Φυσική

Η φυσική[1] είναι η επιστήμη που ασχολείται με τη μελέτη της ύλης[2], της κίνησής της μέσα στον χώρο και στον χρόνο, μαζί με τις σχετικές ποσότητες, όπως η ενέργεια και η δύναμη.[3] Σύμφωνα με έναν ευρύτερο ορισμό, η Φυσική είναι η γενική ανάλυση της φύσης, που συνδέεται με τη προσπάθεια για κατανόηση της συμπεριφοράς του σύμπαντος[4][5][6]

Η φυσική είναι μια από τις παλαιότερες ακαδημαϊκές ενασχολήσεις, ίσως και η παλαιότερη, στον βαθμό που περιλαμβάνει και την αστρονομία[7]. Τουλάχιστον τις τελευταίες δυο χιλιετίες, η φυσική αποτέλεσε το ένα τμήμα της φυσικής φιλοσοφίας, μαζί με τη χημεία, κάποιους κλάδους των μαθηματικών και τη βιολογία. Αλλά κατά τη διάρκεια της Επιστημονικής Επανάστασης του 16ου αιώνα, οι φυσικές επιστήμες αναδείχθηκαν από μόνες τους ως ξεχωριστά ερευνητικά προγράμματα[8]. Η Φυσική διασταυρώνεται με πολλούς διεπιστημονικούς τομείς έρευνας, όπως η Βιοφυσική, η Φυσικοχημεία και η Κβαντική χημεία, και επιπλέον τα όρια της Φυσικής δεν είναι αυστηρά καθορισμένα. Νέες ιδέες στη Φυσική συχνά εξηγούν θεμελιώδεις μηχανισμούς σε άλλες επιστήμες, ενώ ανοίγουν νέες λεωφόρους για την έρευνα σε τομείς των Μαθηματικών και της Φιλοσοφίας.

Η Φυσική επιπλέον συνεισφέρει σημαντικά στην ανάπτυξη νέων τεχνολογιών που προκύπτουν από θεωρητικές καινοτομίες. Για παράδειγμα, τα βήματα που έγιναν στην κατανόηση του Ηλεκτρομαγνητισμού ή της Πυρηνικής Φυσικής οδήγησαν άμεσα στην ανάπτυξη νέων προϊόντων που έχουν μεταβάλει δραματικά (θετικά και αρνητικά) τη σύγχρονη κοινωνία, ακόμη και σε σύγκριση με τις λίγο παλαιότερες, όπως π.χ. η τηλεόραση, οι ηλεκτρονικοί υπολογιστές, οι οικιακές συσκευές, αλλά και τα πυρηνικά όπλα. Η ανάπτυξη της θερμοδυναμικής έπαιξε μεγάλο ρόλο στη βιομηχανοποίηση. Επιπλέον, η εξέλιξη της μηχανικής ενέπνευσε την ανάπτυξη της υπολογιστικής.

CollageFisica
Διάφορα παραδείγματα από φυσικά φαινόμενα

Επισκόπηση της Ιστορίας της Φυσικής

Κυρίως άρθρο: Ιστορία της Φυσικής.
Βλέπε επίσης Διάσημοι Φυσικοί και Βραβεία Νόμπελ Φυσικής.
Heraclitus, Johannes Moreelse
Ηράκλειτος.
GodfreyKneller-IsaacNewton-1689
Ισαάκ Νεύτων (Sir Isaac Newton, 16431727)
Newtons cradle animation book 2
«Αν έχω δει πιο μακρυά, αυτό συμβαίνει μόνο γιατί στέκομαι στους ώμους γιγάντων».- Ισαάκ Νεύτων[9].

Τα μέσα που χρησιμοποιήθηκαν για την κατανόηση της συμπεριφοράς των φυσικών φαινομένων και των αποτελεσμάτων τους αναπτύχθηκαν σταδιακά από τη φιλοσοφία, που καθώς εξελίχθηκε εξειδικεύτηκε αρχικά στη φυσική φιλοσοφία, μετά στις Φυσικές επιστήμες και τελικά, στη σύγχρονη Φυσική.

Η φυσική φιλοσοφία (σύμφωνα με τα ως τώρα γνωστά δεδομένα) ξεκίνησε στην Ελλάδα κατά την Αρχαϊκή Περίοδο (650 π.Χ. – 480 π.Χ.), όταν οι προσωκρατικοί φιλόσοφοι όπως ο Θαλής ο Μιλήσιος απαρνήθηκαν την υπερφυσική εξήγηση των φαινομένων, που προέρχονταν από τις θρησκευτικές ή και τις μυθολογικές παραδόσεις, και διακήρυξαν ότι για κάθε φαινόμενο υπάρχει μια φυσική αιτία[10]. Πρότειναν ιδέες που προσδιορίστηκαν από τη λογική και την παρατήρηση, και πολλές από τις υποθέσεις τους αποδείχθηκαν επιτυχημένες αργότερα πειραματικά[11]. Το τελευταίο ισχύει για παράδειγμα στην ατομική φιλοσοφία.

Η Κλασσική Φυσική έγινε μια ξεχωριστή επιστήμη όταν οι πρώιμοι μοντέρνοι Ευρωπαίοι χρησιμοποίησαν πειραματικές και μαθηματικές μεθόδους για να ανακαλύψουν αυτά που θεωρούνται σήμερα Νόμοι της Φυσικής[12][13]. Ο Γιοχάνες Κέπλερ, ο Γαλιλαίος Γαλιλέι και ιδιαίτερα ο Ισαάκ Νεύτων ανακάλυψαν και ενοποίησαν διαφορετικούς νόμους για την κίνηση[14]. Οι πειραματικοί φυσικοί είχαν κάνει το ντεμπούτο τους στον πειραματισμό σχετικά με στατική με τους μεσαιωνικούς μουσουλμάνους φυσικούς, όπως ο αλ-Μπιρουνί και ο Αλχαζέν[15][16]. Κατά τη διάρκεια της Βιομηχανικής Επανάστασης αυξήθηκε η ζήτηση και άρα η έρευνα για την ενέργεια, γεγονός που οδήγησε τελικά σε νέους νόμους για τη Θερμοδυναμική, τη Χημεία και τον ηλεκτρομαγνητισμό.

Η Μοντέρνα Φυσική άρχισε να λειτουργεί με τον Μαξ Πλανκ στην Κβαντική θεωρία και τον Άλμπερτ Αϊνστάιν στη Θεωρία της Σχετικότητας. Συνεχίστηκε με την Κβαντομηχανική, με πρωτοπόρους επιστήμονες τους Βέρνερ Χάιζενμπεργκ, Έρβιν Σρέντινγκερ και Πολ Ντιράκ.

Η Φιλοσοφία της Φυσικής

Με πολλούς τρόπους, η Φυσική προέρχεται από την αρχαία ελληνική φιλοσοφία. Πιο συγκεκριμένα, τον 6ο αιώνα π.Χ., στις αρχαίες ελληνικές αποικίες της Ιωνίας, εμφανίστηκαν οι φυσικοί φιλόσοφοι, που στήριξαν την ερμηνεία του κόσμου στη λογική και είχαν πρωτοποριακές για την εποχή αντιλήψεις για τον κόσμο. Οι Ίωνες φυσικοί φιλόσοφοι ήταν οι πρώτοι γνωστοί υλιστές με την πρωταρχική έννοια του όρου, πράγμα που σημαίνει ότι οι θεωρίες τους είχαν ως βάση την ερμηνεία της φύσης μέσω των υλικών πραγμάτων. Κοινό χαρακτηριστικό των Ιώνων φυσικών φιλοσόφων ήταν η υπόθεσή τους ότι όλη η ύλη αποτελείται από τα ίδια πρωταρχικά συστατικά.

Ο Θαλής έκανε μια «πρώτη απόπειρα» για να χαρακτηριστεί η ύλη και υπέθεσε ότι το ύδωρ είναι η αρχή όλων των πραγμάτων. Ο Αναξίμανδρος, θεώρησε ως αρχή των όντων το άπειρο. Ο Αναξιμένης, υιοθέτησε στη θέση του απείρου του Αναξίμανδρου, τον αέρα. Ο Ηράκλειτος πίστευε στην προαιώνια ύπαρξη του κόσμου. Για αυτόν οι αλλαγές στην ύλη περνούσαν με τη μορφή δύο αντίρροπων κινήσεων: πυρ → θάλασσα → γη και γη → θάλασσα → πυρ. Συνδετικός κρίκος ήταν το ευμετάβλητο πυρ. Έπειτα, με το Δημόκριτο, από τα Άβδηρα της Θράκης, έγινε αφαίρεση στο θέμα και υπέθεσε ότι θα έπρεπε να αναχθεί σε μια αμετάβλητη κατάσταση, την οποία ονόμασε άτομο. Τα επόμενα βήματα έγιναν στη στην Ελέα, όπου ο Παρμενίδης αντιτάχθηκε στην Ιωνική φυσική και στην ηρακλείτεια θεώρηση. Γι' αυτόν ο φυσικός κόσμος υποτάσσεται σε μία υπερεμπειρική πραγματικότητα και απαρνείται τις Ιωνικές αντιλήψεις ως δοξασίες («δόξας»). Ο Ζήνων ο Ελεάτης, μαθητής του Παρμενίδη, υπερασπίστηκε την Παρμενίδεια οντολογία απορρίπτοντας την πολλαπλότητα των πραγμάτων και την κίνηση. Η μέθοδος του συνίστατο στην αποκάλυψη αντιφάσεων με τα γνωστά τα παράδοξα του Ζήνωνα. Ο γνωστός περισσότερο ως μαθηματικός Αρχιμήδης συνέταξε πολλές ποσοτικά ακριβείς μελέτες της μηχανικής και της υδροστατικής. Ακολούθησε το βιβλίο του Αριστοτέλη «Φυσικά», ένα από τα πρώτα γνωστά βιβλία για τη Φυσική, σε μια απόπειρα ορισμού και ανάλυσης της κίνησης από μια φιλοσοφική σκοπιά. Η Πτολεμαϊκή Αστρονομία με την υπόθεση για το «κρυστάλλινο στερέωμα» και γενικότερα διάφοροι Έλληνες φιλόσοφοι ανέπτυξαν και προώθησαν τις δικές τους θεωρίες για τη φύση, δημιουργώντας όλοι μαζί αυτό που είναι γνωστό ως φυσική φιλοσοφία, μέχρι τα τέλη του 18ου αιώνα. Από το 19ο αιώνα η Φυσική διαχωρίστηκε και από τη φιλοσοφία και από τις άλλες επιστήμες. Η Φυσική, όπως και οι υπόλοιπες επιστήμες, βασίζεται στη φιλοσοφία της επιστήμης για να δώσει μια ικανοποιητική περιγραφή της αποκαλούμενης επιστημονικής μεθόδου[17]. Η επιστημονική μέθοδος αρχίζει από ένα δεκτό εκ των προτέρων (a priori) αξίωμα και διαμέσου μιας a posteriori λογικής και χρησιμοποιεί μια Μπεϋζιανή (Bayesian) συμπερασματολογία για τη μέτρηση της ισχύος μιας συγκεκριμένης θεωρίας[18].

Η ανάπτυξη της Φυσικής απάντησε σε πολλά ζητήματα των προγενέστερων φυσικών φιλοσόφων, αλλά επίσης ανέδειξε νέα ζητήματα. Η μελέτη των φιλοσοφικών θεμάτων που αφορούν τη φυσική, δηλαδή τη φιλοσοφία της φυσικής, περιλαμβάνει θέματα όπως η φύση του χώρου και του χρόνου, η αιτιοκρατία, και μεταφυσικές αντιλήψεις όπως ο εμπειρισμός, ο νατουραλισμός και ο ρεαλισμός[19].

Πολλοί φυσικοί έχουν γράψει για τις φιλοσοφικές συνέπειες των εργασιών τους. Για παράδειγμα, ο Λαπλάς υπερασπίστηκε τον αιτιώδη ντετερμινισμό[20], και ο Σρέντινγκερ έγραψε για την κβαντική μηχανική[21]. Ο μαθηματικός φυσικός Ρότζερ Πένροουζ (Roger Penrose) έχει αποκληθεί Πλατωνιστής από τον Στήβεν Χώκινγκ[22] , μια άποψη του Πέντροουζ που «συζητά» στο βιβλίο του Ο δρόμος για την πραγματικότητα (The Road to Reality)[23]. Ο Χώκινγκ αναφέρεται στον εαυτό του ως «αναγωγικό χωρίς ντροπή» (unashamed reductionist) και παίρνει το ζήτημα με τις απόψεις του Πέντροουζ[24].

Σχέση με μαθηματικά και άλλες επιστήμες

H Φυσική σχετίζεται στενά με τις άλλες φυσικές επιστήμες όπως η χημεία. Η χημεία όντας η επιστήμη των μορίων και των δεσμών που μπορούν να σχηματίσουν τα άτομα μεταξύ τους, δανείζεται από τη φυσική το θεωρητικό υπόβαθρο για τη συμπεριφορά των ατόμων και των μορίων, το οποίο αναπτύσσεται σε τομείς της φυσικής όπως η κβαντομηχανική (εν προκειμένω κβαντική χημεία), η Ατομική Φυσική, η θερμοδυναμική και ο ηλεκτρομαγνητισμός.

Η Φυσική επίσης, έχει πολύ ιδιαίτερη σχέση με τα μαθηματικά, τα οποία παρέχουν το λογικό πλαίσιο ανάπτυξης και εδραίωσης των μοντέρνων θεωριών. Η διαφορά της φυσικής με τα μαθηματικά έγκειται στο ότι η φυσική χρησιμοποιεί τα μαθηματικά ως εργαλείο περιγραφής του υλικού κόσμου και των φαινομένων που τον διέπουν και τον χαρακτηρίζουν, ενώ τα μαθηματικά έχουν ως σκοπό την προώθηση του ίδιου του μαθηματικού λογισμού, χωρίς να υπόκεινται σε δεσμεύσεις ανάπτυξης υπό μία συγκεκριμένη σκοπιά. Ωστόσο, η διάκριση μεταξύ φυσικής και μαθηματικών δεν είναι πάντα ξεκάθαρη. Υπάρχει ένα ευρύ πεδίο έρευνας μεταξύ της φυσικής και των μαθηματικών, η μαθηματική φυσική, που είναι αφιερωμένη στην ανάπτυξη των μαθηματικών δομών που απαρτίζουν τις θεωρίες της φυσικής.

