Μεταλλουργία

Μεταλλουργία είναι ένας κλάδος της επιστήμης των υλικών σχετικός με την παρασκευή μετάλλων και κραμάτων από μεταλλεύματα ή άλλες πρώτες ύλες, καθώς και την κατεργασία των μετάλλων και των κραμάτων για την τροποποίηση των ιδιοτήτων αυτών των υλικών. Αναλόγως, ο κλάδος της μεταλλουργίας διακρίνεται σε εξαγωγική μεταλλουργία και μεταλλογνωσία ή φυσική μεταλλουργία.

Kupferschmidt-1568
Χαλκουργός. Από χαρακτικό σε γερμανικό βιβλίο του 1568.

Ιστορία

Η ιστορία της μεταλλουργίας είναι άμεσα συνδεδεμένη με την εξέλιξη του ανθρώπου και την μετάβασή του από την προϊστορία στην ιστορία.

Τα πρώτα μεταλλικά αντικείμενα κατασκευάστηκαν από αυτοφυή μέταλλα, όπως χρυσό (Αίγυπτος, Μεσοποταμία), χαλκό (Περσία, Μεσοποταμία, Αίγυπτος) και λευκόχρυσο (Αίγυπτος, Ίνκας), ή από σίδηρο που οι άνθρωποι έβρισκαν μόνον σε μετεωρίτες (Εσκιμώοι της Γροιλανδίας). Έτσι, περίπου 5.000 χρόνια π.Χ, ο άνθρωπος πέρασε από την Εποχή του Λίθου στην Εποχή του Χαλκού. Η μετάβαση αυτή δεν έγινε παντού την ίδια εποχή. Στην συνέχεια ο άνθρωπος έμαθε να κατεργάζεται μίγματα από ορυκτά διαφόρων μετάλλων με αποτέλεσμα να ανακαλύψει τα κράματα του χαλκού (κρατέρωμα ή μπρούντζος: κράμα χαλκούκασσίτερου). Οι κάτοικοι της Μεσογείου και της Κεντρικής Ευρώπης ανακάλυψαν πώς να ανάγουν σιδηρομετάλλευμα σε μικρές φρεατώδεις καμίνους για να παράγουν σπογγώδη σίδηρο σε στερεή κατάσταση, από τον οποίο παρήγαγαν στην συνέχεια χάλυβα. Οι Ινδοί, οι Κινέζοι και οι Ιάπωνες γνώριζαν επίσης από τα αρχαία χρόνια πώς να παράγουν αντικείμενα από σίδηρο. Οι Ρωμαίοι γνώριζαν πώς να παράγουν ορείχαλκο (κράμα χαλκούψευδαργύρου), αλλά πρώτοι οι Ινδοί παρήγαγαν ψευδάργυρο σε καθαρή μορφή τον 14ο αι. μ.Χ.

Η γνώση της μεταλλουργίας επέτρεψε σε ορισμένους λαούς να επεκτείνουν την ισχύ τους και να επιβληθούν σε άλλους λαούς. Για παράδειγμα, τον 9ο αι. π.Χ. οι Δωριείς, που γνώριζαν πώς να φτιάχνουν όπλα και άλλα αντικείμενα από σίδηρο, κατάφεραν να επιβληθούν στους Αχαιούς και τις άλλες ελληνικές φυλές, οι οποίες είχαν όπλα λιγότερο ανθεκτικά φτιαγμένα από χαλκό, και έτσι η ελληνική χερσόνησος πέρασε στην Εποχή του Σιδήρου.

Η γνώση της μεταλλουργίας έδωσε επίσης την δυνατότητα στον άνθρωπο να δημιουργήσει το χρήμα, δηλαδή μεταλλικά αντικείμενα τα οποία αντιπροσώπευαν μια συγκεκριμένη αξία. Οι Αθηναίοι, με τον άργυρο που παρήγαγαν από τα μεταλλεία του Λαυρίου, μπόρεσαν να χρηματοδοτήσουν την ναυπήγηση τριηρών και να δημιουργήσουν την Αθηναϊκή Κοινοπολιτεία τον 5ο αι. π.Χ. Παρομοίως, οι Μακεδόνες στηρίχθηκαν στον χρυσό του Παγγαίου για να χρηματοδοτήσουν την ανάπτυξη της αυτοκρατορίας του Μέγα Αλεξάνδρου, ενώ οι Ρωμαίοι στηρίχθηκαν εν μέρει στον άργυρο των μεταλλείων της Ισπανίας για να κοσμήσουν την Ρώμη.

Agricola01
Κυπέλλωση αργύρου από τήγμα αργυρούχου μολύβδου. Από το βιβλίο του γερμανού Georg Agricola De re metallica (Περί μεταλλικών πραγμάτων), 1556.

Η εκτεταμένη γνώση της μεταλλουργίας επέτρεψε στους Ευρωπαίους να καταλάβουν και να αποικήσουν τις χώρες που ανακάλυψαν τον 15ο και 16ο αι. μ.Χ. Η ανακάλυψη του μεταλλουργικού οπτάνθρακα (κωκ) και της ατμομηχανής έδωσε νέα ώθηση στην μεταλλουργία του σιδήρου κατά τον 18ο αι. Προς τα τέλη του 18ου αι., εμφανίστηκαν στην Αγγλία και οι πρώτες ατμοκίνητες μονάδες έλασης χάλυβα[1].

Οι παλαιές μέθοδοι άμεσης αναγωγής σιδηρομεταλλευμάτων αντικαταστάθηκαν κατά τον 19ο αι. από την πολύ πιο παραγωγική υψικάμινο, τους μεταλλάκτες (μεγάλους κάδους όπου ο τηγμένος χυτοσίδηρος μεταβάλλεται σε χάλυβα με την εμφύσηση αέρα ή οξυγόνου) και τις καμίνους ανοικτής εστίας (κάμινος Siemens-Martin).

Στα τέλη του 19ου αι. έκαναν την εμφάνισή τους και υδρομεταλλουργικές μέθοδοι παραγωγής μη σιδηρούχων μετάλλων. Η εκχύλιση (διαλυτοποίηση) σε κυανιούχα υδατικά διαλύματα επέτρεψε την εκμετάλλευση πτωχών μεταλλευμάτων χρυσού. Η εκχύλιση βωξίτη σε διαλύματα καυστικού νατρίου επέτρεψε την φθηνή παραγωγή αλουμίνας (Αl2O3), και με την ηλεκτρόλυση τήγματος αλουμίνας και κρυόλιθου (Na3AlF6) έγινε δυνατή η παραγωγή φθηνού μεταλλικού αλουμινίου, το οποίο μέχρι τότε θεωρούνταν πολύτιμο μέταλλο. Η μέθοδος της οξειδωτικής φρύξης σφαλερίτη (ZnS) και η εκχύλιση του φρύγματος (ZnO) σε θειικό οξύ επέτρεψε την φθηνή παραγωγή ψευδαργύρου.

