Absorption spectroscopy

Absorption spectroscopy refers to spectroscopic techniques that measure the absorption of radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.

Absorption spectroscopy is employed as an analytical chemistry tool to determine the presence of a particular substance in a sample and, in many cases, to quantify the amount of the substance present. Infrared and ultraviolet-visible spectroscopy are particularly common in analytical applications. Absorption spectroscopy is also employed in studies of molecular and atomic physics, astronomical spectroscopy and remote sensing.

There are a wide range of experimental approaches for measuring absorption spectra. The most common arrangement is to direct a generated beam of radiation at a sample and detect the intensity of the radiation that passes through it. The transmitted energy can be used to calculate the absorption. The source, sample arrangement and detection technique vary significantly depending on the frequency range and the purpose of the experiment.

Spectroscopy overview
An overview of electromagnetic radiation absorption. This example discusses the general principle using visible light as a specific example. A white beam source – emitting light of multiple wavelengths – is focused on a sample (the complementary color pairs are indicated by the yellow dotted lines). Upon striking the sample, photons that match the energy gap of the molecules present (green light in this example) are absorbed in order to excite the molecule. Other photons transmit unaffected and, if the radiation is in the visible region (400-700nm), the sample color is the complementary color of the absorbed light. By comparing the attenuation of the transmitted light with the incident, an absorption spectrum can be obtained.
Sodium in atmosphere of exoplanet HD 209458
The first direct detection and chemical analysis of the atmosphere of an exoplanet, in 2001. Sodium in the atmosphere filters the starlight of HD 209458 as the giant planet passes in front of the star.

Absorption spectrum

Fraunhofer lines
Solar spectrum with Fraunhofer lines as it appears visually.

A material's absorption spectrum is the fraction of incident radiation absorbed by the material over a range of frequencies. The absorption spectrum is primarily determined[1][2][3] by the atomic and molecular composition of the material. Radiation is more likely to be absorbed at frequencies that match the energy difference between two quantum mechanical states of the molecules. The absorption that occurs due to a transition between two states is referred to as an absorption line and a spectrum is typically composed of many lines.

The frequencies where absorption lines occur, as well as their relative intensities, primarily depend on the electronic and molecular structure of the sample. The frequencies will also depend on the interactions between molecules in the sample, the crystal structure in solids, and on several environmental factors (e.g., temperature, pressure, electromagnetic field). The lines will also have a width and shape that are primarily determined by the spectral density or the density of states of the system.


Absorption lines are typically classified by the nature of the quantum mechanical change induced in the molecule or atom. Rotational lines, for instance, occur when the rotational state of a molecule is changed. Rotational lines are typically found in the microwave spectral region. Vibrational lines correspond to changes in the vibrational state of the molecule and are typically found in the infrared region. Electronic lines correspond to a change in the electronic state of an atom or molecule and are typically found in the visible and ultraviolet region. X-ray absorptions are associated with the excitation of inner shell electrons in atoms. These changes can also be combined (e.g. rotation-vibration transitions), leading to new absorption lines at the combined energy of the two changes.

The energy associated with the quantum mechanical change primarily determines the frequency of the absorption line but the frequency can be shifted by several types of interactions. Electric and magnetic fields can cause a shift. Interactions with neighboring molecules can cause shifts. For instance, absorption lines of the gas phase molecule can shift significantly when that molecule is in a liquid or solid phase and interacting more strongly with neighboring molecules.

The width and shape of absorption lines are determined by the instrument used for the observation, the material absorbing the radiation and the physical environment of that material. It is common for lines to have the shape of a Gaussian or Lorentzian distribution. It is also common for a line to be described solely by its intensity and width instead of the entire shape being characterized.

The integrated intensity—obtained by integrating the area under the absorption line—is proportional to the amount of the absorbing substance present. The intensity is also related to the temperature of the substance and the quantum mechanical interaction between the radiation and the absorber. This interaction is quantified by the transition moment and depends on the particular lower state the transition starts from, and the upper state it is connected to.