Βασικές φυσικές θεωρίες

Αν και οι φυσικοί μελετούν μια μεγάλη ποικιλία φαινομένων, υπάρχουν κάποιες θεωρίες οι οποίες χρησιμοποιούνται από όλους τους φυσικούς. Κάθε μία από αυτές τις θεωρίες έχει ελεγχθεί σε μεγάλο αριθμό πειραμάτων και έχει αποδειχθεί μια σωστή προσέγγιση της ίδιας της φύσης. Για παράδειγμα, η θεωρία της κλασικής μηχανικής περιγράφει με ακρίβεια την κίνηση των αντικειμένων, υπό την προϋπόθεση ότι είναι πολύ μεγαλύτερα από τα άτομα και πολύ πιο αργά από την ταχύτητα του φωτός. Ενώ αυτές οι θεωρίες έχουν κατανοηθεί και επεξεργαστεί για πολύ καιρό, συνεχίζουν να είναι πεδία ερευνών. Για παράδειγμα, μια αξιοσημείωτη πτυχή της κλασικής μηχανικής γνωστή ως θεωρία του χάους ανακαλύφθηκε τον 20ό αιώνα, τρεις αιώνες μετά την αρχική εγκαθίδρυση της κλασικής φυσικής από τον Ισαάκ Νεύτωνα. Οι κεντρικές θεωρίες είναι σημαντικά εργαλεία για περαιτέρω έρευνα σε πιο ειδικευμένα πεδία της φυσικής, και όλοι οι φυσικοί πρέπει να είναι καλά εκπαιδευμένοι και άνετοι πάνω σε αυτές.

Κλασική μηχανική

Η Κλασική μηχανική είναι ένα μοντέλο της φυσικής των δυνάμεων που ασκούνται σε κάποια σώματα. Συχνά αναφέρεται και ως "Νευτώνεια μηχανική" από τον Νεύτωνα και τους νόμους της κίνησης. Η κλασική μηχανική χωρίζεται στην στατική, όπου τα αντικείμενα είναι σε ηρεμία, στην κινηματική, όπου τα αντικείμενα είναι σε κίνηση, και στη δυναμική, η οποία περιγράφει αντικείμενα που υπόκεινται σε δυνάμεις. Η θεωρία ξεπερνιέται από τη σχετικιστική μηχανική για συστήματα που κινούνται με μεγάλες ταχύτητες, κοντά σε αυτή του φωτός, από την κβαντική μηχανική για συστήματα σε κλίμακα πολύ μικρών αποστάσεων, και από την σχετικιστική κβαντική μηχανική για συστήματα που ισχύουν και οι δύο παραπάνω ιδιότητες. Παρ' όλα αυτά, η κλασική μηχανική παραμένει πολύ χρήσιμη, καθώς εφαρμόζεται πολύ πιο εύκολα και απλά από αυτές τις άλλες θεωρίες, και έχει ένα αρκετά μεγάλο εύρος ισχύος. Η κλασική μηχανική μπορεί να χρησιμοποιηθεί για να περιγράψει την κίνηση μακροσκοπικών αντικειμένων, στην κλίμακα του ανθρώπου (όπως μπάλες και αυτοκίνητα), πολλά αστρονομικά αντικείμενα (όπως πλανήτες και γαλαξίες), και μερικά μικροσκοπικά αντικείμενα (όπως τα οργανικά μόρια).

Ηλεκτρομαγνητισμός

Ο Ηλεκτρομαγνητισμός είναι η φυσική του ηλεκτρομαγνητικού πεδίου, ένα πεδίο της φυσικής που παράγεται από την παρουσία και την κίνηση φορτισμένων σωματιδίων και αναπτύσσει δυνάμεις μεταξύ τους. Η ηλεκτροδυναμική περιγράφει τη συμπεριφορά των κινούμενων φορτισμένων σωματιδίων που αλληλεπιδρούν με ηλεκτρομαγνητικά πεδία. Ο ηλεκτρομαγνητισμός περιγράφει διάφορα ηλεκτρομαγνητικά φαινόμενα του απτού κόσμου. Ουσιαστικά, το φως είναι ένα ηλεκτρομαγνητικό πεδίο σε ταλάντωση, το οποίο ακτινοβολείται από επιταχυνόμενα φορτισμένα σωματίδια. Πέρα από τη βαρύτητα, σχεδόν όλες οι δυνάμεις που αντιλαμβανόμαστε στην καθημερινή μας ζωή, είναι αποτέλεσμα του ηλεκτρομαγνητισμού.

Θερμοδυναμική

Η Θερμοδυναμική είναι ο κλάδος της φυσικής που έχει να κάνει μη τη δράση της θερμότητας και τις μετατροπές της ενέργειας από τη μια μορφή στην άλλη. Η θερμοδυναμική ασχολείται συγκεκριμένα με το πώς αυτές οι αλλαγές επηρεάζουν μεγέθη όπως η θερμοκρασία, η πίεση, ο όγκος, η μηχανική δράση, η εντροπία και το έργο. Η Στατιστική μηχανική, που σχετίζεται με τη θερμοδυναμική, είναι ο κλάδος της φυσικής που αναλύει τα μακροσκοπικά θερμοδυναμικά συστήματα εφαρμόζοντας στατιστικές αρχές στα μικροσκοπικά τους στοιχεία. Μπορεί να εφαρμοστεί ώστε να υπολογιστούν οι θερμοδυναμικές ιδιότητες υλικών, από τις ιδιότητες των μορίων τους, κάτι που είναι η βάση της στατιστικής θερμοδυναμικής

Σχετικότητα

Η Θεωρία της Σχετικότητας είναι:

Κβαντική μηχανική

Η Κβαντική μηχανική είναι ο κλάδος της μαθηματικής φυσικής που ασχολείται με ατομικά και υποατομικά συστήματα και την αλληλεπίδρασή τους με την ακτινοβολία. Βασίζεται στην παρατήρηση ότι όλες οι μορφές της ενέργειας απελευθερώνονται σε διακριτές μονάδες που καλούνται κβάντα. Η κβαντική μηχανική παρέχει μια φυσική θεωρία της ύλης που βασίζεται στην έννοια του κυματοσωματιδιακού δυϊσμού και παρέχει μια μαθηματική ερμηνεία της δομής και των αλληλεπιδράσεων της ύλης στη βάση αυτής της ιδιότητας-- επίσης καλείται και Κυματική μηχανική. Το ενδιαφέρον είναι πως η κβαντική θεωρία παρέχει μόνο πιθανούς ή στατιστικούς υπολογισμούς των παρατηρούμενων ιδιοτήτων των υποατομικών σωματιδίων, μέσω της κυματοσυνάρτησης. Η ανακάλυψη της κβαντικής μηχανικής στις αρχές του 20ού αιώνα υπήρξε επαναστατική για τη φυσική, και είναι πλέον θεμελιώδης στους περισσότερους κλάδους της σύγχρονης έρευνας.

Σύνοψη θεωριών

Ο παρακάτω πίνακας παρουσιάζει τις πιο βασικές φυσικές θεωρίες και τα κυριότερα θέματα αυτών.

Θεωρία Βασικά θέματα Έννοιες
Κλασική μηχανική Νόμοι κίνησης του Νεύτωνα, Λαγκρανζιανή μηχανική, Χαμιλτόνια μηχανική, Κινηματική, Στατική, Δυναμική, Θεωρία του Χάους, Ακουστική, Μηχανική των ρευστών, Μηχανική των συνεχών μέσων Πυκνότητα, Διάσταση, Βαρύτητα, Χώρος, Χρόνος, Κίνηση, Μήκος, Θέση, Ταχύτητα, Επιτάχυνση, Μάζα, Ορμή, Δύναμη, Ενέργεια, Στροφορμή, Ροπή, Νόμος διατήρησης, Αρμονικός ταλαντωτής, Κύμα, Έργο, Ισχύς, Λαγκρανζιανή, Χαμιλτόνια, Γωνίες Όιλερ
Ηλεκτρομαγνητισμός Ηλεκτροστατική, Ηλεκτροδυναμική, Ηλεκτρισμός, Μαγνητισμός, Εξισώσεις Μάξουελ, Οπτική Χωρητικότητα, Ηλεκτρικό φορτίο, Ηλεκτρικό ρεύμα, Ηλεκτρική αγωγιμότητα, Ηλεκτρικό πεδίο, Ηλεκτρική διαπερατότητα, Ηλεκτρικό δυναμικό, Ηλεκτρική αντίσταση, Ηλεκτρομαγνητικό πεδίο, Ηλεκτρομαγνητική επαγωγή, Ηλεκτρομαγνητική ακτινοβολία, Επιφάνεια Γκάους, Μαγνητικό πεδίο, Μαγνητική ροή, Μαγνητικό μονόπολο, Μαγνητική επιδεκτικότητα
Θερμοδυναμική και Στατιστική μηχανική Θερμική μηχανή, Κινητική θεωρία Σταθερά του Μπόλτζμαν, Ενθαλπία, Εντροπία, Καταστατική εξίσωση, Θεώρημα ισοκατανομής, Ελεύθερη ενέργεια, Θερμότητα, Νόμος ιδανικού αερίου, Εσωτερική ενέργεια, Νόμοι της θερμοδυναμικής, Σχέσεις Μάξουελ, Αντιστρεπτή μεταβολή, Εκτατική μεταβλητή, Μηχανική δράση, Συνάρτηση επιμερισμού, Πίεση, Αυθόρμητη διεργασία, Συνάρτηση κατάστασης, Στατιστική κατανομή, Θερμοκρασία, Θερμοδυναμική ισορροπία, Θερμοδυναμικό δυναμικό, Θερμοδυναμική κατάσταση, Θερμοδυναμικό σύστημα, Όγκος, Έργο
Κβαντική μηχανική Φορμαλισμός τροχιακών ολοκληρωμάτων, Θεωρία σκέδασης, Εξίσωση Σρέντιγκερ, Κβαντική θεωρία πεδίου, Κβαντική στατιστική μηχανική Αδιαβατική προσέγγιση, Ακτινοβολία μέλανος σώματος, Αρχή της αντιστοιχίας, Ελεύθερο σωμάτιο, Χαμιλτονιανή, Χώρος Χίλμπερτ, Ταυτόσημα σωματίδια, Σταθερά του Πλανκ, Τελεστής, Κβάντο, Κβάντωση, Κβαντικός εναγκαλισμός, Κβαντικός αρμονικός ταλαντωτής, Κβαντικός αριθμός, Φαινόμενο σήραγγας, Γάτα του Σρέντιγκερ, Εξίσωση Ντιράκ, Σπιν, Κυματοσυνάρτηση, Κυματική μηχανική, Κυματοσωματιδιακός δυϊσμός, Απαγορευτική αρχή του Πάουλι, Αρχή της αβεβαιότητας
Σχετικότητα Ειδική σχετικότητα, Γενική σχετικότητα, Πεδιακές εξισώσεις Αϊνστάιν Αναλλοιότητα, Πολλαπλότητα Αϊνστάιν, Αρχή της ισοδυναμίας, Τετρα-ορμή, Τετρα-διάνυσμα, Γενική αρχή της σχετικότητας, Γεωδαισιακή κίνηση, Βαρύτητα, Βαρυτομαγνητισμός, Αδρανειακό σύστημα αναφοράς, Συστολή μήκους, Πολλαπλότητα Λόρεντζ, Μετασχηματισμοί Λόρεντζ, Ισοδυναμία μάζας-ενέργειας, Μετρική, Διάγραμμα Μινκόφσκι, Χώρος Μινκόφσκι, Αρχή της σχετικότητας, Ιδιομήκος, Ιδιοχρόνος, Σύστημα αναφοράς, Ενέργεια ηρεμίας, Μάζα ηρεμίας, Σχετικότητα του ταυτοχρονισμού, Χωρόχρονος, Ειδική αρχή της σχετικότητας, Ταχύτητα του φωτός, Τανυστής ενέργειας-ορμής, Διαστολή του χρόνου, Παράδοξο των διδύμων, Αντιύλη

Έρευνα

H σύγχρονη έρευνα στη φυσική χωρίζεται σε αρκετά διαφορετικά πεδία.

  • Η Φυσική συμπυκνωμένης ύλης ασχολείται με το πως οι ιδιότητες της συμπυκνωμένης ύλης, όπως των συνηθισμένων στερεών και υγρών που συναντάμε στην καθημερινή ζωή, προκύπτουν από τις ιδιότητες και τις αλληλεπιδράσεις των ατόμων που αποτελούν το υλικό. Ένα θέμα που παρουσιάζει μεγάλο ενδιαφέρον σήμερα είναι η υψηλής θερμοκρασίας υπεραγωγιμότητα.

Από τις αρχές του 20ού αιώνα, τα μεμονωμένα πεδία της φυσικής έχουν γίνει εξαιρετικά εξειδικευμένα, και οι πιο πολλοί φυσικοί εργάζονται σήμερα σε ένα μόνο πεδίο, για ολόκληρη την καριέρα τους. "Καθολικιστές" όπως ο Άλμπερτ Αϊνστάιν και ο Λεβ Λαντάου, οι οποίοι εργάστηκαν σε πολλαπλά πεδία της φυσικής, είναι σήμερα πολύ σπάνιοι.

Θεωρία και πείραμα

O τρόπος της έρευνας στη φυσική διαφέρει από τις περισσότερες επιστήμες, όσον αφορά το διαχωρισμό της θεωρίας με το πείραμα. Από τον 20ό αιώνα, οι περισσότεροι φυσικοί εξειδικεύονται είτε στη θεωρητική φυσική, είτε στην πειραματική φυσική. Ο σπουδαίος Ιταλός φυσικός Ενρίκο Φέρμι (19011954), ο οποίος έκανε θεμελιώδεις συνεισφορές και στη θεωρία και στα πειράματα στην πυρηνική φυσική, ήταν μια αξιοσημείωτη εξαίρεση. Αντίθετα, σχεδόν όλοι οι γνωστοί θεωρητικοί στη βιολογία και στη χημεία υπήρξαν και πειραματικοί.