Επίσης, προς τα τέλη του 19ο αι., νέες μέθοδοι κατεργασίας των μετάλλων, όπως η διέλαση σωλήνων από χάλυβα χωρίς ραφή (αδελφοί Rienhard και Max Mannessman, Γερμανία, 1886), έφεραν επανάσταση στην μεταλλοτεχνία. Η μεταλλογνωσία καθιερώθηκε ως ιδιαίτερος επιστημονικός κλάδος (ο όρος «φυσική μεταλλουργία» εμφανίστηκε το 1914[2]). Κράματα ήδη υπάρχοντα εκείνον τον καιρό, όπως ο χάλυβας (κράμα σιδήρουάνθρακα), μελετήθηκαν και ταξινομήθηκαν συστηματικά με την βοήθεια του μικροσκοπίου και την περιθλασιμετρία ακτίνων Χ (1912). Νέα κράματα, όπως το ντουραλουμίνιο (1906), ο ανοξείδωτος χάλυβας (19091912), κ.ά., δημιουργήθηκαν για να καλύψουν νέες καταναλωτικές ή τεχνολογικές ανάγκες.

Μετά τον Β΄ Παγκόσμιο Πόλεμο, η ζήτηση μεταλλουργικών προϊόντων παρουσίασε έντονη αύξηση. Ταυτοχρόνως αυξήθηκαν οι απαιτήσεις του καταναλωτικού κοινού για προϊόντα ποιότητας παρασκευασμένα με μεθόδους που να καταναλώνουν μικρή ποσότητα ενέργειας και να είναι «φιλικές προς το περιβάλλον». Για παράδειγμα, στις χαλυβουργίες, οι κάμινοι Siemens-Martin αντικαταστάθηκαν από τους μεταλλάκτες εμφύσησης καθαρού οξυγόνου (μεταλλάκτες LD, BOP, AOD), ενώ στις μονάδες κατεργασίας θειούχων μεταλλευμάτων ψευδαργύρου, οι περιστροφικοί κάμινοι φρύξης αντικαταστάθηκαν από κάμινους ρευστοστερεής κλίνης. Οι κάμινοι ακαριαίας τήξης αντικατέστησαν τους μεταλλάκτες Pierce-Smith στην παραγωγή αργού νικελίου και αργού χαλκού.

Και ο τομέας της μεταλλογνωσίας παρουσίασε σημαντικές προόδους κατά τον 20ο αι., κυρίως εξαιτίας της προόδου στον τομέα της ηλεκτρονικής μικροσκοπίας. Νέες θεωρίες, όπως αυτή των κρυσταλλικών ατελειών ή ελαττωμάτων, επέτρεψαν στους μεταλλογνώστες να εξηγήσουν πολλές ιδιότητες των μετάλλων και των κραμάτων, αλλά και να σχεδιάσουν νέα κράματα βελτιωμένων ιδιοτήτων.

Βασικές αρχές

Bessemer Converter Sheffield
Μεταλλάκτης Bessemer από παλιό χαλυβουργείο στο Σέφηλντ της Αγγλίας.

Η μεταλλουργία ως τεχνολογική επιστήμη στηρίζεται σε τρεις βασικούς επιστημονικούς τομείς:

Η ανόργανη χημεία περιγράφει τις βασικές αρχές της χημικής συμπεριφοράς των μετάλλων και των ενώσεών τους. Δεν είναι άλλωστε τυχαίο το ότι τεχνικές μέθοδοι βρίσκουν εφαρμογή τόσο στην κλασική χημεία όσο και στην μεταλλουργία. Π.χ. η εξαγωγή μετάλλων με οργανικούς διαλύτες χρησιμοποιείται στην αναλυτική χημεία, αλλά και στην υδρομεταλλουργία του χαλκού.

Η φυσικοχημεία επιτρέπει τον υπολογισμό της θεωρητικής απόδοσης μιας αντίδρασης σε συνθήκες ισορροπίας (χημική θερμοδυναμική), αλλά την εκτίμηση της πραγματικής απόδοσης μιας αντίδρασης σε συνάρτηση με τον χρόνο (κινητική). Για παράδειγμα, η θεωρητική απόδοση της αντίδρασης:

C(s) + CO2(g) → 2CO (g) εξαρτάται από την θερμοκρασία· όσο αυξάνει η θερμοκρασία, τόσο η αντίδραση προχωρεί προς τα δεξιά. Η συγκεκριμένη αντίδραση έχει τεράστια σημασία για την πυρομεταλλουργία, καθώς οι περισσότερες πυρομεταλλουργικές διεργασίες απαιτούν θερμοκρασίες άνω των 1000 °C, όπου ο άνθρακας οξειδώνεται σχεδόν 100% προς την δημιουργία μονοξειδίου του άνθρακα (αντίδραση Boudouard). Η θερμοδυναμική επιτρέπει επίσης την δημιουργία διαγραμμάτων φάσεων για κράματα μετάλλων, αλλά και για τήγματα μη μεταλλικών ενώσεων όπως διάφορα οξείδια, σουλφίδια κ.λπ. Με τα διαγράμματα φάσεων, ο μεταλλουργός μπορεί να ξέρει ποιες φάσεις (υγρές ή στερεές) προκύπτουν όταν δύο ή περισσότερα μέταλλα βρεθούν μαζί σε μια συγκεκριμένη θερμοκρασία και σε μια συγκεκριμένη αναλογία. Τα διαγράμματα φάσεων και το μικροσκόπιο αποτελούν τα κύρια εργαλεία για τον σχεδιασμό κραμάτων, πυρίμαχων και κεραμικών. Σε πολλές υδρομεταλλουργικές διεργασίες, η κινητική είναι εξαιρετικής σημασίας. Π.χ., η ανάκτηση ψευδαργύρου από όξινα διαλύματα θειικού ψευδαργύρου είναι δυνατή, επειδή η κινητική της αναγωγής υδρογονοϊόντων προς αέριο υδρογόνο επί καθόδου αλουμινίου είναι εξαιρετικά αργή. Με άλλα λόγια, η κινητική επιτρέπει την αντίδραση:

Zn2+(aq) + 2e → Zn0(s) και εμποδίζει την αντίδραση

+(aq) + 2e → Η20(g). ενώ η χημική θερμοδυναμική λέει πως προηγείται η δεύτερη αντίδραση. Ο μεταλλουργός πρέπει επίσης να έχει καλή γνώση ορυκτολογίας, κρυσταλλογραφίας, τεχνικής μηχανικής (στατική, αντοχή των υλικών), συστημάτων αυτομάτου ελέγχου, κ.λπ.