The width of absorption lines may be determined by the spectrometer used to record it. A spectrometer has an inherent limit on how narrow a line it can resolve and so the observed width may be at this limit. If the width is larger than the resolution limit, then it is primarily determined by the environment of the absorber. A liquid or solid absorber, in which neighboring molecules strongly interact with one another, tends to have broader absorption lines than a gas. Increasing the temperature or pressure of the absorbing material will also tend to increase the line width. It is also common for several neighboring transitions to be close enough to one another that their lines overlap and the resulting overall line is therefore broader yet.

Relation to transmission spectrum

Absorption and transmission spectra represent equivalent information and one can be calculated from the other through a mathematical transformation. A transmission spectrum will have its maximum intensities at wavelengths where the absorption is weakest because more light is transmitted through the sample. An absorption spectrum will have its maximum intensities at wavelengths where the absorption is strongest.

Relation to emission spectrum

Emission spectrum-Fe
Emission spectrum of iron

Emission is a process by which a substance releases energy in the form of electromagnetic radiation. Emission can occur at any frequency at which absorption can occur, and this allows the absorption lines to be determined from an emission spectrum. The emission spectrum will typically have a quite different intensity pattern from the absorption spectrum, though, so the two are not equivalent. The absorption spectrum can be calculated from the emission spectrum using appropriate theoretical models and additional information about the quantum mechanical states of the substance.

Relation to scattering and reflection spectra

The scattering and reflection spectra of a material are influenced by both its index of refraction and its absorption spectrum. In an optical context, the absorption spectrum is typically quantified by the extinction coefficient, and the extinction and index coefficients are quantitatively related through the Kramers-Kronig relation. Therefore, the absorption spectrum can be derived from a scattering or reflection spectrum. This typically requires simplifying assumptions or models, and so the derived absorption spectrum is an approximation.


Identification of Ices in the Solar System
The infrared absorption spectrum of NASA laboratory sulfur dioxide ice is compared with the infrared absorption spectra of ices on Jupiter's moon, Io credit NASA, Bernard Schmitt, and UKIRT.

Absorption spectroscopy is useful in chemical analysis[4] because of its specificity and its quantitative nature. The specificity of absorption spectra allows compounds to be distinguished from one another in a mixture, making absorption spectroscopy useful in wide variety of applications. For instance, Infrared gas analyzers can be used to identify the presence of pollutants in the air, distinguishing the pollutant from nitrogen, oxygen, water and other expected constituents.[5]

The specificity also allows unknown samples to be identified by comparing a measured spectrum with a library of reference spectra. In many cases, it is possible to determine qualitative information about a sample even if it is not in a library. Infrared spectra, for instance, have characteristics absorption bands that indicate if carbon-hydrogen or carbon-oxygen bonds are present.

An absorption spectrum can be quantitatively related to the amount of material present using the Beer-Lambert law. Determining the absolute concentration of a compound requires knowledge of the compound's absorption coefficient. The absorption coefficient for some compounds is available from reference sources, and it can also be determined by measuring the spectrum of a calibration standard with a known concentration of the target.

Remote sensing

One of the unique advantages of spectroscopy as an analytical technique is that measurements can be made without bringing the instrument and sample into contact. Radiation that travels between a sample and an instrument will contain the spectral information, so the measurement can be made remotely. Remote spectral sensing is valuable in many situations. For example, measurements can be made in toxic or hazardous environments without placing an operator or instrument at risk. Also, sample material does not have to be brought into contact with the instrument—preventing possible cross contamination.

Remote spectral measurements present several challenges compared to laboratory measurements. The space in between the sample of interest and the instrument may also have spectral absorptions. These absorptions can mask or confound the absorption spectrum of the sample. These background interferences may also vary over time. The source of radiation in remote measurements is often an environmental source, such as sunlight or the thermal radiation from a warm object, and this makes it necessary to distinguish spectral absorption from changes in the source spectrum.