Οι θεωρητικοί προσπαθούν να αναπτύξουν μέσω μαθηματικών μοντέλων διάφορες θεωρίες, οι οποίες μπορούν να περιγράφουν και να ερμηνεύουν υπάρχοντα πειραματικά αποτελέσματα, και να προβλέπουν επιτυχώς μελλοντικά αποτελέσματα, ενώ οι πειραματικοί εκτελούν πειράματα ώστε να εξερευνήσουν νέα φαινόμενα και να ελέγξουν τις θεωρητικές προβλέψεις. Αν και η θεωρία και το πείραμα αναπτύσσονται ξεχωριστά, εξαρτώνται πολύ το ένα από το άλλο. Η πρόοδος στη φυσική γίνεται συχνά όταν οι πειραματικοί ανακαλύπτουν κάτι που οι υπάρχουσες θεωρίες δεν έχουν λάβει υπ' όψιν, κάνοντας εμφανή την ανάγκη για δημιουργία νέων θεωριών. Παρόμοια, ιδέες που προκύπτουν από τη θεωρία, συχνά εμπνέουν νέα πειράματα. Χωρίς το πείραμα, η θεωρητική έρευνα μπορεί να πάρει λάθος δρόμο. Αυτό είναι και ένα από τα επιχειρήματα εναντίον της Θεωρίας-Μ, μιας δημοφιλούς θεωρίας στη φυσική υψηλών ενεργειών, για την οποία δεν έχουν εκτελεστεί ποτέ πειράματα.

Κλάδοι

Ο παρακάτω πίνακας παρουσιάζει πολλούς από τους διάφορους κλάδους της φυσικής, μαζί με τις κύριες θεωρίες και έννοιες που περιέχουν.

Πεδίο Κλάδοι Κύριες θεωρίες Έννοιες
Αστροφυσική Κοσμολογία, Βαρυτική φυσική, Αστροφυσική υψηλών ενεργειών, Πλανητική αστροφυσική, Φυσική πλάσματος, Διαστημική φυσική Μεγάλη έκρηξη, Μοντέλο Lambda-CDM, Κοσμικός πληθωρισμός, Γενική σχετικότητα, Νόμος της παγκόσμιας έλξης Μαύρη τρύπα, Κοσμική ακτινοβολία υποβάθρου, Κοσμική χορδή, Σκοτεινή ενέργεια, Σκοτεινή ύλη, Γαλαξίας, Βαρυτική ακτινοβολία, Βαρυτική ασυνέχεια, Πλανήτης, Ηλιακό σύστημα, Αστέρας, Σουπερνόβα, Σύμπαν
Ατομική, Μοριακή και Οπτική Φυσική Ατομική Φυσική, Μοριακή φυσική, Ατομική και μοριακή αστροφυσική, Φυσικοχημεία, Οπτική, Φωτονική Κβαντική οπτική, Κβαντική χημεία, Επιστήμη κβαντικής πληροφορίας Φωτόνιο, Άτομο, Μόριο, Περίθλαση, Συμβολή, Διάθλαση, Ηλεκτρομαγνητική ακτινοβολία, Λέιζερ, Πόλωση, Γραμμή φάσματος, Φαινόμενο Κάσιμιρ
Σωματιδιακή Φυσική Πυρηνική φυσική, Πυρηνική αστροφυσική, Σωματιδιακή αστροφυσική, Φαινομενολογία σωματιδιακής φυσικής Καθιερωμένο μοντέλο, Κβαντική θεωρία πεδίου, Κβαντική ηλεκτροδυναμική, Κβαντική χρωμοδυναμική, Ηλεκτροασθενής θεωρία, Θεωρία πεδίου πλέγματος, Θεωρία βαθμίδας, Υπερσυμμετρία, Μεγαλοενοποιημένη θεωρία, Θεωρία Υπερχορδών, Θεωρία-Μ Θεμελιώδης δύναμη (βαρυτική, ηλεκτρομαγνητική, ασθενής, ισχυρή), Στοιχειώδες σωματίδιο, Σπιν, Αντιύλη, Αυθόρμητο σπάσιμο συμμετρίας, Ταλάντωση νετρίνου, Βράνη, Χορδή, Κβαντική βαρύτητα, Θεωρία των πάντων, Ενέργεια κενού
Φυσική συμπυκνωμένης ύλης Φυσική στερεάς κατάστασης, Φυσική υψηλής πίεσης, Φυσική χαμηλής θερμοκρασίας, Φυσική επιφάνειας, Νανοτεχνολογία, Φυσική πολυμερών Θεωρία BCS, Κύμα Μπλοχ, Αέριο Φέρμι, Υγρό Φέρμι, Θεωρία πολλών σωμάτων Φάσεις (αέριο, υγρό, στερεό, υπεραγωγός, υπερυγρό), Ηλεκτρική αγωγιμότητα, Μαγνητισμός, Αυτο-οργάνωση, Σπιν, Αυθόρμητο σπάσιμο συμμετρίας
Εφαρμοσμένη φυσική Φυσική επιταχυντών, Ακουστική, Αγροφυσική, Βιοφυσική, Φυσικοχημεία, Οικονομοφυσική, Εφαρμοσμένη μηχανική, Δυναμική ρευστών, Γεωφυσική, Φυσική Περιβάλλοντος, Μετεωρολογία, Φυσική υλικών, Ιατρική φυσική, Νανοτεχνολογία, Οπτική, Οπτοηλεκτρονική, Φωτοβολταϊκά, Υπολογιστική φυσική, Φυσική πλάσματος, Φυσική στερεάς κατάστασης, Κβαντική χημεία, Κβαντική ηλεκτρονική, Επιστήμη κβαντικής πληροφορίας

Μελλοντικές κατευθύνσεις

Η έρευνα στη φυσική εξελίσσεται συνεχώς σε ένα μεγάλο αριθμό θεμάτων, και είναι πιθανό πως θα συνεχίσει έτσι για το άμεσο μέλλον.

Στη φυσική συμπυκνωμένης ύλης, το πιο μεγάλο άλυτο θεωρητικό πρόβλημα αφορά την εξήγηση της υψηλής θερμοκρασίας υπεραγωγιμότητας. Πολλές προσπάθειες, κυρίως πειραματικές, γίνονται ώστε να κατασκευαστούν κβαντικοί υπολογιστές και spintronics.

Στη σωματιδιακή φυσική, τα πρώτα κομμάτια πειραματικών αποδείξεων για τη φυσική πέρα από το καθιερωμένο μοντέλο αρχίζουν και παίρνουν τη θέση τους. Οι κυριότερες είναι οι ενδείξεις ότι τα νετρίνα έχουν μη μηδενική μάζα. Αυτά τα πειραματικά αποτελέσματα φαίνεται να έχουν λύσει το μακροχρόνιο πρόβλημα που αφορούσε τα ηλιακά νετρίνα. Η φυσική των νετρίνων είναι αυτή τη στιγμή ένα πεδίο ενεργούς θεωρητικής και πειραματικής έρευνας. Στα επόμενα χρόνια, οι επιταχυντές σωματιδίων θα αρχίσουν να πιάνουν ενέργειες της τάξης του TeV, όπου οι πειραματικοί φυσικοί ελπίζουν πως θα βρουν ενδείξεις για το μποζόνιο Χιγκς και τα υπερσυμμετρικά σωματίδια.


Οι θεωρητικές απόπειρες ένωσης της κβαντικής μηχανικής και της γενικής σχετικότητας σε μια μόνο θεωρία κβαντικής βαρύτητας, που γίνονται εδώ και μισό αιώνα περίπου, δεν έχουν αποδώσει καρπούς. Αυτή τη στιγμή, οι υποψήφιες θεωρίες είναι η Θεωρία-Μ, η Θεωρία Υπερχορδών και η Κβαντική βαρύτητα βρόχων.

Πολλά αστρονομικά και κοσμολογικά φαινόμενα δεν έχουν ακόμη εξηγηθεί ικανοποιητικά, συμπεριλαμβανομένης της βαρυονικής ασυμμετρίας, των πολύ υψηλών κοσμικών ακτίνων, της επιτάχυνσης του σύμπαντος και των ανώμαλους ρυθμούς στροφής των γαλαξιών.

Αν και μεγάλη πρόοδος έχει γίνει στην στην κβαντική φυσική, στην αστρονομία και στη φυσική υψηλών ενεργειών, πολλά καθημερινά φαινόμενα που συμπεριλαμβάνουν πολυπλοκότητα, χάος ή τύρβη δεν έχουν εξηγηθεί. Πολύπλοκα φαινόμενα που φαίνονται πως θα ήταν επιλύσιμα με απλή εφαρμογή της μηχανικής και δυναμικής, όπως η κατανομή των αμμόλοφων, το σχήμα των σταγόνων του νερού ή η γρήγορη ροή του νερού, παραμένουν άλυτα.

Παραπομπές

  1. Η λέξη προέρχεται από την ελληνική λέξη «φύση».
  2. Richard Feynman begins his Lectures with the atomic hypothesis, as his most compact statement of all scientific knowledge: "If, in some cataclysm, all of scientific knowledge were to be destroyed, and only one sentence passed on to the next generations ..., what statement would contain the most information in the fewest words? I believe it is ... that all things are made up of atoms – little particles that move around in perpetual motion, attracting each other when they are a little distance apart, but repelling upon being squeezed into one another. ..." R.P. Feynman, R.B. Leighton, M. Sands (1963). The Feynman Lectures on Physics. 1. σελ. I-2. ISBN 0-201-02116-1.
  3. J.C. Maxwell (1878). Matter and Motion. D. Van Nostrand. σελ. 9. ISBN 0-486-66895-9. Physical science is that department of knowledge which relates to the order of nature, or, in other words, to the regular succession of events.
  4. H.D. Young, R.A. Freedman (2004). University Physics with Modern Physics (11th έκδοση). Addison Wesley. σελ. 2. Physics is an experimental science. Physicists observe the phenomena of nature and try to find patterns and principles that relate these phenomena. These patterns are called physical theories or, when they are very well established and of broad use, physical laws or principles.
  5. S. Holzner (2006). Physics for Dummies. Wiley. σελ. 7. ISBN 0-470-61841-8. Physics is the study of your world and the world and universe around you.
  6. Note: The term 'universe' is defined as everything that physically exists: the entirety of space and time, all forms of matter, energy and momentum, and the physical laws and constants that govern them. However, the term 'universe' may also be used in slightly different contextual senses, denoting concepts such as the cosmos or the philosophical world.
  7. Υπάρχουν ενδείξεις ότι οι αρχαιότεροι πολιτισμοί, ακόμα και πριν το 3000 π.Χ., όπως οι Σουμέριοι, οι Αρχαίοι Αιγύπτιοι και ο πολιτισμός της Κοιλάδας του Ινδού, είχαν όλοι μία γνώση αρκετή για να οδηγεί σε προβλέψεις και μία πολύ βασική κατανόηση των κυριότερων κινήσεων του Ηλίου, της Σελήνης και των αστέρων.
  8. Το έργο Novum Organum του Φράνσις Μπέικον (1620) ήταν ένα έργο-κλειδί για την ανάπτυξη της επιστημονικής μεθόδου.
  9. Letter to Robert Hooke (15 February 1676 by Gregorian reckonings with January 1st as New Years Day. equivalent to 5 February 1675 using the Julian calendar with March 25th as New Years Day
  10. Singer, C. A Short History of Science to the 19th century. Streeter Press, 2008. p. 35.
  11. Lloyd, Geoffrey (1970). Early Greek Science: Thales to Aristotle. London; New York: Chatto and Windus; W. W. Norton & Company. σελίδες 108–109. ISBN 0-393-00583-6.
  12. Ben-Chaim, Michael (2004). Experimental Philosophy and the Birth of Empirical Science: Boyle, Locke and Newton. Aldershot: Ashgate. ISBN 0-7546-4091-4. OCLC 53887772 57202497 Check |oclc= value (βοήθεια).
  13. Weidhorn, Manfred (2005). The Person of the Millennium: The Unique Impact of Galileo on World History. iUniverse. σελ. 155. ISBN 0-595-36877-8. Weidhorn Introduces Galili as the "father of modern Physics"
  14. Guicciardini, Niccolò (1999), Reading the Principia: The Debate on Newton's Methods for Natural Philosophy from 1687 to 1736, New York: Cambridge University Press.
  15. Glick, Livesey & Wallis (2005, pp. 89–90)
  16. Mariam Rozhanskaya and I. S. Levinova (1996), "Statics", p. 642, in Rashed & Morelon (1996, pp. 614–642)
  17. Rosenberg, Alex (2006). Philosophy of Science. Routledge. ISBN 0-415-34317-8. See Chapter 1 for a discussion on the necessity of philosophy of science.
  18. Peter Godfrey-Smith (2003), Chapter 14 "Bayesianism and Modern Theories of Evidence" Theory and Reality: an introduction to the philosophy of science ISBN 0-226-30063-3
  19. Peter Godfrey-Smith (2003), Chapter 15 "Empiricism, Naturalism, and Scientific Realism?" Theory and Reality: an introduction to the philosophy of science ISBN 0-226-30063-3
  20. See Laplace, Pierre Simon, A Philosophical Essay on Probabilities, translated from the 6th French edition by Frederick Wilson Truscott and Frederick Lincoln Emory, Dover Publications (New York, 1951)
  21. See "The Interpretation of Quantum Mechanics" Ox Bow Press (1995) ISBN 1-881987-09-4. and "My View of the World" Ox Bow Press (1983) ISBN 0-918024-30-7.
  22. Stephen Hawking and Roger Penrose (1996), The Nature of Space and Time ISBN 0-691-05084-8 p.4 "I think that Roger is a Platonist at heart but he must answer for himself."
  23. Roger Penrose, The Road to Reality ISBN 0-679-45443-8
  24. Penrose, Roger; Abner Shimony, Nancy Cartwright, Stephen Hawking (1997). The Large, the Small and the Human Mind. Cambridge University Press. ISBN 0-521-78572-3.

Προτεινόμενη βιβλιογραφία

  • Feynman, R.P.: The Character of Physical Law, Random House (Modern Library), 1994, ISBN 0-679-60127-9
  • Feynman, Leighton, Sands: The Feynman Lectures on Physics, Addison-Wesley, 1970, 3 volumes, ISBN 0-201-02115-3, hardcover Commemorative edition, 1989, ISBN 0-201-50064-7
  • Hawking, S.: Το Χρονικό του Χρόνου, Εκδόσεις «Κάτοπτρο», Αθήνα 2000, ISBN 960-7778-18-9
  • Hewitt, P.G.: Οι έννοιες της Φυσικής, Πανεπιστημιακές Εκδόσεις Κρήτης, 2011, ISBN 960-524-192-7
  • Lewin, Walter & Goldstein, Warren: Για την αγάπη της Φυσικής, μετάφρ. Βλάσιος Πετούσης και Ανδρέας Δημητρόπουλος, εκδ. «Κάτοπτρο», Αθήνα 2014, ISBN 978-618-5111-19-9
  • Carl R. Nave: HyperPhysics, Online crosslinked physics concept maps
  • Eric Weisstein (Weisstein and Wolfram Research, Inc.), et al.: World of Physics. Online Physics encyclopedic dictionary.