Κλάδοι της μεταλλουργίας

Ως πιο εξειδικευμένοι κλάδοι της μεταλλουργίας θεωρούνται τα ακόλουθα επιστημονικά πεδία:

  • Εξαγωγική μεταλλουργία — η επιστήμη της παραγωγής («εξαγωγής») καθαρών μετάλλων ή κραμάτων από μεταλλεύματα ή άλλες πρώτες ύλες (π.χ. παλαιομέταλλα από ανακύκλωση υλικών, κ.λπ.). Συχνά, στην εξαγωγική μεταλλουργία, γίνεται λόγος για
  • Μεταλλογνωσίαφυσική μεταλλουργία) — η επιστήμη της μελέτης και της τροποποίησης των ιδιοτήτων των μετάλλων και των κραμάτων με μεθόδους μικροσκοπίας και μηχανικών δοκιμών. Συνήθως, στην μεταλλογνωσία συγκαταλέγονται ακόμα οι τομείς
    • Μεταλλογραφία — η επιστήμη και η τέχνη της ετοιμασίας μετάλλων και κραμάτων για παρατήρηση με οπτικό ή ηλεκτρονικό μικροσκόπιο.
    • Χύτευση και Μεταλλοτεχνία — η αλλαγή των μηχανικών ιδιοτήτων των μετάλλων και των κραμάτων με τήξη (χύτευση), θερμική κατεργασία (βαφή), μηχανικούς τρόπους (έλαση, διέλαση, σφυρηλασία, ολκή, κ.λπ.) ή με συνδυασμό μηχανικής και θερμικής κατεργασίας.
    • Συγκολλήσεις — η μελέτη μεθόδων για την συγκόλληση μεταλλικών αντικειμένων με τήξη του μεταλλικού υποβάθρου ή χωρίς τήξη του μεταλλικού υποβάθρου (κασσιτεροκόλληση).
    • Επιμεταλλώσεις — η επικάλυψη ορισμένων μετάλλων με στρώμα άλλου μετάλλου για προστασία από την διάβρωση (π.χ. γαλβανισμός του χάλυβα σε λουτρό τηγμένου ψευδαργύρου) ή για λόγους αισθητικούς (π.χ. επιχρύσωση κοσμημάτων)
    • Κονιομεταλλουργία — η παραγωγή μεταλλικών αντικειμένων σε διαστάσεις ακριβείας με την πυροσυσσωμάτωση μεταλλικών κόνεων υπό πίεση σε στερεά ή σχεδόν στερεά κατάσταση.

Ιδιαίτερος κλάδος της μεταλλουργίας είναι και η αρχαιομεταλλουργία, δηλ. η μελέτη της ιστορίας της παραγωγής μεταλλικών αντικειμένων στην προβιομηχανική εποχή (πριν τον 18ο αι. μ.Χ.).

Η σημασία της μεταλλουργίας

Η ανακάλυψη και η εκτεταμένη χρήση των μετάλλων έδωσε στον άνθρωπο την δυνατότητα να ξεφύγει από την προϊστορική κατάσταση και να δημιουργήσει τον σύγχρονο πολιτισμό. Χωρίς την μεταλλουργία, η ανθρώπινη κοινωνία δεν θα ήταν αυτή που είναι σήμερα. Η γραφή, οι καλές τέχνες, η τυπογραφία, ο ηλεκτρισμός, οι ημιαγωγοί και η σύγχρονη υψηλή τεχνολογία στον τομέα των τηλεπικοινωνιών συνδέονται κατά τον έναν ή τον άλλο τρόπο με ανακαλύψεις και εξελίξεις στον τομέα της μεταλλουργίας.

Όπως όλες οι τεχνολογικές ανακαλύψεις, έτσι και η μεταλλουργία συνδέεται και με ορισμένες εξελίξεις που υπήρξαν ενίοτε οδυνηρές για το ανθρώπινο γένος. Η πρώτη χρήση των μετάλλων ήταν για την κατασκευή όπλων, τα οποία χρησιμοποιήθηκαν για την υποταγή ή και την ολοκληρωτική καταστροφή λαών. Η αναζήτηση πολύτιμων μετάλλων ήταν μία από τις κύριες αιτίες του ευρωπαϊκού επεκτατισμού μετά τον 15ο αι. μ.Χ. και της αποικιοκρατίας. Ακόμα και σήμερα, πολλές σημαντικές εξελίξεις στην επιστήμη της μεταλλουργίας προέρχονται από την πολεμική βιομηχανία. Κράματα απεμπλουτισμένου ουρανίου (χαμηλής ραδιενέργειας) χρησιμοποιούνται για την κατασκευή οβίδων μεγάλης διατρητικής ικανότητας.

Στην Ελλάδα, η μεταλλουργία μολύβδου και αργύρου του Λαυρίου, η οποία λειτούργησε από το β΄ μισό του 19ου αι. έως το 1989, υπήρξε το πρώτο βιομηχανικό κέντρο της χώρας. Η μεταλλουργία του Λαυρίου συνδέθηκε με πολλές σημαντικές κοινωνικές εξελίξεις στην χώρα. Η Χαλυβουργική ήταν η πρώτη καθετοποιημένη βιομηχανία χυτοσιδήρουχάλυβα της χώρας με υψικαμίνους (που δεν λειτουργούν πλέον) και πλήρες χαλυβουργείο στην Ελευσίνα. Σήμερα η Ελλάδα παράγει περί τα 2,5 εκατομμύρια τόνους χάλυβα τον χρόνο (στοιχεία 2006) σε πέντε εργοστάσια με ηλεκτρικές καμίνους που χρησιμοποιούν παλαιοσίδηρο (σκραπ) ως πρώτη ύλη (Αθήνα (2), Αλμυρός Μαγνησίας, Βόλος, Θεσσαλονίκη). Η Ελλάδα παράγει περίπου 20.000 τόνους το χρόνο νικέλιο υπό την μορφή σιδηρονικελίου (ΛΑΡΚΟ, Λάρυμνα Φθιώτιδας). Κατά την περίοδο 19831991, η Ελλάδα παρήγαγε και 45.000 τόνους ανά έτος σιδηροχρώμιο (Ελληνικά Σιδηροκράματα ΑΕ, Αλμυρός Μαγνησίας). Η Ελλάδα επίσης παράγει περίπου 160.000 τόνους τον χρόνο αλουμίνιο στο εργοστάσιο της «Αλουμίνιον της Ελλάδος» (Άγιος Νικόλαος Βοιωτίας). Τέλος, στην Ελλάδα, υπάρχουν πολλές βιομηχανίες δευτερογενούς κατεργασίας μετάλλων (π.χ. έλαση και διέλαση αλουμινίου, κ.λπ.). Σημαντικό μεταλλουργικό κέντρο λειτούργησε για πολλές δεκαετίες στο Πυριτιδοποιείο–Καλυκοποιείο του Μποδοσάκη (ΠΥΡΚΑΛ).