To simplify these challenges, Differential optical absorption spectroscopy has gained some popularity, as it focusses on differential absorption features and omits broad-band absorption such as aerosol extinction and extinction due to rayleigh scattering. This method is applied to ground-based, air-borne and satellite based measurements. Some ground-based methods provide the possibility to retrieve tropospheric and stratospheric trace gas profiles.


Absorption spectrum observed by the Hubble Space Telescope

Astronomical spectroscopy is a particularly significant type of remote spectral sensing. In this case, the objects and samples of interest are so distant from earth that electromagnetic radiation is the only means available to measure them. Astronomical spectra contain both absorption and emission spectral information. Absorption spectroscopy has been particularly important for understanding interstellar clouds and determining that some of them contain molecules. Absorption spectroscopy is also employed in the study of extrasolar planets. Detection of extrasolar planets by the transit method also measures their absorption spectrum and allows for the determination of the planet's atmospheric composition,[6] temperature, pressure, and scale height, and hence allows also for the determination of the planet's mass.[7]

Atomic and molecular physics

Theoretical models, principally quantum mechanical models, allow for the absorption spectra of atoms and molecules to be related to other physical properties such as electronic structure, atomic or molecular mass, and molecular geometry. Therefore, measurements of the absorption spectrum are used to determine these other properties. Microwave spectroscopy, for example, allows for the determination of bond lengths and angles with high precision.

In addition, spectral measurements can be used to determine the accuracy of theoretical predictions. For example, the Lamb shift measured in the hydrogen atomic absorption spectrum was not expected to exist at the time it was measured. Its discovery spurred and guided the development of quantum electrodynamics, and measurements of the Lamb shift are now used to determine the fine-structure constant.

Experimental methods

Basic approach

The most straightforward approach to absorption spectroscopy is to generate radiation with a source, measure a reference spectrum of that radiation with a detector and then re-measure the sample spectrum after placing the material of interest in between the source and detector. The two measured spectra can then be combined to determine the material's absorption spectrum. The sample spectrum alone is not sufficient to determine the absorption spectrum because it will be affected by the experimental conditions—the spectrum of the source, the absorption spectra of other materials in between the source and detector and the wavelength dependent characteristics of the detector. The reference spectrum will be affected in the same way, though, by these experimental conditions and therefore the combination yields the absorption spectrum of the material alone.

A wide variety of radiation sources are employed in order to cover the electromagnetic spectrum. For spectroscopy, it is generally desirable for a source to cover a broad swath of wavelengths in order to measure a broad region of the absorption spectrum. Some sources inherently emit a broad spectrum. Examples of these include globars or other black body sources in the infrared, mercury lamps in the visible and ultraviolet and x-ray tubes. One recently developed, novel source of broad spectrum radiation is synchrotron radiation which covers all of these spectral regions. Other radiation sources generate a narrow spectrum but the emission wavelength can be tuned to cover a spectral range. Examples of these include klystrons in the microwave region and lasers across the infrared, visible and ultraviolet region (though not all lasers have tunable wavelengths).

The detector employed to measure the radiation power will also depend on the wavelength range of interest. Most detectors are sensitive to a fairly broad spectral range and the sensor selected will often depend more on the sensitivity and noise requirements of a given measurement. Examples of detectors common in spectroscopy include heterodyne receivers in the microwave, bolometers in the millimeter-wave and infrared, mercury cadmium telluride and other cooled semiconductor detectors in the infrared, and photodiodes and photomultiplier tubes in the visible and ultraviolet.

If both the source and the detector cover a broad spectral region, then it is also necessary to introduce a means of resolving the wavelength of the radiation in order to determine the spectrum. Often a spectrograph is used to spatially separate the wavelengths of radiation so that the power at each wavelength can be measured independently. It is also common to employ interferometry to determine the spectrum—Fourier transform infrared spectroscopy is a widely used implementation of this technique.

Two other issues that must be considered in setting up an absorption spectroscopy experiment include the optics used to direct the radiation and the means of holding or containing the sample material (called a cuvette or cell). For most UV, visible, and NIR measurements the use of precision quartz cuvettes are necessary. In both cases, it is important to select materials that have relatively little absorption of their own in the wavelength range of interest. The absorption of other materials could interfere with or mask the absorption from the sample. For instance, in several wavelength ranges it is necessary to measure the sample under vacuum or in a rare gas environment because gases in the atmosphere have interfering absorption features.