Εξωτερικοί σύνδεσμοι

Ίνδιο

Το χημικό στοιχείο ίνδιο (indium) είναι σπάνιο, μαλακό, εύτηκτο, πτητικό, ελατό και όλκιμο αργυρόλευκο μέταλλο με στιλπνή μεταλλική λάμψη. Ο ατομικός αριθμός του είναι 49 και η σχετική ατομική μάζα του 114,818. Το χημικό του σύμβολο είναι «In» και ανήκει στην ομάδα 13 (IIIA, με την παλαιότερη ταξινόμηση) του περιοδικού πίνακα, στην περίοδο 5 και στο p-block. Έχει θερμοκρασία τήξης 156,6 °C και θερμοκρασία βρασμού 2072 °C.

Η μέση περιεκτικότητα του στερεού φλοιού της γης σε ίνδιο είναι περίπου 0,05 ppm. Το ίνδιο είναι πενήντα φορές αφθονότερο από το χρυσό στη λιθόσφαιρα.

Όταν είναι σε στερεή μορφή και καμφθεί ή τεντωθεί απότομα παράγει χαρακτηριστικό τρίξιμο. Διατηρείται υγρό σε ένα μεγάλο εύρος θερμοκρασιών. Είναι σταθερό στον αέρα και στο νερό, αλλά διαλύεται στα οξέα. Όταν θερμανθεί πάνω από το σημείο τήξης του αναφλέγεται παράγοντας χαρακτηριστική ιώδη φλόγα.Η ανακάλυψή του ανακοινώθηκε το 1863 από τους Γερμανούς χημικούς Φέρντιναντ Ράιχ και Ιερώνυμο Τέοντορ Ρίχτερ και ήταν το 49ο χημικό στοιχείο που τοποθετήθηκε στον περιοδικό πίνακα. Πήρε το όνομά του από τη φωτεινή μπλε (indigo blue, ινδικό μπλε, λουλακί) γραμμή στο ατομικό του φάσμα και η οποία ήταν η πρώτη ένδειξη για την ύπαρξή σε μεταλλεύματα, ενός νέου και άγνωστου μέχρι τότε στοιχείου.

Στη φύση το ίνδιο απαντάται σε μορφή σπάνιων ορυκτών, όπως ο ινδίτης (Fe++In2S4) και ο τζαλινδίτης (dzhalindite, In(OH)3). Ανευρίσκεται, επίσης, σε ορισμένα ιδιαίτερα σπάνια ορυκτά, όπως ο σακουραΐτης και ο πετρουκίτης. Είναι ευρέως διεσπαρμένο σε μικρές ποσότητες σε κοιτάσματα ορυκτών άλλων μετάλλων με τα οποία προσομοιάζει κρυσταλλογραφικά. Οι οικονομικά εκμεταλλεύσιμες εμφανίσεις του σχετίζονται με θειούχα ορυκτά κυρίως του ψευδαργύρου σφαλερίτη αλλά και χαλκοπυρίτη. Βρίσκεται όμως και σε κοιτάσματα κασσιτέρου, μαγγανίου, βολφραμίου, χαλκού, σιδήρου, μολύβδου, κοβαλτίου και βισμούθιου αλλά σε ποσότητες μικρότερες από 0,1 %. Εξάγεται ως παραπροϊόν της παραγωγής ψευδαργύρου και μολύβδου. Παλιότερα ο Καναδάς παρήγαγε τη μεγαλύτερη ποσότητα πρωτογενούς ινδίου από τα ορυχεία. Σήμερα ο μεγαλύτερος παραγωγός κατεργασμένου και εξευγενισμένου ινδίου είναι η Κίνα. Ίνδιο παράγεται επίσης στη Νότια Κορέα, στην Ιαπωνία, σε Ευρωπαϊκές χώρες κ.ά. Μέχρι το 1982 παράγονταν λιγότεροι από 50 τόνοι ινδίου το χρόνο. Tο 2009 η παγκόσμια παραγωγή ινδίου εκτιμάται πάνω από 600 τόνους ετησίως.

Το ίνδιο προσομοιάζει στις χημικές και φυσικές του ιδιότητες με το αργίλιο, το γάλλιο και το θάλλιο με τα οποία βρίσκεται στην ίδια ομάδα του περιοδικού πίνακα αλλά και με τον κασσίτερο που βρίσκεται στην επόμενη ομάδα. Δε μοιάζει με το βόριο που βρίσκεται στην κορυφή της ομάδας.

Στις ενώσεις του παρουσιάζεται με δύο κυρίως αριθμούς οξείδωσης, +1 και +3. Υπάρχουν όμως και ενώσεις του όπου έχει αριθμό οξείδωσης +2.

Η κυριότερη χρήση του ινδίου είναι με μορφή στερεού διαλύματος οξειδίων ινδίου-κασσιτέρου (Indium Tin Oxide, ITO) που είναι άχρωμο και διαφανές και χρησιμοποιείται στην παραγωγή λεπτών υμενίων και ηλεκτροδίων για οθόνες υγρών κρυστάλλων (LCD) και οθόνες αφής. Το In επίσης χρησιμοποιείται ως επίστρωση σε ρουλεμάν μεγάλης περιστροφικής ταχύτητας, σε καθρέπτες, σε τρανζίστορ, σε φωτοδιόδους, στην παραγωγή κραμάτων χαμηλού σημείου τήξης, σε συγκολλήσεις μετάλλων, στην πυρηνική ιατρική κ.ά.

Η μονάδα εμπορικών συναλλαγών για το ίνδιο είναι η ράβδος του ενός χιλιογράμμου. Η τιμή του ινδίου δεν είναι σταθερή, εξαρτώμενη έντονα από την προσφορά και τη ζήτηση.Δεν υπάρχουν συστηματικές τοξικολογικές μελέτες για την επίδραση του ινδίου στον ανθρώπινο οργανισμό.

Το ίνδιο έχει ένα σταθερό ισότοπο, το 113In και ένα που θεωρείται σταθερό αφού έχει πολύ μεγάλο χρόνο ημιζωής, το 115In.

Ανταρκτική

Η Ανταρκτική είναι η νοτιότερη ήπειρος της Γης στην οποία βρίσκεται ο γεωγραφικός Νότιος Πόλος. Βρίσκεται στην Ανταρκτική περιοχή του Νοτίου Ημισφαιρίου, σχεδόν εξ ολοκλήρου νοτίως του Ανταρκτικού Κύκλου, και περιβάλλεται από τον Νότιο ωκεανό. Με έκταση 14,0 εκατομμύρια τ. χλμ., είναι η πέμπτη μεγαλύτερη ήπειρος του πλανήτη μετά την Ασία, την Αφρική, τη Βόρεια Αμερική και τη Νότια Αμερική. Για σύγκριση, η Ανταρκτική έχει το διπλάσιο μέγεθος της Αυστραλίας. Περίπου το 98% της επιφάνειας της Ανταρκτικής είναι καλυμμένη από πάγο με μέσο πάχος τουλάχιστον 1,9 χιλιόμετρα.

Η Ανταρκτική είναι, κατά μέσο όρο, η πιο κρύα, η ξηρότερη, και η πιο ανεμώδης ήπειρος, ενώ έχει και το υψηλότερο μέσο υψόμετρο από όλες τις άλλες ηπείρους. Η Ανταρκτική θεωρείται έρημος, με ετήσιες κατακρημνίσεις μόλις 200 mm κατά μήκος των ακτών, και πολύ λιγότερο στην ενδοχώρα. Η θερμοκρασία στην Ανταρκτική έχει φτάσει και -93 °C. Δεν υπάρχουν μόνιμοι κάτοικοι, κατοικούν όμως από 1.000 έως 5.000 άνθρωποι σε όλη τη διάρκεια του χρόνου σε ερευνητικούς σταθμούς που υπάρχουν διάσπαρτοι στην ήπειρο. Μόνο προσαρμοσμένοι στο κρύο οργανισμοί μπορούν να ζήσουν στην Ανταρκτική, μεταξύ των οποίων πολλά είδη φυκών, ζώων (για παράδειγμα ακάρεα, νηματώδη, πιγκουίνοι, φώκιες και βραδύπορα), βακτήρια, μύκητες, φυτά και πρώτιστα. Η βλάστηση, όπου εμφανίζεται, είναι τύπου τούνδρας.

Η πρώτη επιβεβαιωμένη θέαση της ηπείρου είναι κοινώς αποδεκτό ότι συνέβη το 1820 από τη ρωσική αποστολή του Φάμπιαν Γκότλιμπ φον Μπέλινγκσχαουζεν και του Μιχαήλ Λαζάρεφ στο Βοστόκ και το Μίρνι, αν και υπήρχαν μύθοι και υποθέσεις για μία Terra Australis («Νότια Γη») από την αρχαιότητα. Η ήπειρος ωστόσο έμεινε εν γένει παραμελημένη για το υπόλοιπο του 19ου αιώνα εξαιτίας του εχθρικού περιβάλλοντος, της έλλειψης πόρων και της απομόνωσης. Η Συνθήκη της Ανταρκτικής υπογράφηκε το 1959 από 12 κράτη, και μέχρι τώρα την έχουν υπογράψει 53. Η συνθήκη απαγορεύει στρατιωτικές δραστηριότητες και εξόρυξη ορυκτών, πυρηνικές εκρήξεις και διάθεση πυρηνικών αποβλήτων, ενώ υποστηρίζει την επιστημονική έρευνα και προστατεύει την οικοζώνη της ηπείρου. Συνεχιζόμενα πειράματα διεξάγονται από πάνω από 4.000 επιστήμονες από διάφορες χώρες.

Βίβιαν Λι

Η Βίβιαν Μαίρη Χάρτλεϊ (Vivien Mary Hartley, 5 Νοεμβρίου 1913 – 8 Ιουλίου 1967), αργότερα γνωστή ως Βίβιαν Λι και Λαίδη Ολίβιε, ήταν Αγγλίδα ηθοποιός. Βραβεύθηκε με δύο Όσκαρ Α΄ Γυναικείου Ρόλου, το πρώτο για τον ρόλο της Σκάρλετ Ο'Χάρα στο Όσα παίρνει ο άνεμος (Gone With The Wind) το 1939 και το δεύτερο για τον ρόλο της Μπλανς Ντυμπουά στο Λεωφορείον ο Πόθος (A Streetcar Named Desire) το 1951, υποδυόμενη δύο καλλονές του αμερικανικού Νότου.

Η Βίβιαν Λι ήταν κυρίως θεατρική ηθοποιός και συνεργαζόταν συχνά με τον δεύτερο σύζυγό της, τον ηθοποιό Λόρενς Ολίβιε, που για σχεδόν μια εικοσαετία τη σκηνοθέτησε σε αρκετές από τις θεατρικές εμφανίσεις της, ενώ σε πολλές συμπρωταγωνίστησαν. Κατά τη διάρκεια της τριακονταετούς σταδιοδρομίας της στη σκηνή υποδύθηκε ποικίλους και διαφορετικούς ρόλους, σε έργα των δημοφιλέστερων θεατρικών συγγραφέων, όπως οι Νόελ Κάουαρντ, Τζορτζ Μπέρναρντ Σω και Ουίλλιαμ Σαίξπηρ. Η καριέρα της συνεχίσθηκε σποραδικά μετά το διαζύγιο της με τον Ολίβιε το 1960. Η Λι κέρδισε το Βραβείο Τόνυ Α΄ Γυναικείου Ρόλου σε Μιούζικαλ το 1963 για την εμφάνισή της στην παράσταση Τόβαριτς στο Μπρόντγουεϊ, που ήταν το κύκνειο άσμα της.

Θεωρούσε ότι η φυσική ομορφιά της δεν διευκόλυνε την αναγνώρισή των υποκριτικών της ικανοτήτων. Είχε προβλήματα υγείας από νεαρή ηλικία. Για μεγάλο μέρος της ενήλικης ζωής της, η Λι έπασχε από διπολική διαταραχή. Στα μέσα της δεκαετίας του '40 διαγνώστηκε με φυματίωση, μια ασθένεια που την ταλαιπώρησε χρόνια και προκάλεσε τελικά το θάνατό της το 1967.

Το 1999 το Αμερικανικό Ινστιτούτο Κινηματογράφου την κατέταξε 16η στη λίστα με τις 25 μεγαλύτερες κινηματογραφικές σταρ όλων των εποχών.

Γάτα

Η γάτα (Felis catus – Αίλουρος η γαλή ή Felis silvestris catus) είναι ζώο που ανήκει στην οικογένεια των Αιλουροειδών. Πρόκειται για ένα απο τα δημοφιλέστερα κατοικίδια ζώα και ίσως το μοναδικό οικόσιτο αιλουροειδές. Ζει στο περιβάλλον του ανθρώπου εδώ και τουλάχιστον 9.500 χρόνια.Δεινός θηρευτής, η γάτα κυνηγά πάνω από 1.000 είδη ζώων για τροφή. Μπορεί να εκπαιδευτεί ώστε να υπακούει σε απλές διαταγές. Οι γάτες επίσης έχει διαπιστωθεί ότι μαθαίνουν να χειρίζονται απλούς μηχανισμούς, όπως πόμολα πόρτας. Τα ζώα χρησιμοποιούν μια ποικιλία φωνών και ένα είδος γλώσσας του σώματος που τους χρησιμεύει στη μεταξύ τους επικοινωνία. Τα νιαουρίσματα, τα γουργουρίσματα και τα μουγκρίσματα είναι από τους πιο γνωστούς τρόπους επικοινωνίας. Το 1906 ιδρύθηκε η Διεθνής Ένωση Φίλων της Γάτας (Cat Fancier's Association, αρκτικόλεξο CFA).Στην Κίνα οι γάτες εκτρέφονται με σκοπό το εμπόριο της γούνας τους. Το γεγονός ότι στοιβάζονται σε κλουβιά και θανατώνονται έχει προκαλέσει αντιδράσεις από ζωοφιλικές οργανώσεις παγκοσμίως.

Μέχρι πρόσφατα, πιστευόταν ότι η γάτα εξημερώθηκε στην αρχαία Αίγυπτο, όπου θεωρούνταν ιερό ζώο. Ωστόσο, τα αποτελέσματα έρευνας του 2007 έδειξαν ότι η καταγωγή όλων των κατοικίδιων γατών πιθανώς ανάγεται σε πέντε αφρικανικές αγριόγατες (Felis silvestris lybica) που έζησαν στην Εγγύς Ανατολή γύρω στο 8000 π.Χ.Η γάτα διακρίνεται για την εξαιρετική της όραση στο σκοτάδι και για τις ικανότητές της στο σκαρφάλωμα.