Σημερινή κατάσταση και μελλοντικές προοπτικές

Η έντονη ζήτηση μετά τον Β΄ Παγκόσμιο Πόλεμο προκάλεσε την έντονη αύξηση της παραγωγής μετάλλων. Το 2005, η παγκόσμια παραγωγή μετάλλων είχε ως εξής:

Δεδομένου ότι η ζήτηση σε μέταλλα δεν μπορεί να καλυφθεί από την παραγωγή των μεταλλείων, ένα μεγάλο ποσοστό από αυτά παράγονται από την ανακύκλωση παλαιομετάλλων (σκραπ). Για παράδειγμα, το 55% του μολύβδου παράγεται από ανακύκλωση (κυρίως παλιές μπαταρίες αυτοκινήτων). Παρομοίως, από ανακύκλωση παράγονται το 40% του χαλκού, το 32% του χάλυβα, το 30% του αλουμινίου, το 25% του νικελίου και μόλις το 1% του ψευδαργύρου.

Η παραγωγή των μετάλλων με πυρομεταλλουργικές και άλλες μεθόδους απαιτεί την κατανάλωση μεγάλων ποσοτήτων ενέργειας. Επιπλέον οι μεταλλουργικές βιομηχανίες εκλύουν μεγάλες ποσότητες διοξειδίου του άνθρακα και άλλων αερίων (NOx, SO2, κ.ά.), τα οποία προκαλούν το φαινόμενο του θερμοκηπίου, την όξινη βροχή και άλλα περιβαλλοντικά προβλήματα. Αν και οι σύγχρονες μεταλλουργικές μονάδες καταναλώνουν πολύ λιγότερη ενέργεια και εκλύουν λιγότερα τοξικά αέρια σε σύγκριση με παλαιότερες παρόμοιες μονάδες, εντούτοις η κατά πολύ αυξημένη παραγωγή μετάλλων σημαίνει ότι η μόλυνση του περιβάλλοντος δεν έχει μειωθεί.

Οι υδρομεταλλουργικές και βιο-υδρομεταλλουργικές μέθοδοι αφενός επιτρέπουν την επεξεργασία των πολύ φτωχών μεταλλευμάτων ή απορριμμάτων μεταλλευτικών εκμεταλλεύσεων (πχ. τα στείρα των πυρο μεταλλουργικών κατεργασιών) και αφετέρου μπορούν να δώσουν λύσεις σε ειδικά προβλήματα. Τεχνικές εκχύλισης όπως η  εκχύλιση σωρών απορριμμάτων εκμετάλλευσης (dump leaching), η εκχύλιση σε σωρούς μεταλλεύματος (heap leaching),η εκχύλιση σε στήλες (column leaching), η βιοεκχύλιση (bioleaching), η έκπλυση μετώπων μεταλλοφόρων εκμεταλλεύσεων (stope washing) και η επί τόπου εισχώρηση υπό πίεση του διαλύματος εκχύλισης στο κατάλληλα διαμορφωμένο κοίτασμα (in situ leaching) αποτελούν υδρομεταλλουργικές τεχνικές[9].

Προς το τέλος του 20ού αι., η μεταλλουργία, ως τεχνολογική επιστήμη και ως βιομηχανία, θεωρήθηκε ώριμος έως ξεπερασμένος τομέας[10]. Το αποτέλεσμα ήταν πολλές πανεπιστημιακές σχολές μεταλλουργίας να κλείσουν ή να αλλάξουν το πρόγραμμά τους και να μετονομαστούν σε σχολές Επιστήμης των Υλικών. Μία νέα άνοδος της τιμής των μετάλλων, και των πρώτων υλών γενικότερα, ίσως ανατρέψει αυτή την τάση.

Αναφορές

  1. C. Findlay, "History of steelworks' plant and equipment", περ. 2000.
  2. R. W. Cahn, "Trends in Physical Metallurgy". In Advances in Physical Metallurgy (edited by S. Banerjee and R. V. Ramanujan), pp. 1–5. Gordon & Breach Publishers, Amsterdam (1994).
  3. «International Iron and Steel Institute, World Steel in Figures 2006» (PDF). Αρχειοθετήθηκε από το πρωτότυπο (PDF) στις 28 Σεπτεμβρίου 2007. Ανακτήθηκε στις 22 Αυγούστου 2007.
  4. International Aluminium Institute
  5. International Copper Study Group
  6. 6,0 6,1 International Lead Zinc Study Group
  7. International Nickel Study Group
  8. «Chamber of Mines of South Africa». Αρχειοθετήθηκε από το πρωτότυπο στις 7 Νοεμβρίου 2008. Ανακτήθηκε στις 28 Σεπτεμβρίου 2019.
  9. «Πύλη για τον Ελληνικό Ορυκτό Πλούτο: Υδρομεταλλουργία: το μέλλον της Μεταλλουργίας;».
  10. D. J. Fray, "Aspects of technology trasnfer", Metallurgical and Materials Transactions B, vol. 31B, pp. 1153–1162 (2000).

Δείτε επίσης

Εξωτερικοί σύνδεσμοι

Άργυρος

Το χημικό στοιχείο άργυρος ή ασήμι (λατινικά: argentum, αγγλικά: silver) είναι βαρύ, σπάνιο, μαλακό μέταλλο με έντονη μεταλλική λάμψη. Ο ατομικός αριθμός του είναι 47 και η σχετική ατομική μάζα του 107,8682(2). Το χημικό του σύμβολο είναι Ag και ανήκει στην ομάδα 11 (IΒ, με την παλαιότερη ταξινόμηση) του περιοδικού πίνακα, στην περίοδο 5, στον τομέα d και στη 2η κύρια σειρά των στοιχείων μετάπτωσης. Έχει θερμοκρασία τήξης 961,78 °C και θερμοκρασία βρασμού 2162 °C.Το ασήμι είναι ένα από τα πρώτα μέταλλα που χρησιμοποίησε ο άνθρωπος. Ήταν γνωστό ήδη από την προϊστορική εποχή στους λαούς που κατοικούσαν στη Μεσοποταμία, στον Ελλαδικό Χώρο, στη Μέση Ανατολή και στην Αίγυπτο.