Specific approaches

See also


  1. ^ Modern Spectroscopy (Paperback) by J. Michael Hollas ISBN 978-0-470-84416-8
  2. ^ Symmetry and Spectroscopy: An Introduction to Vibrational and Electronic Spectroscopy (Paperback) by Daniel C. Harris, Michael D. Bertolucci ISBN 978-0-486-66144-5
  3. ^ Spectra of Atoms and Molecules by Peter F. Bernath ISBN 978-0-19-517759-6
  4. ^ James D. Ingle, Jr. and Stanley R. Crouch, Spectrochemical Analysis, Prentice Hall, 1988, ISBN 0-13-826876-2
  5. ^ "Gaseous Pollutants – Fourier Transform Infrared Spectroscopy". Archived from the original on 2012-10-23. Retrieved 2009-09-30.
  6. ^ Khalafinejad, S.; Essen, C. von; Hoeijmakers, H. J.; Zhou, G.; Klocová, T.; Schmitt, J. H. M. M.; Dreizler, S.; Lopez-Morales, M.; Husser, T.-O. (2017-02-01). "Exoplanetary atmospheric sodium revealed by orbital motion". Astronomy & Astrophysics. 598. arXiv:1610.01610. Bibcode:2017A&A...598A.131K. doi:10.1051/0004-6361/201629473. ISSN 0004-6361.
  7. ^ de Wit, Julien; Seager, S. (19 December 2013). "Constraining Exoplanet Mass from Transmission Spectroscopy". Science. 342 (6165): 1473–1477. arXiv:1401.6181. Bibcode:2013Sci...342.1473D. doi:10.1126/science.1245450. PMID 24357312.

External links

Absorption (electromagnetic radiation)

In physics, absorption of electromagnetic radiation is the way in which the energy of a photon is taken up by matter, typically the electrons of an atom. Thus, the electromagnetic energy is transformed into internal energy of the absorber, for example thermal energy. The reduction in intensity of a light wave propagating through a medium by absorption of a part of its photons is often called attenuation. Usually, the absorption of waves does not depend on their intensity (linear absorption), although in certain conditions (usually, in optics), the medium changes its transparency dependently on the intensity of waves going through, and saturable absorption (or nonlinear absorption) occurs.

Alan Walsh (physicist)

Sir Alan Walsh FAA FRS (19 December 1916 – 3 August 1998) was a British/Australian physicist, originator and developer of a method of chemical analysis called atomic absorption spectroscopy.Walsh was born in Hoddlesden, Darwen, Lancashire, educated at Darwen Grammar School and studied physics at Manchester University.After working for several years in British industry he moved to Melbourne, Australia in 1946 to join the newly formed Chemical Physics Section of the Commonwealth Scientific and Industrial Research Organisation (then CSIR, now CSIRO), where he worked until his retirement in 1977. There he developed the innovative technique of using atomic absorption spectra, rather than atomic emission and molecular absorption spectra, in spectrochemical analysis.Walsh was elected a Fellow of the Australian Academy of Science in 1958 and was President of the Australian Institute of Physics from 1967 to 1968. In 1969, he was elected a Fellow of the Royal Society of London and a Foreign Member of the Royal Swedish Academy of Sciences. He was awarded the Royal Society's Royal Medal in 1976. In 1977 he was Knighted for 'services to science'. In 1981, Walsh became a founding member of the World Cultural Council. He was elected a Fellow of the Australian Academy of Technological Sciences and Engineering in 1982; in the same year he was awarded the Boyle Medal by the Royal Society of Chemistry.The Australian Institute of Physics (AIP) Alan Walsh Medal, awarded for significant contributions in physics by an Australian industrial physicist, is named in his honour.