Δημήτριος Γούναρης

Ο Δημήτριος Γούναρης (Πάτρα, 5 Ιανουαρίου 1867 – Γουδή, 15 Νοεμβρίου 1922) ήταν Έλληνας πολιτικός που διετέλεσε τρεις φορές πρωθυπουργός της Ελλάδας.

Καταγόμενος από οικογένεια εμπόρων της Πάτρας, σπούδασε νομικά στην Αθήνα και στο εξωτερικό και άσκησε με μεγάλη επιτυχία την δικηγορία. Εξελέγη βουλευτής Πατρών, αναμείχθηκε στο σταφιδικό ζήτημα και εντάχθηκε σε μία ομάδα προοδευτικών βουλευτών αποκαλούμενη «Ομάδα των Ιαπώνων». Εν συνεχεία ανέλαβε το υπουργείο Οικονομικών στην κυβέρνηση Γεωργίου Θεοτόκη ενώ μετά το Κίνημα στου Γουδή ίδρυσε το Κόμμα Εθνικοφρόνων, (το οποίο το 1920 μετονομάστηκε σε Λαϊκό Κόμμα) και αποτέλεσε τον βασικό φορέα του αντιβενιζελισμού. Διετέλεσε για ένα βραχύ διάστημα υπηρεσιακός πρωθυπουργός και υπουργός σε κυβερνήσεις που σχηματίστηκαν κατά τη διάρκεια του Εθνικού Διχασμού, μετά όμως την επιτυχή έκβαση του Κινήματος της Εθνικής Άμυνας και την φυγή της βασιλικής οικογένειας εξορίστηκε στην Κορσική. Επέστρεψε στην Ελλάδα το 1919 για να συμμετάσχει ως ηγέτης του Λαϊκού Κόμματος στις εκλογές, στις οποίες και εξελέγη σχηματίζοντας λίγο αργότερα κυβέρνηση. Κατά τη διάρκεια της διακυβέρνησής του αποφασίστηκε η συνέχιση της μικρασιατικής εκστρατείας, η οποία και οδήγησε στην οικονομική χρεοκοπία, στην ήττα από τον τουρκικό στρατό και την ανατροπή της κυβέρνησης. Μετά την εγκαθίδρυση του νέου καθεστώτος, παραπέμφθηκε μαζί με άλλα κυβερνητικά στέλεχη σε έκτακτο στρατοδικείο και στις 15 Νοεμβρίου 1922 εκτελέστηκε. Ανηψιός του ήταν ο, μετέπειτα πρωθυπουργός, Παναγιώτης Κανελλόπουλος.

Δημήτριος ο Πολιορκητής

Ο Δημήτριος Α΄ ο Πολιορκητής (337 π.Χ. - 283 π.Χ.) ήταν ένας από τους διαδόχους του Μεγάλου Αλεξάνδρου, κεντρικό πρόσωπο κατά τους αιματηρούς πολέμους που ξέσπασαν γύρω από την επικράτηση στα εδάφη της Ανατολικής Μεσογείου μετά το θάνατο του Μακεδόνα στρατηλάτη.

Υπήρξε γιος του επιφανούς στρατηγού του Αλεξάνδρου, Αντίγονου του Μονόφθαλμου, στρατεύματα του οποίου διοίκησε με μεγάλη ικανότητα και την ασιατική αυτοκρατορία του οποίου αποπειράθηκε να επανακτήσει. Αφού απέτυχε να νικήσει τον Πτολεμαίο, Σατράπη της Αιγύπτου το 312 π.Χ., και τους Ναβαταίους Άραβες λίγο αργότερα, ο Δημήτριος απελευθέρωσε την Αθήνα από τον Κάσσανδρο το 307 π.Χ., ενώ το 306 π.Χ. υποχρέωσε σε ταπεινωτική ήττα τον Πτολεμαίο στη Σαλαμίνα της Κύπρου. Οι θαυμαστές επιδόσεις του στην ανεπιτυχή Πολιορκία της Ρόδου το 305 π.Χ. του κέρδισαν την επωνυμία «ο Πολιορκητής». Κατόπιν πολέμησε στο πλευρό του Αντίγονου στην καθοριστική Μάχη της Ιψού το 301 π.Χ., όπου ο πατέρας του έχασε την ζωή του . Ο Δημήτριος διατήρησε εδάφη στον ελληνικό χώρο και αφού έθεσε και πάλι την Αθήνα υπό τη σφαίρα επιρροής του, έγινε τελικά κύριος της Μακεδονίας το 294 π.Χ.. Κυβέρνησε συνολικά για έξι χρόνια, μέχρι που έχασε το θρόνο του από τους ανταγωνιστές του, Λυσίμαχο και Πύρρο. Παίζοντας το τελευταίο του χαρτί, ο Δημήτριος εξεστράτευσε στην Ασία, όπου και παραδόθηκε τελικά στον Σέλευκο το Νικάτορα το 285 π.Χ. Πέρασε την υπόλοιπη ζωή του σε τιμητική αιχμαλωσία στη Συρία, όπου και απεβίωσε το 283 π.Χ. στην ηλικία των 54 ετών.Σαρωτικός όταν πραγματοποιούσε επιθέσεις και εξαιρετικά ικανός στην κατασκευή πολιορκητικών μηχανών, ο Δημήτριος έμεινε στην ιστορία για τις εντυπωσιακού μεγέθους και φιλοδοξίας εκστρατείες που διεξήγαγε, για την σκανδαλώδη προσωπική του ζωή και για τη μοναδική του ικανότητα να αναγεννάται από τις στάχτες του, γυρίζοντας την τύχη του σε κάθε καταστροφή που του επεφύλαξε ποτέ η Μοίρα.

Διάβολος της Τασμανίας

Ο διάβολος της Τασμανίας (Sarcophilus harrisii, Σαρκόφιλος του Χάρις) γνωστός και ως δαίμονας της Τασμανίας και σαρκόφιλος είναι σαρκοφάγο μαρσιποφόρο που, πλέον, συναντάται μόνο στην νησιωτική πολιτεία της Αυστραλίας, Τασμανία.

Ο διάβολος της Τασμανίας είναι το μόνο επιζόν μέλος του γένους Σαρκόφιλος (Sarcophilus). Έχει μέγεθος μικρού σκύλου, αλλά είναι κοντόχοντρο και μυώδες και μετά την εξαφάνιση του θυλακίνου (Thylacinus cynocephalus), το 1936, είναι το μεγαλύτερο σαρκοφάγο μαρσιποφόρο. Χαρακτηρίζεται από την μαύρη γούνα του, την έντονη οσμή όταν αγχώνεται, την εξαιρετικά δυνατή και ενοχλητική κραυγή του και την αγριότητά του όταν τρώει. Τρέφεται από το κυνήγι αλλά και από θνησιμαία, ενώ παρόλο που είναι εν γένει μοναχικό ζώο, μερικές φορές τρώει σε ομάδες.

Ο διάβολος της Τασμανίας εξαφανίστηκε από την ηπειρωτική Αυστραλία τουλάχιστον 3.000 χρόνια πριν, πολύ πριν τον ευρωπαϊκό αποικισμό το 1788. Επειδή θεωρούνταν απειλή για την κτηνοτροφία στην Τασμανία, οι διάβολοι κυνηγιόνταν μέχρι το 1941, οπότε και προστατεύθηκαν επίσημα.

Από τα τέλη του 1990, η ασθένεια όγκων προσώπου έχει μειώσει σημαντικά τον πληθυσμό των δαιμόνων και πλέον απειλεί το είδος με εξαφάνιση, το οποίο από τον Μάιο του 2009 κηρύχθηκε απειλούμενο είδος. Έχουν αναληφθεί προγράμματα από την Κυβέρνηση της Τασμανίας ώστε να μειωθούν οι επιπτώσεις της ασθένειας.

Εξοπλισμός ποδοσφαιριστή

O Εξοπλισμός ποδοσφαιριστή είναι ο τέταρτος κανόνας από τους Κανόνες του Παιχνιδιού (κανόνες ποδοσφαίρου) και αναφέρεται στον καθιερωμένο εξοπλισμό και την ενδυμασία των παιχτών στο άθλημα του ποδοσφαίρου. Ο κανόνας αυτός καθορίζει τον ελάχιστο εξοπλισμό τον οποίο μπορεί να χρησιμοποιεί ένας ποδοσφαιριστής. Επιπρόσθετα, απαγορεύουν τη χρήση οποιουδήποτε αντικειμένου που είναι επικίνδυνο είτε για τον ποδοσφαιριστή, είτε για κάποιο άλλο συμμετέχοντα. Διάφορες διοργανώσεις έχουν τη δυνατότητα να επιβάλλουν μεμονωμένα περαιτέρω περιορισμούς, όπως η ρύθμιση του μεγέθους του λογότυπου που εμφανίζεται στις φανέλες των ποδοσφαιριστών ή σε περίπτωση που αγωνίζονται δύο ομάδες με τα ίδια ή παρόμοια χρώματα, η φιλοξενούμενη ομάδα οφείλει να χρησιμοποιήσει ενδυμασία διαφορετικού χρώματος.

Γενικά, οι ποδοσφαιριστές αναγνωρίζονται από τον αριθμό που φέρουν στη στολή τους (πλάτη). Αρχικά, οι ποδοσφαιριστές μιας ομάδας φορούσαν αριθμούς από το 1 έως το 11 που αντιστοιχούσαν στις ποδοσφαιρικές τους θέσεις. Ωστόσο, στο επαγγελματικό επίπεδο η αρίθμηση αυτή δεν υφίσταται και κάθε ποδοσφαιριστής κατέχει ένα σταθερό αριθμό στο ρόστερ της ομάδας για όλη τη διάρκεια της ποδοσφαιρικής περιόδου. Επίσης, τα επαγγελματικά σωματεία παρουσιάζουν συνήθως τα επώνυμα ή ψευδώνυμα των ποδοσφαιριστών τους στις φανέλες τους, πάνω (ή σπανιότερα από κάτω) από τον αριθμό κάθε ποδοσφαιριστή.

Ο ποδοσφαιρικός εξοπλισμός έχει εξελιχθεί σημαντικά σε σχέση με τα πρώτα στάδια εμφάνισης του παιχνιδιού, όταν οι παίχτες φορούσαν συνήθως παχιές βαμβακερές φανέλες, φουφούλες (παντελόνι που έχει φουσκωτά μπατζάκια) και βαριά και άκαμπτα δερμάτινα παπούτσια. Στον 20ό αιώνα, τα υποδήματα έγιναν πιο ελαφριά και μαλακά και οι ποδοσφαιριστές φορούσαν κοντύτερα παντελονάκια. Επιπρόσθετα, με την αναβάθμιση στην κατασκευή ενδυμάτων και την ελευθερία εκτύπωσης στη στολή οι φανέλες κατασκευάζονταν με ελαφρύτερες, συνθετικές ίνες με όλο και πιο πολύχρωμα και πολύπλοκα σχέδια. Με την άνοδο της διαφήμισης κατά τον ίδιο αιώνα, τα λογότυπα των χορηγών άρχισαν να εμφανίζονται στις φανέλες και πανομοιότυπες, αυθεντικές στολές άρχισαν να παράγονται για πώληση στους φιλάθλους, παρέχοντας υψηλά ποσά εσόδων στις ποδοσφαιρικές ομάδες.

Ιάννης Ξενάκης

Ο Ιάννης Ξενάκης (29 Μαΐου 1922 – 4 Φεβρουαρίου 2001) ήταν ένας από τους σημαντικότερους Έλληνες συνθέτες και αρχιτέκτονες του 20ού αιώνα, διεθνώς γνωστός ως Iannis Xenakis. Οι πρωτοποριακές συνθετικές μέθοδοι που ανέπτυξε συσχέτιζαν τη μουσική και την αρχιτεκτονική με τα μαθηματικά και τη φυσική, μέσω της χρήσης μοντέλων από τη θεωρία των συνόλων, τη θεωρία των πιθανοτήτων, τη θερμοδυναμική, τη Χρυσή Τομή, την ακολουθία Φιμπονάτσι κ.ά. Παράλληλα, οι φιλοσοφικές του ιδέες για τη μουσική έθεσαν καίρια το αίτημα για ενότητα φιλοσοφίας, επιστήμης και τέχνης, συμβάλλοντας στο γενικότερο προβληματισμό για την κρίση της σύγχρονης ευρωπαϊκής μουσικής των δεκαετιών του 1950 και 1960. Οι ιδέες του θεωρείται ότι υπήρξαν προσκείμενες με τα κομμουνιστικά ιδεώδη.

Ιρίδιο

Το χημικό στοιχείο ιρίδιο (iridium) είναι μέταλλο με ατομικό αριθμό 77 και σχετική ατομική μάζα 192,217. Το χημικό του σύμβολο είναι «Ir» και ανήκει στην ομάδα 9 του περιοδικού πίνακα, στην περίοδο 6, στον τομέα d, και στην 3η κύρια σειρά των στοιχείων μετάπτωσης. Έχει θερμοκρασία τήξης 2466 °C και θερμοκρασία βρασμού 4428 °C.

Πήρε το όνομά του από τα έντονα χρώματα που είχαν τα άλατά του, σε συνδυασμό και με την Ίριδα, τη θεά του ουράνιου τόξου των αρχαίων Ελλήνων.

Από άποψη χημικής συμπεριφοράς, ανήκει στην «ομάδα του λευκόχρυσου», PGMs, Platinum Group Metals.

Το ιρίδιο θεωρείται ευγενές μέταλλο μαζί με το ρουθήνιο, το ρόδιο, το παλλάδιο, τον άργυρο, το όσμιο, το λευκόχρυσο και το χρυσό.

Ανακαλύφθηκε το 1803 στο Λονδίνο από τον Άγγλο χημικό Τένναντ στα αδιάλυτα κατάλοιπα της κατεργασίας του λευκόχρυσου.

Τα μεγαλύτερα αποθέματά του βρίσκονται στη Νότια Αφρική, στη Ρωσία, και στον Καναδά. Μικρότερα αποθέματα βρίσκονται στις Ηνωμένες Πολιτείες.

Αν και είναι ένα από τα σπανιότερα στοιχεία του φλοιού της Γης, με ετήσια παραγωγή και κατανάλωση μόνο τρεις τόνους, παρουσιάζει ως μέταλλο εξαιρετικό ενδιαφέρον εξαιτίας των μηχανικών ιδιοτήτων του. Έτσι, χρησιμοποιείται ευρύτατα στην κατασκευή σκευών ανθεκτικών στις ψηλές θερμοκρασίες και στη διάβρωση όπως είναι τα μπουζί, τα πρότυπα μέτρα και σταθμά, τα χωνευτήρια, τα ηλεκτρόδια και στις θερμοηλεκτρικές γεννήτριες ραδιοϊσοτόπων σε μη επανδρωμένα διαστημόπλοια.