Το σημερινό όνομά του το πήρε από τη λατινική λέξη argentum ή και την ελληνική αργυρός και είναι το μόνο χημικό στοιχείο από το οποίο ονομάστηκε ένα κράτος, η Αργεντινή. Θεωρείται ευγενές μέταλλο μαζί με το ρουθήνιο, το ρόδιο, το ιρίδιο, το παλλάδιο, το όσμιο, το λευκόχρυσο και το χρυσό. Για τις χρηματιστηριακές συναλλαγές μετράται με την ουγγιά και τίθεται υπό διαπραγμάτευση, όπως και τα άλλα πολύτιμα μέταλλα στις διεθνείς χρηματαγορές.

Το ασήμι έχει τη μεγαλύτερη ηλεκτρική και θερμική αγωγιμότητα καθώς και τη μεγαλύτερη ανακλαστικότητα στο ορατό τμήμα του φάσματος από όλα τα χημικά στοιχεία. Είναι ελατό, έχει δηλαδή την ιδιότητα να σφυρηλατείται ή να μετατρέπεται εύκολα σε ελάσματα, και όλκιμο, μπορεί δηλαδή να μετατραπεί σε σύρματα ή νήματα. Όταν εκτίθεται στον ατμοσφαιρικό αέρα, μαυρίζει από το θειούχο άργυρο που σχηματίζεται λόγω της ύπαρξης ιχνών θείου στον αέρα από τα καυσαέρια των αυτοκινήτων. Δεν επηρεάζεται από το υδροχλωρικό οξύ, διαλύεται όμως στο πυκνό θειικό οξύ και στο αραιό και πυκνό νιτρικό οξύ.

Η περιεκτικότητα του στερεού φλοιού της Γης σε ασήμι είναι μεταξύ 0,07 και 0,08 γραμμάρια ανά τόνο (g/t ή μέρη στο εκατομμύριο, ppm). Σπάνια βρίσκεται ως αυτοφυές και πολλές φορές συνυπάρχει με χρυσό. Λαμβάνεται κυρίως ως παραπροϊόν παραγωγής και ηλεκτρολυτικής επεξεργασίας άλλων μετάλλων (χαλκού, μολύβδου, ψευδαργύρου) στα θειούχα ορυκτά των οποίων βρίσκεται σε πολύ μικρές αλλά εκμεταλλεύσιμες ποσότητες. Βρίσκεται και σε ορυκτά όπως ο αργεντίτης και ο χλωραργυρίτης. Το 2010, πάνω από 50 χώρες σε όλο τον κόσμο διατηρούσαν ορυχεία αργύρου. Οι κυριότερες χώρες παραγωγής αργύρου είναι μεταξύ άλλων τo Μεξικό, το Περού, η Κίνα, η Αυστραλία, η Χιλή, η Πολωνία, η Ρωσία, η Βολιβία και οι Ηνωμένες Πολιτείες.

Ο άργυρος χρησιμοποιείται για να κατασκευασθούν κοσμήματα, νομίσματα, σκεύη τραπεζιού, κυρίως μαχαιροπίρουνα (τα οποία συλλογικά καλούνται ασημικά), φωτογραφικά φιλμ (όπου υπάρχει στα φωτοευαίσθητα αλογονούχα άλατα) και καθρέπτες. Η περιεκτικότητα σε άργυρο ενός κοσμήματος συνήθως μετριέται με τους «βαθμούς» που συμβολίζονται με °. Για παράδειγμα ένα κόσμημα 925° περιέχει 92,5 % άργυρο, ένα κόσμημα 950° περιέχει 95 % άργυρο και ούτω καθεξής.

Οι ενώσεις του αργύρου, κυρίως ο νιτρικός άργυρος, χρησιμοποιούνται ως χημικά αντιδραστήρια, ως μικροβιοκτόνα και ως απολυμαντικά. Βομβίδες με εκρηκτικό μείγμα ενώσεων αργύρου και άνθρακα χρησιμοποιούνται για την παραγωγή τεχνητής βροχής. Χρησιμοποιείται επίσης σε ηλεκτρικές επαφές και αγωγούς και ως καταλύτης χημικών αντιδράσεων.

Ο φυσικός άργυρος αποτελείται από δύο σταθερά ισότοπα: 107Ag και 109Ag.

Ίνδιο

Το χημικό στοιχείο ίνδιο (indium) είναι σπάνιο, μαλακό, εύτηκτο, πτητικό, ελατό και όλκιμο αργυρόλευκο μέταλλο με στιλπνή μεταλλική λάμψη. Ο ατομικός αριθμός του είναι 49 και η σχετική ατομική μάζα του 114,818. Το χημικό του σύμβολο είναι «In» και ανήκει στην ομάδα 13 (IIIA, με την παλαιότερη ταξινόμηση) του περιοδικού πίνακα, στην περίοδο 5 και στο p-block. Έχει θερμοκρασία τήξης 156,6 °C και θερμοκρασία βρασμού 2072 °C.

Η μέση περιεκτικότητα του στερεού φλοιού της γης σε ίνδιο είναι περίπου 0,05 ppm. Το ίνδιο είναι πενήντα φορές αφθονότερο από το χρυσό στη λιθόσφαιρα.

Όταν είναι σε στερεή μορφή και καμφθεί ή τεντωθεί απότομα παράγει χαρακτηριστικό τρίξιμο. Διατηρείται υγρό σε ένα μεγάλο εύρος θερμοκρασιών. Είναι σταθερό στον αέρα και στο νερό, αλλά διαλύεται στα οξέα. Όταν θερμανθεί πάνω από το σημείο τήξης του αναφλέγεται παράγοντας χαρακτηριστική ιώδη φλόγα.Η ανακάλυψή του ανακοινώθηκε το 1863 από τους Γερμανούς χημικούς Φέρντιναντ Ράιχ και Ιερώνυμο Τέοντορ Ρίχτερ και ήταν το 49ο χημικό στοιχείο που τοποθετήθηκε στον περιοδικό πίνακα. Πήρε το όνομά του από τη φωτεινή μπλε (indigo blue, ινδικό μπλε, λουλακί) γραμμή στο ατομικό του φάσμα και η οποία ήταν η πρώτη ένδειξη για την ύπαρξή σε μεταλλεύματα, ενός νέου και άγνωστου μέχρι τότε στοιχείου.