Atomic absorption spectroscopy

Atomic absorption spectroscopy (AAS) and atomic emission spectroscopy (AES) is a spectroanalytical procedure for the quantitative determination of chemical elements using the absorption of optical radiation (light) by free atoms in the gaseous state. Atomic absorption spectroscopy is based on absorption of light by free metallic ions.

In analytical chemistry the technique is used for determining the concentration of a particular element (the analyte) in a sample to be analyzed. AAS can be used to determine over 70 different elements in solution, or directly in solid samples via electrothermal vaporization, and is used in pharmacology, biophysics,

archaeology and toxicology research.

Atomic absorption spectroscopy was first used as an analytical technique, and the underlying principles were established in the second half of the 19th century by Robert Wilhelm Bunsen and Gustav Robert Kirchhoff, both professors at the University of Heidelberg, Germany.The modern form of AAS was largely developed during the 1950s by a team of Australian chemists. They were led by Sir Alan Walsh at the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Division of Chemical Physics, in Melbourne, Australia.Atomic absorption spectrometry has many uses in different areas of chemistry such as clinical analysis of metals in biological fluids and tissues such as whole blood, plasma, urine, saliva, brain tissue, liver, hair, muscle tissue, semen, in some pharmaceutical manufacturing processes, minute quantities of a catalyst that remain in the final drug product, and analyzing water for its metal content.

Cavity ring-down spectroscopy

Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopic technique that enables measurement of absolute optical extinction by samples that scatter and absorb light. It has been widely used to study gaseous samples which absorb light at specific wavelengths, and in turn to determine mole fractions down to the parts per trillion level. The technique is also known as cavity ring-down laser absorption spectroscopy (CRLAS).

A typical CRDS setup consists of a laser that is used to illuminate a high-finesse optical cavity, which in its simplest form consists of two highly reflective mirrors. When the laser is in resonance with a cavity mode, intensity builds up in the cavity due to constructive interference. The laser is then turned off in order to allow the measurement of the exponentially decaying light intensity leaking from the cavity. During this decay, light is reflected back and forth thousands of times between the mirrors giving an effective path length for the extinction on the order of a few kilometers.

If a light absorbing material is now placed in the cavity, the mean lifetime decreases as fewer bounces through the medium are required before the light is absorbed. A CRDS setup measures how long it takes for the light to decay to 1/e of its initial intensity, and this "ringdown time" can be used to calculate the concentration of the absorbing substance in the gas mixture in the cavity.

Differential optical absorption spectroscopy

In atmospheric chemistry, differential optical absorption spectroscopy (DOAS) is used to measure concentrations of trace gases. When combined with basic optical spectrometers such as prisms or diffraction gratings and automated, ground-based observation platforms, what we have is a cheap and powerful means for the measurement of such trace gas species as ozone and nitrogen dioxide. Typical setups allow for detection limits corresponding to optical depths of 0.0001 along lightpaths of up to typically 15 km and thus allow for the detection also of weak absorbers, such as water vapour, Nitrous acid, Formaldehyde, Tetraoxygen, Iodine oxide, Bromine oxide and Chlorine oxide.

Gas in scattering media absorption spectroscopy

Gas in scattering media absorption spectroscopy (GASMAS) is an optical technique for sensing and analysis of gas located within porous and highly scattering solids, e.g. powders, ceramics, wood, fruit, translucent packages, pharmaceutical tablets, foams, human paranasal sinuses etc. It was introduced in 2001 by Prof. Sune Svanberg and co-workers at Lund University (Sweden). The technique is related to conventional high-resolution laser spectroscopy for sensing and spectroscopy of gas (e.g. tunable diode laser absorption spectroscopy, TDLAS), but the fact that the gas here is "hidden" inside solid materials give rise to important differences.