Οι πιο σημαντικές ενώσεις του ιριδίου είναι τα άλατά του με χλώριο και οι οργανομεταλλικές ενώσεις που χρησιμοποιούνται στους καταλύτες των οργανικών αντιδράσεων.

Ιρίδιο έχει βρεθεί και σε μετεωρίτες και μάλιστα σε περιεκτικότητα πολύ υψηλότερη από τον μέσο όρο της λιθόσφαιρας. Υπάρχει η σκέψη ότι το ποσό του ιριδίου σ' ολόκληρο τον πλανήτη είναι πολύ υψηλότερο από αυτό που παρατηρείται στη λιθόσφαιρα, αλλά λόγω της υψηλής πυκνότητας και του σιδηρόφιλου χαρακτήρα του, το περισσότερο ιρίδιο κατέβηκε κάτω από το φλοιό και μέσα στον πυρήνα της Γης, όταν ο πλανήτης ήταν ακόμη νεαρής ηλικίας και δεν είχε στερεοποιηθεί πλήρως.

Ασυνήθιστα μεγάλη περιεκτικότητα σε ιρίδιο έχει βρεθεί στο γεωλογικό «όριο Κ-Τ». Αυτή η ανακάλυψη αποτελεί ισχυρή ένδειξη της θεωρίας που υποστηρίζει ότι η εξαφάνιση των δεινοσαύρων πριν 65 εκατομμύρια χρόνια προκλήθηκε από την πτώση μεγάλου μετεωρίτη.

Το ιρίδιο έχει δύο σταθερά ισότοπα, το 191Ir και το 193Ir.

Ιστορία της βιολογίας

Η ιστορία της βιολογίας αποτυπώνει τη μελέτη του έμβιου κόσμου από τα αρχαία έως τα σύγχρονα χρόνια. Παρόλο που η έννοια της βιολογίας ως ένα ενιαίο συνεκτικό πεδίο αναπτύχθηκε το 19ο αιώνα, οι βιολογικές επιστήμες προέκυψαν από τις ιατρικές παραδόσεις και τη φυσική ιστορία που φτάνουν έως την αρχαία αιγυπτιακή ιατρική και τα έργα του Αριστοτέλη και του Γαληνού στον αρχαίο ελληνορωμαϊκό κόσμο. Περαιτέρω ανάπτυξη ήρθε στο μεσαίωνα από μουσουλμάνους γιατρούς και λόγιους όπως ο Αλ Γιασίζ, ο Αβικέννας, ο Ιμπν Ζουχρ, ο Ιμπν αλ Μπαϊτάρ και ο Ιμπν αλ Νάφις. Κατά τη διάρκεια της ευρωπαϊκής αναγέννησης και της πρώιμης σύγχρονης εποχής επήλθε επανάσταση στη βιολογική σκέψη από το ανανεωμένο ενδιαφέρον για τον εμπειρισμό και την ανακάλυψη πολλών νέων οργανισμών. Εξέχουσες μορφές ήταν ο Βεσάλιος και ο Ουίλιαμ Χάρβεϊ, οι οποίοι χρησιμοποίησαν τον πειραματισμό και την προσεκτική παρατήρηση στην φυσιολογία, καθώς και φυσιοδίφες όπως ο Κάρολος Λινναίος και ο Ζωρζ Λουί Λεκλέρκ οι οποίοι ξεκίνησαν τη συστηματική ταξινόμηση της ζωής και του αρχείου απολιθωμάτων, καθώς και της ανάπτυξης και συμπεριφοράς των οργανισμών. Η μικροσκοπία αποκάλυψε τον προηγουμένως άγνωστο κόσμο των μικροοργανισμών και έθεσε το υπόβαθρο για την κυτταρική θεωρία. Η αυξανόμενη σημασία της φυσικής θεολογίας, εν μέρει απήχηση του μηχανιστικού υλισμού, προήγαγε την ανάπτυξη της φυσικής ιστορίας (παρόλο που παραβίαζε το τελεολογικό επιχείρημα).

Το 18ο και 19ο αιώνα, οι βιολογικές επιστήμες, όπως η βοτανική και η ζωολογία κατέστησαν αυξανόμενα επαγγελματικοί επιστημονικοί κλάδοι. Ο Λαβουαζιέ και άλλοι φυσικοί επιστήμονες άρχισαν να συνδέουν τον έμψυχο με του άψυχο κόσμο, μέσω της φυσικής και της χημείας. Εξερευνητές φυσιοδίφες όπως ο Αλεξάντερ φον Χούμπολντ ερεύνησαν την αλληλεπίδραση των οργανισμών με το περιβάλλον τους και τους τρόπους με τους οποίους αυτή η σχέση εξαρτάται από την γεωγραφία, θέτοντας τα θεμέλια της βιογεωγραφίας, της οικολογίας και της ηθολογίας. Οι φυσιοδίφες άρχισαν να απορρίπτουν την ουσιοκρατία και να εξετάζουν τη σημασία της εξαφάνισης και της μεταλλαξιμότητας των ειδών. Η κυτταρική θεωρία παρείχε νέα προοπτική στην θεμελιώδη βάση της ζωής. Αυτές οι εξελίξεις, καθώς και αποτελέσματα από την εμβρυολογία και την παλαιοντολογία συντέθηκαν στη θεωρία της Εξέλιξης δια της φυσικής επιλογής του Κάρολου Δαρβίνου. Το τέλος του 19ου αιώνα σήμανε το τέλος της θεωρίας της αυτόματης γένεσης και την ανάπτυξη της μικροβιακής θεωρίας, παρόλο που ο μηχανισμός της κληρονομικότητας παρέμενε άγνωστος.

Στις αρχές του 20ού αιώνα, η επανανακάλυψη του έργου του Γκρέγκορ Μέντελ οδήγησε στη ραγδαία ανάπτυξη της γενετικής από τον Τόμας Χαντ Μόργκαν (Thomas Hunt Morgan) και τους φοιτητές του, και από τη δεκαετία του 1930 στο συνδυασμό της γενετικής των πληθυσμών και της φυσικής επιλογής στη «νεοδαρβινική σύνθεση». Εξελίχθηκαν ραγδαία νέοι τομείς, ιδιαίτερα μετά την ανακάλυψη της δομής του DNA από τους Τζέιμς Γουότσον και Φράνσις Κρικ. Μετά την καθιέρωση του κεντρικού δόγματος και την ανάγνωση του γενετικού κώδικα, η βιολογία χωρίστηκε σε δύο κύριες ομάδες πεδίων, την οργανική βιολογία — τα πεδία που μελετούν ολόκληρους οργανισμούς και ομάδες οργανισμών — και τα πεδία που σχετίζονται με την κυτταρική και μοριακή βιολογία. Στα τέλη του 20ού αιώνα, νέα πεδία, όπως η πρωτεωμική και η γενωμική, ανέστρεψαν αυτό το κλίμα, καθώς οι οργανικοί βιολόγοι άρχισαν να χρησιμοποιούν τεχνικές της μοριακής βιολογίας, και μοριακοί και κυτταρικοί βιολόγοι να μελετούν την αλληλεπίδραση μεταξύ γονιδίων και περιβάλλοντος, καθώς τη γενετική φυσικών πληθυσμών οργανισμών.

Ιστορία της εξελικτικής σκέψης

Η εξελικτική σκέψη, η αντίληψη ότι τα είδη αλλάζουν με την πάροδο του χρόνου έχει τις ρίζες της στην αρχαιότητα, στις ιδέες των αρχαίων Ελλήνων, των Ρωμαίων, και των Κινέζων καθώς και στη μεσαιωνική ισλαμική επιστήμη. Εντούτοις, μέχρι το 18ο αιώνα, η Δυτική βιολογική σκέψη κυριαρχείτο από την ουσιοκρατία, την πεποίθηση ότι κάθε είδος έχει ουσιώδη χαρακτηριστικά που δεν αλλάζουν. Η αντίληψη αυτή άρχισε να αμφισβητείται κατά το Διαφωτισμό, όταν η εξελικτική κοσμολογία και η μηχανική φιλοσοφία επεκτάθηκαν από τις φυσικές επιστήμες στη φυσική ιστορία. Οι φυσιοδίφες άρχισαν να εστιάζουν την προσοχή τους στην ποικιλότητα των ειδών. Η εμφάνιση της παλαιοντολογίας και της έννοιας της εξαφάνισης υπονόμευσαν περαιτέρω την στατική αντίληψη της φύσης. Στις αρχές του 19ου αιώνα, ο Ζαν Μπατίστ Λαμάρκ πρότεινε τη θεωρία της μεταλλαγής των ειδών, την πρώτη πλήρως μορφοποιημένη επιστημονική θεωρία για την εξέλιξη.

Το 1858, ο Κάρολος Δαρβίνος και ο Άλφρεντ Ράσελ Γουάλας δημοσίευσαν μια νέα εξελικτική θεωρία, η οποία εξηγείτο λεπτομερώς στο έργο του Δαρβίνου, Καταγωγή των Ειδών (On the Origin of Species) (1859). Εν αντιθέσει με τον Λαμάρκ, ο Δαρβίνος πρότεινε κοινή καταγωγή και διακλαδιζόμενο δέντρο της ζωής. Η θεωρία βασιζόταν στην ιδέα της φυσικής επιλογής, και συνέθετε ένα ευρύ φάσμα στοιχείων από την κτηνοτροφία, τη βιογεωγραφία, τη γεωλογία, τη μορφολογία και την εμβρυολογία.

Η αντιπαράθεση πάνω στο έργο του Δαρβίνου οδήγησε στη ραγδαία αποδοχή της γενικής έννοιας της εξέλιξης, όμως ο ειδικός μηχανισμός τον οποίο πρότεινε, η φυσική επιλογή, δεν έγινε ευρέως αποδεκτός μέχρι να αναγεννηθεί από εξελίξεις στη βιολογία μεταξύ των δεκαετιών του 1920 και 1940. Πριν από αυτό οι περισσότεροι βιολόγοι υποστήριζαν ότι άλλοι παράγοντες ήταν υπεύθυνοι για την εξέλιξη. Μερικές από τις εναλλακτικές υποθέσεις στην φυσική επιλογή που προτάθηκαν κατά τη διάρκεια της έκλειψης του Δαρβινισμού περιλάμβαναν την κληρονομικότητα των επίκτητων χαρακτηριστικών (νεολαμαρκισμός), μια εγγενή παρόρμηση για αλλαγή (ορθογένεση), και τις ξαφνικές μεγάλες μεταλλάξεις (saltationism). Με τη σύνθεση της φυσικής επιλογής και της Μεντελικής γενετικής, κατά τη διάρκεια των δεκαετιών του 1920 και 1930, προέκυψε ο νέος κλάδος την γενετικής των πληθυσμών. Καθ' όλη τη διάρκεια των δεκαετιών του 1930 και του 1940, η γενετική των πληθυσμών εντάχθηκε σε άλλα βιολογικά πεδία και διαμορφώθηκε μια ευρέως εφαρμόσιμη θεωρία της εξέλιξης, η οποία περιέλαβε το μεγαλύτερο μέρος της βιολογίας, η σύγχρονη εξελικτική σύνθεση.

Με τη θεμελίωση της εξελικτικής βιολογίας, οι μελέτες της μετάλλαξης και της ποικιλίας στους φυσικούς πληθυσμούς, σε συνδυασμό με τη βιογεωγραφία και τη συστηματική, οδήγησε σε εκλεπτυσμένα μαθηματικά και αιτιολογικά μοντέλα της εξέλιξης. Η παλαιοντολογία και η συγκριτική ανατομία επέτρεψαν πιο λεπτομερείς ανασκευές της ιστορίας της ζωής. Μετά την εμφάνιση της μοριακής γενετικής τη δεκαετία του 1950, αναπτύχθηκε το πεδίο της μοριακής εξέλιξης, βασισμένο σε αλληλουχίες πρωτεϊνών και ανοσολογικά πειράματα, ενσωματώνοντας αργότερα τη μελέτη του RNA και του DNA. Η γονιδιοκεντρική αντίληψη της εξέλιξης ήρθε στο προσκήνιο τη δεκαετία του 1960, ακολουθούμενη από την ουδέτερη θεωρία της μοριακής εξέλιξης, πυροδοτώντας την αντιπαράθεση πάνω στην προσαρμοστικότητα (adaptationism), τις μονάδες επιλογής, και τη σχετική σημασία της γενετικής παρέκκλισης σε σχέση με τη φυσική επιλογή. Στα τέλη του 20ου αιώνα, η αλληλούχιση του DNA οδήγησε στη μοριακή φυλογενετική και την αναδιοργάνωση του δέντρου της ζωής στο σύστημα των τριών επικρατειών. Επιπροσθέτως, οι πρόσφατα αναγνωρισμένοι παράγοντες της συμβιογένεσης και της οριζόντιας μεταφοράς γονιδίων εισήγαγαν περαιτέρω πολυπλοκότητα στην εξελικτική ιστορία.

Ιωάννης Καποδίστριας

Ο Κόμης Ιωάννης Καποδίστριας (ρωσικά: граф Иоанн Каподистрия‎, ιταλικά: Giovanni Capodistria‎) (Κέρκυρα, 10 Φεβρουαρίου 1776 – Ναύπλιο, π.ημ. 27 Σεπτεμβρίου / ν.ημ. 9 Οκτωβρίου 1831) ήταν Έλληνας διπλωμάτης και πολιτικός. Διετέλεσε υπουργός Εξωτερικών της Ρωσικής Αυτοκρατορίας και αργότερα πρώτος Κυβερνήτης της Ελλάδας κατά τη μεταβατική περίοδο κατά την οποία η χώρα τελούσε υπό την προστασία των Μεγάλων Δυνάμεων.