Στη φύση το ίνδιο απαντά σε μορφή σπάνιων ορυκτών, όπως ο ινδίτης (Fe++In2S4) και ο τζαλινδίτης (dzhalindite, In(OH)3). Ανευρίσκεται, επίσης, σε ορισμένα ιδιαίτερα σπάνια ορυκτά, όπως ο σακουραΐτης και ο πετρουκίτης. Είναι ευρέως διεσπαρμένο σε μικρές ποσότητες σε κοιτάσματα ορυκτών άλλων μετάλλων με τα οποία προσομοιάζει κρυσταλλογραφικά. Οι οικονομικά εκμεταλλεύσιμες εμφανίσεις του σχετίζονται με θειούχα ορυκτά κυρίως του ψευδαργύρου σφαλερίτη αλλά και χαλκοπυρίτη. Βρίσκεται όμως και σε κοιτάσματα κασσιτέρου, μαγγανίου, βολφραμίου, χαλκού, σιδήρου, μολύβδου, κοβαλτίου και βισμούθιου αλλά σε ποσότητες μικρότερες από 0,1 %. Εξάγεται ως παραπροϊόν της παραγωγής ψευδαργύρου και μολύβδου. Παλιότερα ο Καναδάς παρήγαγε τη μεγαλύτερη ποσότητα πρωτογενούς ινδίου από τα ορυχεία. Σήμερα ο μεγαλύτερος παραγωγός κατεργασμένου και εξευγενισμένου ινδίου είναι η Κίνα. Ίνδιο παράγεται επίσης στη Νότια Κορέα, στην Ιαπωνία, σε Ευρωπαϊκές χώρες κ.ά. Μέχρι το 1982 παράγονταν λιγότεροι από 50 τόνοι ινδίου το χρόνο. Tο 2009 η παγκόσμια παραγωγή ινδίου εκτιμάται πάνω από 600 τόνους ετησίως.

Το ίνδιο προσομοιάζει στις χημικές και φυσικές του ιδιότητες με το αργίλιο, το γάλλιο και το θάλλιο με τα οποία βρίσκεται στην ίδια ομάδα του περιοδικού πίνακα αλλά και με τον κασσίτερο που βρίσκεται στην επόμενη ομάδα. Δε μοιάζει με το βόριο που βρίσκεται στην κορυφή της ομάδας.

Στις ενώσεις του παρουσιάζεται με δύο κυρίως αριθμούς οξείδωσης, +1 και +3. Υπάρχουν όμως και ενώσεις του όπου έχει αριθμό οξείδωσης +2.

Η κυριότερη χρήση του ινδίου είναι με μορφή στερεού διαλύματος οξειδίων ινδίου-κασσιτέρου (Indium Tin Oxide, ITO) που είναι άχρωμο και διαφανές και χρησιμοποιείται στην παραγωγή λεπτών υμενίων και ηλεκτροδίων για οθόνες υγρών κρυστάλλων (LCD) και οθόνες αφής. Το In επίσης χρησιμοποιείται ως επίστρωση σε ρουλεμάν μεγάλης περιστροφικής ταχύτητας, σε καθρέπτες, σε τρανζίστορ, σε φωτοδιόδους, στην παραγωγή κραμάτων χαμηλού σημείου τήξης, σε συγκολλήσεις μετάλλων, στην πυρηνική ιατρική κ.ά.

Η μονάδα εμπορικών συναλλαγών για το ίνδιο είναι η ράβδος του ενός χιλιογράμμου. Η τιμή του ινδίου δεν είναι σταθερή, εξαρτώμενη έντονα από την προσφορά και τη ζήτηση.Δεν υπάρχουν συστηματικές τοξικολογικές μελέτες για την επίδραση του ινδίου στον ανθρώπινο οργανισμό.

Το ίνδιο έχει ένα σταθερό ισότοπο, το 113In και ένα που θεωρείται σταθερό αφού έχει πολύ μεγάλο χρόνο ημιζωής, το 115In.

Βούπερταλ

Το Βούπερταλ (γερμ. Wuppertal) είναι πόλη της Γερμανίας. Βρίσκεται στο κρατίδιο της Βόρειας Ρηνανίας-Βεστφαλίας και έχει πληθυσμό 356.420 κατοίκους. Φημίζεται για το Σβέμπεμπαν (Schwebebahn), το εναέριο τραίνο που μεταφέρει τους επιβάτες της πόλης.

Το Βούπερταλ είναι σημαντικό βιομηχανικό κέντρο συμπεριλαμβανομένων των βιομηχανιών όπως: μεταλλουργία, χημικές ουσίες, ιατρική (Bayer), ηλεκτρικές συσκευές, ρόδες, οχήματα και εξοπλισμός εκτύπωσης. Ένα από τα διασημότερα παυσίπονα, η ασπιρίνη, εφευρέθηκε στο Βούπερταλ.

Βωξίτης

Ο βωξίτης είναι πέτρωμα, δηλαδή συνδυασμός ορυκτών, και αποτελεί το κυριότερο μετάλλευμα αργιλίου. Ανακαλύφθηκε το 1821 από το Γάλλο γεωλόγο Pierre Berthier στην πόλη Μπων (Les Baux-de-Provence) της νότιας Γαλλίας (Προβηγκία), από την οποία πήρε το όνομά του. Σχηματίζεται από την αποσάθρωση αργιλοπυριτικών πετρωμάτων (κυρίως μαγματογενούς προελεύσεως), θεωρούμενος έτσι ιζηματογενές πέτρωμα.

Γάλλιο

Το χημικό στοιχείο γάλλιο (αγγλικά: gallium) είναι σπάνιο, μαλακό, εύτηκτο, εύθρυπτο σε χαμηλές θερμοκρασίες, αργυρόλευκο μέταλλο με στιλπνή μεταλλική λάμψη. Ο ατομικός αριθμός του είναι 31 και η σχετική ατομική μάζα του 69,723(1). Το χημικό του σύμβολο είναι "Ga" και ανήκει στην ομάδα 13 (ομάδα του βορίου, IIIA, με την παλαιότερη αρίθμηση) του περιοδικού πίνακα, στην περίοδο 4 και στον τομέα p. Έχει θερμοκρασία τήξης 29,7646 °C και θερμοκρασία βρασμού 2204 °C.

