of the mitochondrial trifunctional protein and has thiolase activity.

Hydroxymethylglutaryl-CoA synthase

In molecular biology, Hydroxymethylglutaryl-CoA synthase or HMG-CoA synthase EC 2.3.3.10 is an enzyme which catalyzes the reaction in which Acetyl-CoA condenses with acetoacetyl-CoA to form 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA). It is the second reaction in the mevalonate-dependent isoprenoid biosynthesis pathway. HMG-CoA is an intermediate in both cholesterol synthesis and ketogenesis. This reaction is over-activated in patients with diabetes mellitus type 1 if left untreated, due to prolonged insulin deficiency and the exhaustion of substrates for gluconeogenesis and the TCA cycle, notably oxaloacetate. This results in shunting of excess acetyl-CoA into the ketone synthesis pathway via HMG-CoA, leading to the development of diabetic ketoacidosis.

The 3 substrates of this enzyme are acetyl-CoA, H2O, and acetoacetyl-CoA, whereas its two products are (S)-3-hydroxy-3-methylglutaryl-CoA and CoA.

In humans, the protein is encoded by the HMGCS1 gene on chromosome 5.

Ketogenesis

Ketogenesis is the biochemical process by which organisms produce a group of substances collectively known as ketone bodies by the breakdown of fatty acids and ketogenic amino acids. This process supplies energy to certain organs (particularly the brain) under circumstances such as fasting, but insufficient gluconeogenesis can cause hypoglycemia and excessive production of ketone bodies leads to a dangerous state known as ketoacidosis.

Ketone bodies

Ketone bodies are three water-soluble molecules (acetoacetate, beta-hydroxybutyrate, and their spontaneous breakdown product, acetone) containing the ketone group that are produced by the liver from fatty acids during periods of low food intake (fasting), carbohydrate restrictive diets, starvation, prolonged intense exercise, alcoholism or in untreated (or inadequately treated) type 1 diabetes mellitus. These ketone bodies are readily picked up by the extra-hepatic tissues (tissues outside the liver) and converted into acetyl-CoA which then enters the citric acid cycle and is oxidized in the mitochondria for energy. In the brain, ketone bodies are also used to make acetyl-CoA into long-chain fatty acids.

Ketone bodies are produced by the liver under the circumstances listed above (i.e. fasting, starving, low carbohydrate diets, prolonged exercise and untreated type 1 diabetes mellitus) as a result of intense gluconeogenesis, which is the production of glucose from non-carbohydrate sources (not including fatty acids). They are therefore always released into the blood by the liver together with newly produced glucose after the liver glycogen stores have been depleted (these glycogen stores are depleted within the first 24 hours of fasting).When two acetyl-CoA molecules lose their -CoAs, (or Co-enzyme A groups) they can form a (covalent) dimer called acetoacetate. Beta-hydroxybutyrate is a reduced form of acetoacetate, in which the ketone group is converted into an alcohol (or hydroxyl) group (see illustration on the right). Both are 4-carbon molecules, that can readily be converted back into acetyl-CoA by most tissues of the body, with the notable exception of the liver. Acetone is the decarboxylated form of acetoacetate which cannot be converted back into acetyl-CoA except via detoxification in the liver where it is converted into lactic acid, which can, in turn, be oxidized into pyruvic acid, and only then into acetyl-CoA.

Ketone bodies have a characteristic smell, which can easily be detected in the breath of persons in ketosis and ketoacidosis. It is often described as fruity or like nail polish remover (which usually contains acetone or ethyl acetate).

Apart from the three endogenous ketone bodies, acetone, acetoacetic acid, and beta-hydroxybutyric acid, other ketone bodies like beta-ketopentanoate and beta-hydroxypentanoate may be created as a result of the metabolism of synthetic triglycerides, such as triheptanoin.

Lipogenesis

Lipogenesis is the process by which acetyl-CoA is converted to triglycerides (i.e., fat). Acetyl-CoA is an organic compound mainly used to transfer to other compounds the energy obtained by the breakdown of nutrients such as carbohydrates, fatty acids, and ethanol. Through the citric acid cycle, Acetyl-CoA is typically broken down to produce ATP, which is then consumed as a source of energy for many metabolic processes needed for survival or reproduction, such as protein synthesis or muscle contraction. Through lipogenesis, the energy contained in Acetyl-CoA can be efficiently stored for a long time in the form of fats, whenever the total available energy introduced with food is abundant and not all of it is immediately needed for metabolic processes.

Lipogenesis encompasses both the process of fatty acid synthesis and triglyceride synthesis, where fatty acids are esterified to glycerol. Fatty acids are produced in the cytoplasm of cells by repeatedly adding two-carbon units to acetyl-CoA. Triglycerides are produced in the endoplasmic reticulum of cells by bonding three fatty acid molecules to each glycerol molecule. Both processes take place mainly in liver and adipose tissue. Triglicerides produced by liver cells are secreted from the liver in the form of very-low-density lipoproteins (VLDL). VLDL particles are secreted directly into blood, where they function to deliver the endogenously derived lipids to peripheral tissues.

Malonyl-CoA decarboxylase

Malonyl-CoA decarboxylase (which can also be called MCD and malonyl-CoA carboxyl-lyase) is found from bacteria to humans, has important roles in regulating fatty acid metabolism and food intake, and it is an attractive target for drug discovery. It is an enzyme associated with Malonyl-CoA decarboxylase deficiency. In humans, it is encoded by the MLYCD gene.

Its main function is to catalyze the conversion of malonyl-CoA into acetyl-CoA and carbon dioxide. It is involved in fatty acid biosynthesis. To some degree, it reverses the action of Acetyl-CoA carboxylase.

Mevalonate pathway

The mevalonate pathway, also known as the isoprenoid pathway or HMG-CoA reductase pathway is an essential metabolic pathway present in eukaryotes, archaea, and some bacteria. The pathway produces two five-carbon building blocks called isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are used to make isoprenoids, a diverse class of over 30,000 biomolecules such as cholesterol, heme, vitamin K, coenzyme Q10, and all steroid hormones.The mevalonate pathway begins with acetyl-CoA and ends with the production of IPP and DMAPP. It is best known as the target of statins, a class of cholesterol lowering drugs. Statins inhibit HMG-CoA reductase within the mevalonate pathway.

Thiolase

Thiolases, also known as acetyl-coenzyme A acetyltransferases (ACAT), are enzymes which convert two units of acetyl-CoA to acetoacetyl CoA in the mevalonate pathway.

Thiolases are ubiquitous enzymes that have key roles in many vital biochemical pathways, including the beta oxidation pathway of fatty acid degradation and various biosynthetic pathways. Members of the thiolase family can be divided into two broad categories: degradative thiolases (EC 2.3.1.16) and biosynthetic thiolases (EC 2.3.1.9). These two different types of thiolase are found both in eukaryotes and in prokaryotes: acetoacetyl-CoA thiolase (EC:2.3.1.9) and 3-ketoacyl-CoA thiolase (EC:2.3.1.16). 3-ketoacyl-CoA thiolase (also called thiolase I) has a broad chain-length specificity for its substrates and is involved in degradative pathways such as fatty acid beta-oxidation. Acetoacetyl-CoA thiolase (also called thiolase II) is specific for the thiolysis of acetoacetyl-CoA and involved in biosynthetic pathways such as beta-hydroxybutyric acid synthesis or steroid biogenesis.

The formation of a carbon–carbon bond is a key step in the biosynthetic pathways by which fatty acids and polyketide are made. The thiolase superfamily enzymes catalyse the carbon–carbon-bond formation via a thioester-dependent Claisen condensation reaction mechanism.

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.