Graphite furnace atomic absorption

Graphite furnace atomic absorption spectroscopy (GFAAS) (also known as Electrothermal Atomic Absorption Spectroscopy (ETAAS)) is a type of spectrometry that uses a graphite-coated furnace to vaporize the sample. Briefly, the technique is based on the fact that free atoms will absorb light at frequencies or wavelengths characteristic of the element of interest (hence the name atomic absorption spectrometry). Within certain limits, the amount of light absorbed can be linearly correlated to the concentration of analyte present. Free atoms of most elements can be produced from samples by the application of high temperatures. In GFAAS, samples are deposited in a small graphite or pyrolytic carbon coated graphite tube, which can then be heated to vaporize and atomize the analyte. The atoms absorb ultraviolet or visible light and make transitions to higher electronic energy levels. Applying the Beer-Lambert law directly in AA spectroscopy is difficult due to variations in the atomization efficiency from the sample matrix, and nonuniformity of concentration and path length of analyte atoms (in graphite furnace AA). Concentration measurements are usually determined from a working curve after calibrating the instrument with standards of known concentration.

The main advantages of the graphite furnace comparing to aspiration atomic absorption are the following:

The detection limits for the graphite furnace fall in the ppb range for most elements

Interference problems are minimized with the development of improved instrumentation

The graphite furnace can determine most elements measurable by aspiration atomic absorption in a wide variety of matrices.

Incoherent broad-band cavity-enhanced absorption spectroscopy

Incoherent broad band cavity enhanced absorption spectroscopy (IBBCEAS), sometimes called broadband cavity enhanced extinction spectroscopy (IBBCEES), measures the transmission of light intensity through a stable optical cavity consisting of high reflectance mirrors(typically R>99.9%). The technique is realized using incoherent sources of radiation e.g. Xenon arc lamps, LEDs or supercontinuum (SC) lasers, hence the name.

Typically in IBBCEAS, the wavelength selection of the transmitted light takes place after the cavity by either dispersive or interferometric means. The light is either directly focused onto the entrance slit of a monochromator and imaged onto a charged coupled device (CCD) array via a dispersive optical element (e.g. a reflection grating) or imaged onto the entrance aperture of a conventional interferometer. The spectrum is reconstructed taking the Fourier transform of the recorded interferogram.

Similar to other cavity enhanced spectroscopic techniques, in IBBCEAS, the transmission signal strength is measured with and without the absorber of interest present inside the cavity ( I(λ) and I0(λ) respectively). From the ratio of the wavelength-dependent transmitted intensities, the effective reflectivity of the mirrors Reff(λ) and the sample path length per pass d inside the cavity, the sample's extinction coefficient α(λ) is calculated as:

The sensitivity (smallest achievable α for a given sample) increases for large mirror reflectivities and large path lengths in the cavity, which is maximal, if d equals the cavity length.(1-Reff) includes all unspecified losses per pass (e.g. scattering or diffraction losses) other than the losses due to the limited reflectivity of the cavity mirrors. Note that although the technique is often used for studying absorption, total light extinction, α, is retrieved, and it therefore measures the sum of absorption and scattering.

The advantages of IBBCEAS include:

The disadvantages include:

Laser absorption spectrometry

Laser absorption spectrometry (LAS) refers to techniques that use lasers to assess the concentration or amount of a species in gas phase by absorption spectrometry (AS).

Optical spectroscopic techniques in general, and laser-based techniques in particular, have a great potential for detection and monitoring of constituents in gas phase. They combine a number of important properties, e.g. a high sensitivity and a high selectivity with non-intrusive and remote sensing capabilities. Laser absorption spectrometry has become the foremost used technique for quantitative assessments of atoms and molecules in gas phase. It is also a widely used technique for a variety of other applications, e.g. within the field of optical frequency metrology or in studies of light matter interactions. The most common technique is tunable diode laser absorption spectroscopy (TDLAS) which has become commercialized and is used for a variety of applications.

Photoelectrochemical process

Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism.