Ανακαλύφθηκε το 1875 από τον Γάλλο χημικό Πολ-Εμίλ (Φρανσουά) Λεκόκ ντε Μπουαμποντράν με φασματοσκοπική μελέτη και πήρε το όνομά του από την Gallia, παλιά λατινική ονομασία της Γαλλίας. Ανεπιβεβαίωτες φήμες εκείνης της εποχής λένε ότι το όνομα γάλλιο μπορεί να προέρχεται από το όνομά του "Λε Κοκ" (Le Coq) που στα λατινικά (γκάλιουμ) σημαίνει πετεινός, αρσενική γαλοπούλα, γάλος. Στην ελληνική γλώσσα η ονομασία "Γάλλιον" όπως αποδόθηκε το "Γκάλιουμ", ή "Γκάλιαμ", αναφέρεται από το 1885 από τον Καθηγητή του Πανεπιστημίου Αθηνών Αναστάσιο Δαμβέργη (1857-1920)Το γάλλιο δεν υπάρχει σε ελεύθερη μορφή στη φύση. Τα λίγα ορυκτά με υψηλή περιεκτικότητα σ' αυτό, όπως ο γαλλίτης, αφενός είναι πολύ σπάνια για να χρησιμεύσουν ως βασική πηγή του στοιχείου ή των ενώσεών του και αφετέρου χωρίς οικονομική σπουδαιότητα. Η περιεκτικότητα του μετάλλου στο στερεό φλοιό της γης κυμαίνεται από 15 ppm (ή 0,0015 %) έως και 19 ppm (ή 0,0019 %).

Το μεγαλύτερο μέρος του μετάλλου παράγεται σήμερα ως παραπροϊόν κατά την επεξεργασία της αλουμίνας που προέρχεται από το βωξίτη. Μικρό ποσοστό παράγεται από την επεξεργασία των καταλοίπων της εξαγωγής ψευδαργύρου από το σφαλερίτη αλλά και από την ιπτάμενη τέφρα. Κυριότερες χώρες παραγωγής καθαρού γαλλίου είναι η Κίνα, η Γερμανία, το Καζακστάν, η Ρωσία, η Ιαπωνία κ.ά.. Ένα σημαντικό ποσοστό του μετάλλου προκύπτει επίσης από τη δευτερογενή παραγωγή, κυρίως από ανακύκλωση ηλεκτρονικών συσκευών που περιέχουν ενώσεις όπως το αρσενικούχο γάλλιο (GaAs). Τα βασικά κέντρα για τη δευτερογενή αυτή παραγωγή είναι ο Καναδάς, η Ιαπωνία, η Γερμανία, η Μεγάλη Βρετανία και οι Η.Π.Α.Το γάλλιο υγροποιείται λίγο πάνω από τη θερμοκρασία δωματίου και λιώνει εύκολα στο χέρι. Διαλύεται αργά στο υδροχλωρικό οξύ και στο υδροξείδιο του καλίου. Είναι διαβρωτικό για διάφορα μέταλλα ειδικά όταν είναι ζεστό. Σχηματίζει ένα οξείδιο, το Ga2O3, ενώ είναι γνωστά επίσης διάφορα χλωρίδια, σουλφίδια και νιτρικά άλατά του. Από μια ένωσή του, το θειικό γάλλιο, μπορούμε να παρασκευάσουμε στυπτηρία.

Το γάλλιο χρησιμοποιείται σε θερμομετρικές εφαρμογές και το τριπλό σημείο του που είναι 29,767 °C εφαρμόζεται στην υλοποίηση της Διεθνούς Θερμοκρασιακής Κλίμακας του 1990 (ITS-90) από το N.I.S.T. (National Institute of Standards and Technology). Επίσης, το γάλλιο χρησιμοποιείται και για την παρασκευή μεταλλικών κραμάτων με ασυνήθιστες ιδιότητες σταθερότητας και ευκολίας τήξης. Για παράδειγμα, το κράμα galinstan που περιέχει μεταξύ άλλων και Ga έχει σημείο τήξης -19 °C. Ενώσεις, όπως το αρσενίδιο και το νιτρίδιο του γαλλίου, χρησιμοποιούνται ευρύτατα ως ημιαγωγοί σε ολοκληρωμένα κυκλώματα, σε υπέρυθρες εφαρμογές, σε διόδους λέιζερ και γενικά σε πολύ μεγάλη ποικιλία οπτικοηλεκτρονικών εφαρμογών. Σχεδόν το 95 % του παραγομένου παγκοσμίως γαλλίου διοχετεύεται σε εφαρμογές ημιαγωγών, παρόλο που ανακαλύπτονται συνεχώς καινούργιες χρήσεις του μετάλλου σε νέα κράματα και κυψέλες καυσίμων.

Το καθαρό γάλλιο δεν αποτελεί επιβλαβή ουσία για τους ανθρώπους κατά την επαφή, αν και αφήνει σημάδι στα χέρια. Πολλές φορές αγγίζεται μόνο και μόνο για την απλή ευχαρίστηση που προκαλεί η παρατήρησή του όταν λειώνει από τη θερμότητα που εκπέμπεται από το ανθρώπινο χέρι.

Το φυσικό γάλλιο βρίσκεται με τη μορφή δύο σταθερών ισοτόπων, το 69Ga και το 71Ga.

Δημοκρατία της Βόρειας Οσετίας - Αλανίας

Η δημοκρατία της Βόρειας Οσετίας – Αλανίας (ρωσικά: республика Северная Осетия - Алания) - είναι ομοσπονδιακό υποκείμενο της Ρωσίας, υπαγόμενο στο Νότιο Διαμέρισμα. Πρωτεύουσά της είναι το Βλαντικαβκάζ (311.693 κάτοικοι - απογρ. 2010).

Στην περιφέρεια βρίσκεται ο ποταμός Τέρεκ.

Η δημοκρατία της Βόρειας Οσετίας – Αλανίας συνορεύει με τις Καμπαρντίνο-Μπαλκάρια, Τσετσενία και Σταυρούπολη.

Ιρίδιο

Το χημικό στοιχείο ιρίδιο (iridium) είναι μέταλλο με ατομικό αριθμό 77 και σχετική ατομική μάζα 192,217. Το χημικό του σύμβολο είναι «Ir» και ανήκει στην ομάδα 9 του περιοδικού πίνακα, στην περίοδο 6, στον τομέα d, και στην 3η κύρια σειρά των στοιχείων μετάπτωσης. Έχει θερμοκρασία τήξης 2466 °C και θερμοκρασία βρασμού 4428 °C.

Πήρε το όνομά του από τα έντονα χρώματα που είχαν τα άλατά του, σε συνδυασμό και με την Ίριδα, τη θεά του ουράνιου τόξου των αρχαίων Ελλήνων.