Καταγόταν από αριστοκρατική οικογένεια με πολιτική παράδοση, γι' αυτό και αναμείχθηκε με την πολιτική ήδη από το 1803 οπότε και διορίστηκε γραμματέας της επικράτειας της Ιονίου Πολιτείας. Με την κατάληψη των Επτανήσων από τους Γάλλους αποσύρθηκε και εντάχθηκε στη ρωσική διπλωματική υπηρεσία. Εκεί ανέλαβε σημαντικές θέσεις καταφέρνοντας να αναδειχθεί σε υπουργό Εξωτερικών της Ρωσικής Αυτοκρατορίας από το 1815 έως το 1822, οπότε και υποχρεώθηκε σε παραίτηση λόγω της επανάστασης του 1821. Στις 14 Απριλίου 1827 η Εθνική Συνέλευση της Τροιζήνας τον επέλεξε πρώτο κυβερνήτη της Ελλάδας, θέση από την οποία ήρθε σε τριβή με τους τοπικούς αξιωματούχους με αποτέλεσμα τη δολοφονία του στις 9 Οκτωβρίου 1831, στο Ναύπλιο, από τον αδελφό και τον γιο του Πετρόμπεη Μαυρομιχάλη, σε αντίποινα της φυλάκισης του τελευταίου. Ως κυβερνήτης της Ελλάδας προώθησε σημαντικές μεταρρυθμίσεις για την ανόρθωση της κρατικής μηχανής, καθώς και για τη θέσπιση του νομικού πλαισίου της πολιτείας, απαραίτητου για την εγκαθίδρυση της τάξης. Επίσης, αναδιοργάνωσε τις Ένοπλες δυνάμεις υπό ενιαία διοίκηση.

Λευκόχρυσος

Το χημικό στοιχείο λευκόχρυσος, κοινώς γνωστό ως πλατίνα (λατινικά: platinum) είναι σπάνιο, βαρύ, πολύ δύστηκτο, αργυρόλευκο, ελατό και όλκιμο μέταλλο με ισχυρή μεταλλική λάμψη και με ατομικό αριθμό 78 και σχετική ατομική μάζα 195,084 (μέχρι το 1995 αναφερόταν η 195,078

). Το χημικό του σύμβολο είναι «Pt» και ανήκει στην ομάδα 10 του περιοδικού πίνακα, στην περίοδο 6 και στο d-block και στην ομάδα της 3ης κύριας σειράς των στοιχείων μετάπτωσης. Έχει θερμοκρασία τήξης 1768,3 °C και θερμοκρασία βρασμού 3825 °C. Από άποψη χημικής συμπεριφοράς, ανήκει στην ομάδα που φέρει το όνομά του: «Ομάδα του λευκόχρυσου», PGM, Platinum Group Metals ή PGE, Platinum Group Elements.

Παρόλο που τα φυσικά κράματα του λευκόχρυσου ήταν γνωστά στους Αρχαίους Αιγυπτίους αλλά και στους ιθαγενείς της Νότιας Αμερικής της προ-Κολομβιανής εποχής (Μάγια, Ίνκας), η πρώτη ευρωπαϊκή αναφορά στο μέταλλο αυτό αποδίδεται στον Ιταλό λόγιο και γιατρό Τζούλιους Σήζαρ Σάλιγκερ του 16ου αιώνα, ενώ συστηματική μελέτη ξεκίνησε το 18ο αιώνα. Δεν είναι απόλυτα ξεκάθαρο ποιος ανακάλυψε, απομόνωσε και μελέτησε για πρώτη φορά το λευκόχρυσο. Η επίσημη εκδοχή αναφέρει τον Ισπανό Αντόνιο ντε Ουλλόα και τον Άγγλο Τσαρλς Γουντ.

Ο λευκόχρυσος θεωρείται ευγενές μέταλλο μαζί με το ρουθήνιο, το ιρίδιο, το παλλάδιο, τον άργυρο, το όσμιο, το ρόδιο και το χρυσό. Για τις συναλλαγές μετράται με την ουγγιά και τίθεται υπό διαπραγμάτευση, όπως και τα άλλα πολύτιμα μέταλλα στις διεθνείς χρηματαγορές. Παρόλο που δεν έχει την «αίγλη» του χρυσού, ούτε τις ίδιες αναφορές σε μύθους και παραδόσεις, η τιμή του μερικές φορές ξεπερνά αυτήν του «βασιλιά των μετάλλων». Η τιμή του στις 2 Ιανουαρίου 2014 ήταν περίπου 1390 δολάρια/ουγγιά.Ο λευκόχρυσος βρίσκεται ως ελεύθερο μέταλλο, μαζί με τα άλλα PGM, σε μαγματικά κοιτάσματα στη Νότια Αφρική, στη Σιβηρία, στην Βόρεια Αμερική αλλά και σε προσχωματικές αποθέσεις στη Νότια Αμερική και σε ποταμούς στα Ουράλια όρη και στον Καναδά.

Διαλύεται μόνο στο βασιλικό νερό. Δεν προσβάλλεται από τα οξέα και το οξυγόνο, ενώνεται όμως με το χλώριο και σε ειδικές συνθήκες προσβάλλεται από το θείο, το φωσφόρο, τον άνθρακα και τα λιωμένα υδροξείδια νατρίου και καλίου.

Ο λευκόχρυσος χρησιμοποιείται στην κοσμηματοποιία, ως καταλύτης στα αυτοκίνητα και στη βιομηχανία, σε εργαστηριακά όργανα (χωνευτήρια, ηλεκτρόδια κλπ), στην κατεργασία του γυαλιού, στην ηλεκτρονική και ηλεκτρολογία και στην οδοντιατρική. Τα κράματά του, ιδίως με ιρίδιο χρησιμοποιούνται στην κατασκευή πρότυπων οργάνων διότι δεν επηρεάζονται από τις συνηθισμένες μεταβολές της θερμοκρασίας.

Ο φυσικός λευκόχρυσος αποτελείται από πέντε σταθερά ισότοπα: 192Pt, 194Pt, 195Pt, 196Pt και 198Pt.

Παλλάδιο

Το χημικό στοιχείο παλλάδιο (palladium) είναι μέταλλο με ατομικό αριθμό 46 και σχετική ατομική μάζα 106,42. Το χημικό του σύμβολο είναι «Pd». Ανήκει στην ομάδα 10, στην περίοδο 5 και στο d-block του περιοδικού πίνακα, της 2ης κύριας σειράς των στοιχείων μετάπτωσης.

Είναι σπάνιο, ασημόγκριζο μέταλλο με έντονη μεταλλική λάμψη και με θερμοκρασία τήξης 1554,9 °C και θερμοκρασία βρασμού 2963 °C.

Ανακαλύφθηκε από τον Άγγλο χημικό Ουόλλαστον στο Λονδίνο το 1803 και πήρε το όνομά του από τον αστεροειδή «Παλλάς» που είχε ανακαλυφθεί δυο χρόνια νωρίτερα.

Το παλλάδιο θεωρείται ευγενές μέταλλο μαζί με το ρουθήνιο, το ρόδιο, το ιρίδιο, τον άργυρο, το όσμιο, το λευκόχρυσο και το χρυσό. Για τις συναλλαγές μετράται με την ουγγιά και τίθεται υπό διαπραγμάτευση, όπως και τα άλλα πολύτιμα μέταλλα στις διεθνείς χρηματαγορές.

Από άποψη χημικής συμπεριφοράς, ανήκει στην «ομάδα του λευκόχρυσου», PGM, Platinum Group Metals.

Εκτεταμένα κοιτάσματα παλλαδίου και των συγγενών μετάλλων έχουν βρεθεί στη Νότια Αφρική, στις Ηνωμένες Πολιτείες, στον Καναδά και στη Ρωσία. Η ανακύκλωση είναι επίσης μια πηγή παλλαδίου, ως επί το πλείστον από τους ανενεργούς καταλυτικούς μετατροπείς.

Το παλλάδιο και οι ενώσεις του χρησιμοποιούνται ευρύτατα ως καταλύτες σε οργανικές χημικές αντιδράσεις αλλά και στους καταλυτικούς μετατροπείς των αυτοκινήτων. Επίσης χρησιμοποιούνται σε ολοκληρωμένα κυκλώματα, στην οδοντιατρική, τον καθαρισμό του υδρογόνου, στην κατασκευή κοσμημάτων, ανθεκτικών εργαλείων και οργάνων ακριβείας.

Το παλλάδιο που υπάρχει στη φύση είναι μείγμα έξι ισοτόπων με ατομικούς αριθμούς 102, 104, 105, 106, 108 και 110.

Ποδόσφαιρο

Το ποδόσφαιρο είναι ομαδικό άθλημα που παίζεται ανάμεσα σε δύο ομάδες των έντεκα παικτών με μία σφαιρική μπάλα. Ο ποδοσφαιρικός αγώνας διεξάγεται σε ένα ορθογώνιο γήπεδο με φυσικό ή τεχνητό χλοοτάπητα πράσινου χρώματος και ένα μεταλλικό πλαίσιο στο μέσο κάθε μιας από τις στενές πλευρές, το «τέρμα». Σκοπός κάθε ομάδας είναι να οδηγήσει τη μπάλα στο αντίπαλο τέρμα, δηλαδή «να βάλει γκολ» (από την αγγλική λέξη goal που σημαίνει σκοπός) ή «να σκοράρει», όπως λέγεται στην ειδική ποδοσφαιρική γλώσσα. Οι παίκτες χειρίζονται τη μπάλα κυρίως με τα πόδια, αλλά και με τον κορμό ή το κεφάλι. Η ομάδα που θα επιτύχει τα περισσότερα γκολ ως το τέλος του παιχνιδιού κερδίζει ενώ αν καμία ομάδα δεν σκοράρει ή και οι δύο ομάδες καταλήξουν στο τέλος του παιχνιδιού με την ίδια βαθμολογία σε σκορ τότε το παιχνίδι λήγει ισόπαλο.

Το ποδόσφαιρο είναι σήμερα το πιο δημοφιλές άθλημα στον κόσμο. Στις αρχές του 21ου αιώνα ασχολούνταν με αυτό περισσότεροι από 250 εκατομμύρια αθλητές σε περισσότερα από 200 κράτη. Το ποδοσφαιρικό παιχνίδι παίζεται σε διάφορα επίπεδα, από φιλικό, με λιγότερους ή περισσότερους από έντεκα παίκτες, παιδιά ή ενήλικες, σε ένα οποιουδήποτε μεγέθους γήπεδο, με δύο τυχαία αντικείμενα για τη σήμανση του τέρματος, έως επαγγελματικό, με επαγγελματίες ποδοσφαιριστές, αυστηρή τήρηση των κανονισμών και περισσότερους από 100.000 ενθουσιώδεις θεατές να παρακολουθούν σε ειδική ποδοσφαιρική αρένα υψηλών τεχνικών προδιαγραφών. Ανώτατη οργανωτική αρχή του ποδοσφαίρου είναι η FIFA (FIFA - Fédération Internationale de Football Association), η οποία διεξάγει την κορυφαία ποδοσφαιρική διοργάνωση, το Παγκόσμιο Κύπελλο Ποδοσφαίρου, κάθε τέσσερα χρόνια.

Πρωτεύοντα

Πρωτεύον ονομάζεται κάθε μέλος της βιολογικής τάξης Πρωτεύοντα (Primates), της ομάδας που περιλαμβάνει τους προσιμιίδες (στους οποίους συγκαταλέγονται οι λεμούριοι, οι λόρις, οι γαλάγοι και οι τάρσιοι) και τους σιμιίδες (μαϊμούδες και πίθηκοι). Με εξαίρεση τους ανθρώπους, οι οποίοι κατοικούν σε όλες τις ηπείρους της Γης, τα περισσότερα πρωτεύοντα ζουν σε τροπικές ή υποτροπικές περιοχές της Αμερικής, της Αφρικής και της Ασίας. Ορισμένα από τα πρωτεύοντα που έχουν εξαφανιστεί είναι ο Αρχαιοΐντρις (ένας λεμούριος μεγαλύτερος από τον ασημόρραχο γορίλα) και οι οικογένειες Παλαιοπροπιθηκίδες και Αρχαιολεμουρίδες. Τα πρωτεύοντα ποικίλουν σε μέγεθος, από τον λεμούριο ποντικό της Μαντάμ Μπερθ των 30 γραμμαρίων, μέχρι τον Ορεινό Γορίλα των 200 κιλών. Σύμφωνα με απολιθώματα που έχουν εντοπιστεί, πρόγονοι των πρωτευόντων πιθανότατα έζησαν 65 εκατομμύρια χρόνια πριν κατά την ύστερη Κρητιδική περίοδο. Το παλαιότερο γνωστό πρωτεύον βάσει των απολιθωμάτων που έχουν βρεθεί μέχρι σήμερα ήταν ο Πλησιαδάπης που έζησε 55-58 εκατομμύρια χρόνια πριν, κατά την ύστερη Παλαιόκαινο εποχή. Έρευνες πάνω στο μοριακό ρολόι, υποδεικνύουν πως ο διαχωρισμός των πρωτευόντων ίσως έγινε πολύ παλαιότερα, πιθανότατα κατά τη μέση-Κρητιδική, 85 εκατομμύρια χρόνια πριν.Τα Πρωτεύοντα παραδοσιακά διαιρούνται σε δύο μεγάλες ομάδες: τους προσιμιίδες και τους σιμιίδες. Οι προσιμιίδες έχουν χαρακτηριστικά όμοια με αυτά των πρώιμων πρωτευόντων, και περιλαμβάνουν τους λεμούριους της Μαδαγασκάρης, τα λορισόμορφα, και τους τάρσιους. Οι σιμιίδες περιλαμβάνουν τις μαϊμούδες και τους πιθήκους. Πιο πρόσφατα, οι ταξινομιστές δημιούργησαν την υποτάξη Στρεψίρρινοι για να συμπεριλάβουν όλους τους προσιμιίδες πλην των τάρσιων, και την υποτάξη Απλόρρινοι στους οποίους ταξινόμησαν τους τάρσιους και τους σιμιίδες. Οι σιμιίδες διαιρούνται περαιτέρω σε δύο ομάδες: τους πλατύρρινους (ή μαϊμούδες Νέου Κόσμου) της Νότιας και Κεντρικής Αμερικής, και τους κατάρρινους πιθήκους και μαϊμούδες της Αφρικής και της Ασίας. Πιο αναλυτικά, οι πλατύρρινοι (ή μαϊμούδες Νέου Κόσμου) περιλαμβάνουν μεταξύ άλλων τους καπουτσίνους και τις σκίουρους μαϊμούδες, και οι κατάρρινοι διαιρούνται σε δύο ομάδες, τα κερκοπιθηκοειδή (ή μαϊμούδες Παλαιού Κόσμου) -όπως είναι οι μπαμπουίνοι και οι μακάκοι, και τα ανθρωποειδή (πίθηκοι) -όπως είναι οι χιμπαντζήδες και οι άνθρωποι. Οι άνθρωποι είναι οι μόνοι κατάρρινοι που έχουν εξαπλωθεί επιτυχώς έξω από την Αφρική, τη Νότια και Ανατολική Ασία, αν και παλαιοντολογικά στοιχεία (απολιθώματα), δείχνουν πως πολλά άλλα είδη κατάρρινων έζησαν κάποια στιγμή στην Ευρώπη.