Saturated absorption spectroscopy

In experimental atomic physics, saturated absorption spectroscopy or Doppler-free spectroscopy is a set-up that enables the precise determination of the transition frequency of an atom between its ground state and an optically excited state. The accuracy to which these frequencies can be determined is, ideally, limited only by the width of the excited state, which is the inverse of the lifetime of this state. However, the samples of atomic gas that are used for that purpose are generally at room temperature, where the measured frequency distribution is highly broadened due to the Doppler effect. Saturated absorption spectroscopy allows precise spectroscopy of the atomic levels without having to cool the sample down to temperatures at which the Doppler broadening is no longer relevant (which would be on the order of a few millikelvins). It is also used to lock the frequency of a laser to the precise wavelength of an atomic transmission in atomic physics experiments.

Saturated spectroscopy

Saturated spectroscopy is the method by which the exact energy of the hyperfine transitions within an atom can be found. When a monochromatic light is shone through an atom, the absorption cross-section is broadened due to Doppler broadening. Saturated spectroscopy allows the doppler broadened peak to be resolved so that the exact transitions can be found.

More than a decade after the first demonstration of spectral hole burning (or Lamb dip, a result of saturated absorption process) inside HeNe laser cavity at 1.1 μm in 1962, the greater majority of SA spectroscopy research was carried out with gas lasers and molecules in the mid-infrared.

But because SA requires high laser intensity, and the gas molecules usually have widely spread strong absorption spectra only in the mid-IR, while compact widely tunable mid-IR lasers were slow to develop, the SA technique has not been widely used for molecular chemical analysis besides precision metrology, which only been limited to the isolated wavelengths of HeNe and CO2 lasers and limited number of molecules.

See also saturated absorption spectroscopy.

Soret peak

In spectroscopy, a Soret peak or Soret band is an intense peak in the blue wavelength region of the visible spectrum. The peak is named after its discoverer, Jacques-Louis Soret. The term is commonly used in absorption spectroscopy, corresponding to a wavelength of maximum absorption (electromagnetic radiation) ranging around 400 nm in the blue region.

Time-resolved spectroscopy

In physics and physical chemistry, time-resolved spectroscopy is the study of dynamic processes in materials or chemical compounds by means of spectroscopic techniques. Most often, processes are studied after the illumination of a material occurs, but in principle, the technique can be applied to any process that leads to a change in properties of a material. With the help of pulsed lasers, it is possible to study processes that occur on time scales as short as 10−16 seconds.

Total absorption spectroscopy

Total absorption spectroscopy is a measurement technique that allows the measurement of the gamma radiation emitted in the different nuclear gamma transitions that may take place in the daughter nucleus after its unstable parent has decayed by means of the beta decay process. This technique can be used for beta decay studies related to beta feeding measurements within the full decay energy window for nuclei far from stability.

It is implemented with a special type of detector, the "total absorption spectrometer" (TAS), made of a scintillator crystal that almost completely surrounds the activity to be measured, covering a solid angle of approximately 4π. Also, in an ideal case, it should be thick enough to have a peak efficiency close to 100%, in this way its total efficiency is also very close to 100% (this is one of the reasons why it is called "total" absorption spectroscopy). Finally, it should be blind to any other type of radiation. The gamma rays produced in the decay under study are collected by photomultipliers attached to the scintillator material. This technique may solve the problem of the Pandemonium effect.

There is a change in philosophy when measuring with a TAS. Instead of detecting the individual gamma rays (as high-resolution detectors do), it will detect the gamma cascades emitted in the decay. Then, the final energy spectrum will not be a collection of different energy peaks coming from the different transitions (as can be expected in the case of a germanium detector), but a collection of peaks situated at an energy that is the sum of the different energies of all the gammas of the cascade emitted from each level. This means that the energy spectrum measured with a TAS will be in reality a spectrum of the levels of the nuclei, where each peak is a level populated in the decay. Since the efficiency of these detectors is close to 100%, it is possible to see the feeding to the high excitation levels that usually can not be seen by high-resolution detectors. This makes total absorption spectroscopy the best method to measure beta feedings and provide accurate beta intensity (Iβ) distributions for complex decay schemes.

In an ideal case, the measured spectrum would be proportional to the beta feeding (Iβ). But a real TAS has limited efficiency and resolution, and also the Iβ has to be extracted from the measured spectrum, which depends on the spectrometer response. The analysis of TAS data is not simple: to obtain the strength from the measured data, a deconvolution process should be applied.