Όντας ευπροσάρμοστα θηλαστικά, τα πρωτεύοντα παρουσιάζουν ένα μεγάλο εύρος χαρακτηριστικών. Ορισμένα πρωτεύοντα (όπως οι μεγάλοι πίθηκοι και οι μπαμπουίνοι) δεν είναι δενδρόβια, αλλά όλα τα είδη έχουν ανατομικά χαρακτηριστικά που τα διευκολύνουν στην αναρρίχηση δέντρων. Μεταξύ των διαφόρων τρόπων κίνησης των πρωτευόντων, περιλαμβάνεται το πήδημα από δέντρο σε δέντρο, το περπάτημα στα δύο ή στα τέσσερα άκρα, το περπάτημα στηριζόμενο στις αρθρώσεις των δακτύλων, ή οι ταλαντεύσεις στα κλαδιά των δέντρων. Τα πρωτεύοντα χαρακτηρίζονται από το μεγάλο μέγεθος των εγκεφάλων τους, συγκριτικά με τα άλλα θηλαστικά, καθώς επίσης και από την ιδιαίτερη χρήση της στερεοσκοπικής όρασης με τίμημα τη χειροτέρευση της όσφρησης τους, την κυρίαρχη αίσθηση στα περισσότερα θηλαστικά. Αυτά τα χαρακτηριστικά είναι περισσότερο εμφανή στις μαϊμούδες και τους πιθήκους, και λιγότερο εμφανή στους λόρις και τους λεμούριους. Ορισμένα πρωτεύοντα έχουν αναπτύξει τριχρωματική όραση, ενώ τα περισσότερα πρωτεύοντα έχουν αντιτακτούς αντίχειρες και συλληπτήριες ουρές. Πολλά είδη είναι φυλετικά διμορφικά, γεγονός που σημαίνει πως τα αρσενικά και τα θηλυκά έχουν διαφορετικά φυσικά χαρακτηριστικά, όπως μάζα σώματος, μέγεθος κυνοδόντων, και χρώμα δέρματος-τριχώματος. Τα πρωτεύοντα έχουν μικρότερο ρυθμό ανάπτυξης από άλλα θηλαστικά ίδιου μεγέθους, και αργούν να ωριμάσουν, αλλά έχουν μεγαλύτερη διάρκεια ζωής. Μερικά ζουν μοναχικά, άλλα σε ζευγάρια των δύο φύλων, ενώ άλλα σε ομάδες μέχρι εκατό ατόμων.

Πρώιμη φλαμανδική ζωγραφική

Ο όρος πρώιμη φλαμανδική ζωγραφική ή πρώιμη ζωγραφική των Κάτω Χωρών αναφέρεται στο σύνολο των έργων καλλιτεχνών που δραστηριοποιήθηκαν κατά τον 15ο και 16ο αιώνα στην περιοχή της Φλάνδρας, δηλαδή στις σημερινές περιοχές του βορείου Βελγίου και της Νότιας Ολλανδίας και, ιδιαίτερα, στις ακμάζουσες πόλεις της περιοχής Μπρυζ, Γάνδη, Τουρναί, Αμβέρσα και Βρυξέλλες. Το ύφος τους ακολουθεί την τεχνοτροπία του Διεθνούς γοτθικού στυλ. Ξεκινά από τους Ρομπέρ Καμπέν και Γιαν βαν Άικ στις αρχές της δεκαετίας του 1420. Εκτείνεται τουλάχιστον ως τον θάνατο του Γκέραρντ Ντάβιντ το 1523, αν και πολλοί λόγιοι επεκτείνουν τη διάρκειά της ως την Ολλανδική Επανάσταση το 1566 ή 1568. Η πρώιμη φλαμανδική ζωγραφική συμπίπτει με την πρώιμη και ύστερη Αναγέννηση στην Ιταλία, αλλά θεωρείται ανεξάρτητη καλλιτεχνική κουλτούρα, διαφορετική από τον αναγεννησιακό ανθρωπισμό που χαρακτήριζε τις ιταλικές εξελίξεις. Καθώς αυτοί οι ζωγράφοι αντιπροσωπεύουν το αποκορύφωμα της βορειοευρωπαϊκής μεσαιωνικής καλλιτεχνικής κληρονομιάς και ενσωματώνουν τα ιδεώδη της Αναγέννησης, μερικές φορές κατηγοριοποιούνται σαν να ανήκουν τόσο στην αναγεννησιακή περίοδο όσο και στην ύστερη εποχή του μπαρόκ.

Στους κορυφαίους πρώιμους Φλαμανδούς ζωγράφους – που είναι γνωστοί και ως Φλαμανδοί «Πριμιτίφ» (Vlaamse Primitieven) - συγκαταλέγονται οι Ρομπέρ Καμπέν, οι αδελφοί βαν Άικ, ο Ρόχιερ φαν ντερ Βάιντεν, ο Πέτρους Κρίστους, ο Χανς Μέμλινγκ, ο Χούγκο φαν ντερ Χους και ο Ιερώνυμος Μπος. Σημείωσαν σημαντική πρόοδο τόσο στη φυσική αναπαράσταση όσο και στον ιλλουζιονισμό και τα έργα τους συνήθως έχουν πολύπλοκη εικονογραφία. Τα θέματά τους είναι κυρίως θρησκευτικές σκηνές ή μικρά πορτρέτα, με την αφηγηματική ζωγραφική ή τις μυθολογικές αναπαραστάσεις να είναι σχετικά σπάνιες. Τα τοπία που απεικονίζονται είναι πλούσια και πολύ προσεγμένα, αλλά αποτελούν κατά κύριο λόγο το υπόβαθρο της όλης εικόνας, μέχρι τις αρχές του 16ου αιώνα. Οι πίνακες συνήθως κατασκευάζονται με ελαιοχρώματα πάνω σε πάνελ, είτε αυτοτελείς είτε σε πιο σύνθετες μορφές, όπως δίπτυχα, τρίπτυχα και πολύπτυχα. Η περίοδος αυτή είναι, επίσης, αξιοσημείωτη για τη γλυπτική της, την ανάπτυξη της τέχνης των ταπήτων (ταπισερί), των εικονογραφημένων χειρογράφων, της υαλογραφίας και των χαρακτικών ρετάμπλ.

Η πρώτη γενεά ζωγράφων δραστηριοποιήθηκε κατά την περίοδο της βουργουνδιανής επιρροής στην Ευρώπη, όταν οι Κάτω Χώρες έγιναν το πολιτικό και οικονομικό κέντρο της βόρειας Ευρώπης, αξιοσημείωτες για τα τεχνήματά τους και τα προϊόντα πολυτελείας τους. Υποβοηθούμενα από το σύστημα εργαστηρίων, τα πάνελς και μια ποικιλία χειροτεχνημάτων πωλούνταν σε ξένους πρίγκηπες και εμπόρους, είτε μέσω συμμετοχής ιδιωτών είτε μέσω περιπτέρων σε αγορές. Η πλειονότητα αυτών των έργων καταστράφηκε κατά την περίοδο της εικονοκλασίας του 16ου και 17ου αιώνα. Σήμερα έχουν διασωθεί μόνο μερικές χιλιάδες δειγμάτων τους. Η πρώιμη βόρεια τέχνη, εν γένει, δεν έχαιρε εκτίμησης από τις αρχές του 17ου μέχρι τα μέσα του 19ου αιώνα και οι ζωγράφοι, όπως και τα έργα τους, δεν είχαν επαρκή τεκμηρίωση, μέχρι τα μέσα του 19ου αιώνα. Οι ιστορικοί τέχνης χρειάστηκαν σχεδόν έναν ακόμη αιώνα ερευνών για να εντοπίσουν ποια έργα ανήκουν σε ποιον, για να μελετήσουν την εικονογραφία και να εγκαθιδρύσουν, έστω και χονδροειδή, περιγράμματα του βίου ακόμη και των μεγάλων ζωγράφων. Η απόδοση μερικών από τα πλέον σπουδαία έργα στους δημιουργούς τους αποτελεί, ακόμη και σήμερα, αντικείμενο διαμάχης.

Ρήνιο

Το χημικό στοιχείο ρήνιο (rhenium) είναι βαρύ, δύστηκτο, αργυρόλευκο μέταλλο με ισχυρή μεταλλική λάμψη και με ατομικό αριθμό 75 και σχετική ατομική μάζα 186,207. Το χημικό του σύμβολο είναι «Re» και ανήκει στην ομάδα 7 του περιοδικού πίνακα, στην περίοδο 6 και στο d-block, στην ομάδα της 3ης κύριας σειράς των στοιχείων μετάπτωσης. Έχει θερμοκρασία τήξης 3186 °C και θερμοκρασία βρασμού 5596 °C.Με μια μέση περιεκτικότητα περίπου 1 ppb (μέρη στο δισεκατομμύριο) στο στερεό φλοιό της γης, το ρήνιο είναι από τα σπανιότερα μέταλλα.

Το καθαρό ρήνιο έχει την 3η μεγαλύτερη θερμοκρασία τήξης, μετά το βολφράμιο και τον άνθρακα και το μεγαλύτερο σημείο βρασμού από όλα τα χημικά στοιχεία.Ανήκει στα λεγόμενα πυρίμαχα μέταλλα μαζί με το μολυβδένιο, το ταντάλιο, το βολφράμιο και το νιόβιο.Η ανακάλυψή του ανακοινώθηκε το 1925 από στους Γερμανούς χημικούς Βάλτερ Νόντακ, Ίντα Τάκε-Νόντακ και Όττο Μπέργκ και είναι το τελευταίο, με φυσική παρουσία, σταθερό χημικό στοιχείο που ανακαλύφθηκε. Το όνομά του το πήρε από τον ποταμό Ρήνο.

Το ρήνιο δεν υπάρχει ελεύθερο στη φύση. Εμφανίζεται σε μικρές ποσότητες μέσα στο ορυκτό μολυβδαινίτης που αποτελεί και τη μεγαλύτερη εμπορική του πηγή. Η Χιλή, οι Η.Π.Α., και χώρες της Κεντρικής Ασίας (Καζακστάν, Ουζμπεκιστάν) προμηθεύουν τις μεγαλύτερες ποσότητες ρηνίου παγκοσμίως. Είναι γνωστά μόνο δύο πολύ σπάνια ορυκτά του : ο ρηνιίτης που περιέχει θείο και ρήνιο και ο ταρκιανίτης που περιέχει πολλά συστατικά.

Το ρήνιο προσομοιάζει χημικά περισσότερο με το μολυβδαίνιο, που βρίσκεται στην προηγούμενη ομάδα και στην προηγούμενη περίοδο του περιοδικό πίνακα, παρά με το τεχνήτιο και το μαγγάνιο με τα οποία ανήκει στην ίδια ομάδα.

Παράγεται κυρίως από το ορυκτό μολυβδαινίτης ως παραπροϊόν του μολυβδαινίου και της επεξεργασίας του χαλκού.

Στις ενώσεις του έχει πολλούς αριθμούς οξείδωσης που κυμαίνονται από –3 έως και +7, ενώ τα σύμπλοκά του παρουσιάζουν ιδιαίτερο ενδιαφέρον εξαιτίας του μεγάλου αριθμού συναρμογής που έχουν και των παραβιάσεων κάποιων κανόνων μοριακής συμμετρίας που εμφανίζουν.

Χρησιμοποιείται κυρίως στην παραγωγή υπερκραμάτων με το νικέλιο για χρήση σε κινητήρες αεροσκαφών και ως καταλύτης χημικών αντιδράσεων τις περισσότερες φορές ως κράμα με λευκόχρυσο.

Εξαιτίας της χαμηλής διαθεσιμότητάς του σε σχέση με τη ζήτηση, το ρήνιο είναι ένα από τα πιο ακριβά βιομηχανικά μέταλλα.

Το ρήνιο έχει ένα μόνο σταθερό ισότοπο το 185Re.

Ρόδιο

Το χημικό στοιχείο ρόδιο (αγγλικά: Rhοdium) είναι μέταλλο με ατομικό αριθμό 45 και σχετική ατομική μάζα 102,9055. Το χημικό του σύμβολο είναι «Rh» και ανήκει στην ομάδα 9 του περιοδικού πίνακα, στην περίοδο 5 και στο d-block, της 2ης κύριας σειράς των στοιχείων μετάπτωσης. Έχει θερμοκρασία τήξης 1964 °C και θερμοκρασία βρασμού 3695 °C.

Το όνομα «ρόδιο» προέρχεται από την ελληνική λέξη «ρόδο» που σημαίνει τριαντάφυλλο, επειδή ορισμένα υδατικά διαλύματα αλάτων του έχουν ροζ χρώμα.

Από άποψη χημικής συμπεριφοράς, ανήκει στην «ομάδα του λευκόχρυσου», PGM, Platinum Group Metals ή PGE, Platinum Group Elements.

Το ρόδιο θεωρείται ευγενές μέταλλο μαζί με το ρουθήνιο, το ιρίδιο, το παλλάδιο, τον άργυρο, το όσμιο, το λευκόχρυσο και το χρυσό.

Ανακαλύφθηκε το 1803 από τον Άγγλο χημικό Γουόλλαστον στα κατάλοιπα επεξεργασίας μεταλλευμάτων λευκόχρυσου. Σήμερα εξάγεται μαζί με τα άλλα PGM από κοιτάσματα στη Νότια Αφρική, τη Ρωσία και τη Βόρεια Αμερική.

Είναι το σπανιότερο μη-ραδιενεργό χημικό στοιχείο στη γη και αυτό με τη μεγαλύτερη αξία από όλα τα ευγενή μέταλλα: η τιμή του 1 Kg ήταν πάνω από 80.000 δολάρια στις αρχές του 2010.

Το ρόδιο χρησιμοποιείται κυρίως ως καταλύτης ενώ, εξαιτίας της σπανιότητάς του, κατεργάζεται συνήθως με τη μορφή κραμάτων με λευκόχρυσο ή παλλάδιο σε εφαρμογές όπου απαιτείται υψηλή θερμοκρασία και μεγάλη αντοχή στη διάβρωση. Ανιχνευτές ροδίου χρησιμοποιούνται στους πυρηνικούς αντιδραστήρες για τη μέτρηση της ροής νετρονίων.

Το ρόδιο έχει μόνο ένα σταθερό ισότοπο, το 103Rh.

Τομείς των Φυσικών επιστημών
Κλάδοι της Φυσικής Επιστήμης

Άλλες γλώσσες

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.