Tunable diode laser absorption spectroscopy

Tunable diode laser absorption spectroscopy (TDLAS) is a technique for measuring the concentration of certain species such as methane, water vapor and many more, in a gaseous mixture using tunable diode lasers and laser absorption spectrometry. The advantage of TDLAS over other techniques for concentration measurement is its ability to achieve very low detection limits (of the order of ppb). Apart from concentration, it is also possible to determine the temperature, pressure, velocity and mass flux of the gas under observation. TDLAS is by far the most common laser based absorption technique for quantitative assessments of species in gas phase.

Ultraviolet–visible spectroscopy

Ultraviolet–visible spectroscopy or ultraviolet–visible spectrophotometry (UV–Vis or UV/Vis) refers to absorption spectroscopy or reflectance spectroscopy in part of the ultraviolet and the full, adjacent visible spectral regions. This means it uses light in the visible and adjacent ranges. The absorption or reflectance in the visible range directly affects the perceived color of the chemicals involved. In this region of the electromagnetic spectrum, atoms and molecules undergo electronic transitions. Absorption spectroscopy is complementary to fluorescence spectroscopy, in that fluorescence deals with transitions from the excited state to the ground state, while absorption measures transitions from the ground state to the excited state.

X-ray absorption fine structure

X-ray absorption fine structure (XAFS) is a specific structure observed in X-ray absorption spectroscopy (XAS). By analyzing the XAFS, information can be acquired on the local structure and on the unoccupied local electronic states.

X-ray absorption spectroscopy

X-ray absorption spectroscopy (XAS) is a widely used technique for determining the local geometric and/or electronic structure of matter. The experiment is usually performed at synchrotron radiation facilities, which provide intense and tunable X-ray beams. Samples can be in the gas-phase, solution, or as solids.

XAS data is obtained by tuning the photon energy, using a crystalline monochromator, to a range where core electrons can be excited (0.1–100 keV, 16–16,022 aJ). The edges are, in part, named by which core electron is excited: the principal quantum numbers n = 1, 2, and 3, correspond to the K-, L-, and M-edges, respectively. For instance, excitation of a 1s electron occurs at the K-edge, while excitation of a 2s or 2p electron occurs at an L-edge (Figure 1).

There are three main regions found on a spectrum generated by XAS data (Figure 2):

The absorption threshold determined by the transition to the lowest unoccupied states:

The X-ray Absorption Near-Edge Structure XANES introduced in 1980 and later in 1983 called also NEXAFS (Near-edge X-ray Absorption Fine Structure) which are dominated by core transitions to quasi bound states (multiple scattering resonances) for photoelectrons with kinetic energy in the range from 10 to 150 eV above the chemical potential, called "shape resonances" in molecular spectra since they are due to final states of short life-time degenerate with the continuum with the Fano line-shape. In this range multi-electron excitations and many-body final states in strongly correlated systems are relevant;

In the high kinetic energy range of the photoelectron the scattering cross-section with neighbor atoms is weak and the absorption spectra are dominated by EXAFS (Extended X-ray Absorption Fine Structure) where the scattering of the ejected photoelectron of neighboring atoms can be approximated by single scattering events. After it was shown in 1985 that multiple scattering theory can interpret both XANES and EXAFS the experimental analysis focusing on both regions is called XAFS [2].XAS is a type of absorption spectroscopy from a core initial state with a well defined symmetry therefore the quantum mechanical selection rules select the symmetry of the final states in the continuum which usually are mixture of multiple components. The most intense features are due to electric-dipole allowed transitions (i.e. Δℓ = ± 1) to unoccupied final states. For example, the most intense features of a K-edge are due to core transitions from 1s → p-like final states, while the most intense features of the L3-edge are due to 2p → d-like final states.

XAS methodology can be broadly divided into four experimental categories that can give complementary results to each other: metal K-edge, metal L-edge, ligand K-edge, and EXAFS.

X-ray and

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.