Από άποψη χημικής συμπεριφοράς, ανήκει στην «ομάδα του λευκόχρυσου», PGMs, Platinum Group Metals.

Το ιρίδιο θεωρείται ευγενές μέταλλο μαζί με το ρουθήνιο, το ρόδιο, το παλλάδιο, τον άργυρο, το όσμιο, το λευκόχρυσο και το χρυσό.

Ανακαλύφθηκε το 1803 στο Λονδίνο από τον Άγγλο χημικό Τένναντ στα αδιάλυτα κατάλοιπα της κατεργασίας του λευκόχρυσου.

Τα μεγαλύτερα αποθέματά του βρίσκονται στη Νότια Αφρική, στη Ρωσία, και στον Καναδά. Μικρότερα αποθέματα βρίσκονται στις Ηνωμένες Πολιτείες.

Αν και είναι ένα από τα σπανιότερα στοιχεία του φλοιού της Γης, με ετήσια παραγωγή και κατανάλωση μόνο τρεις τόνους, παρουσιάζει ως μέταλλο εξαιρετικό ενδιαφέρον εξαιτίας των μηχανικών ιδιοτήτων του. Έτσι, χρησιμοποιείται ευρύτατα στην κατασκευή σκευών ανθεκτικών στις ψηλές θερμοκρασίες και στη διάβρωση όπως είναι τα μπουζί, τα πρότυπα μέτρα και σταθμά, τα χωνευτήρια, τα ηλεκτρόδια και στις θερμοηλεκτρικές γεννήτριες ραδιοϊσοτόπων σε μη επανδρωμένα διαστημόπλοια.

Οι πιο σημαντικές ενώσεις του ιριδίου είναι τα άλατά του με χλώριο και οι οργανομεταλλικές ενώσεις που χρησιμοποιούνται στους καταλύτες των οργανικών αντιδράσεων.

Ιρίδιο έχει βρεθεί και σε μετεωρίτες και μάλιστα σε περιεκτικότητα πολύ υψηλότερη από τον μέσο όρο της λιθόσφαιρας. Υπάρχει η σκέψη ότι το ποσό του ιριδίου σ' ολόκληρο τον πλανήτη είναι πολύ υψηλότερο από αυτό που παρατηρείται στη λιθόσφαιρα, αλλά λόγω της υψηλής πυκνότητας και του σιδηρόφιλου χαρακτήρα του, το περισσότερο ιρίδιο κατέβηκε κάτω από το φλοιό και μέσα στον πυρήνα της Γης, όταν ο πλανήτης ήταν ακόμη νεαρής ηλικίας και δεν είχε στερεοποιηθεί πλήρως.

Ασυνήθιστα μεγάλη περιεκτικότητα σε ιρίδιο έχει βρεθεί στο γεωλογικό «όριο Κ-Τ». Αυτή η ανακάλυψη αποτελεί ισχυρή ένδειξη της θεωρίας που υποστηρίζει ότι η εξαφάνιση των δεινοσαύρων πριν 65 εκατομμύρια χρόνια προκλήθηκε από την πτώση μεγάλου μετεωρίτη.

Το ιρίδιο έχει δύο σταθερά ισότοπα, το 191Ir και το 193Ir.

Κασσίτερος

Ο κασσίτερος (λατινικά: stannum, αγγλικά: tin) είναι το χημικό στοιχείο με χημικό σύμβολο Sn, ατομικό αριθμό 50 και ατομική μάζα 118,69 amu. Ανήκει στην ομάδα 14 (πρώην IVA) του περιοδικού συστήματος. Η χημική του συμπεριφορά είναι παρόμοια με την αντίστοιχη και των δυο γειτονικών του στοιχείων της ίδιας ομάδας του πίνακα, δηλαδή του γερμανίου (Ge) και του μολύβδου (Pb). Έτσι, ο κασσίτερος έχει δυο πιθανούς και σταθερούς αριθμούς οξείδωσης, +2 και +4, από τους οποίους λίγο σταθερότερος είναι ο αριθμός οξείδωσης +4. Ο κασσίτερος είναι το 49ο χημικό στοιχείο σε αφθονία. Με συνολικά 10 σταθερά ισότοπα, είναι το χημικό στοιχείο με το μεγαλύτερο αριθμό σταθερών ισοτόπων στο περιοδικό σύστημα. Ο χημικά καθαρός κασσίτερος, στις συνηθισμένες συνθήκες, δηλαδή σε θερμοκρασία 25 °C και υπό πίεση 1 atm, είναι αργυρόλευκο ελατό μεταλλικό στερεό, που δεν οξειδώνεται εύκολα από τον αέρα (ή και από το νερό) και λαμβάνεται κυρίως από ορυκτό κασσιτερίτη, που περιέχει διοξείδιο του κασσιτέρου (SnO2). Η παγκόσμια παραγωγή φτάνει τους 300.000 τόνους ετησίως. Κύριες χώρες παραγωγής είναι η Κίνα, η Ινδονησία, το Περού, η Βολιβία και η Βραζιλία.

Το πρώτο κράμα, που χρησιμοποιήθηκε σε μεγάλη κλίμακα από το 3.000 π.Χ., με αναφορές για χρήση του από το 3.500 π.Χ., ήταν ο μπρούτζος, που είναι κράμα κασσιτέρου και χαλκού (Cu). Ο καθαρός μεταλλικός κασσίτερος άρχισε να παράγεται μετά από το 600 π.Χ.. Το πηούτερ (pewter) είναι ένα κράμα από κασσίτερο (85-90%) και το υπόλοιπο αποτελείται από χαλκό, αντιμόνιο (Sb), βισμούθιο (Bi), μόλυβδο (Pb), μερικές φορές και άργυρο (Ag), και χρησιμοποιούνταν συνήθως για επίπεδα σκεύη (πιατικά και δίσκους σερβιρίσματος) από την Εποχή του Ορείχαλκου ως τον 20ό αιώνα. Στη σύγχρονη εποχή ο κασσίτερος χρησιμοποιείται σε πολλά κράματά του, με πιο αξιοσημείωτο ένα κράμα κασσιτέρου (60% και πάνω) - μολύβδου, που χρησιμοποιείται για «μαλακές συγκολλήσεις». Μια άλλη μεγάλη εφαρμογή του κασσιτέρου, εξαιτίας της σχετικής αντίστασής του στη διάβρωση, είναι η επιμετάλλωση (επικασσιτερίωση) του χάλυβα. Εξαιτίας της σχετικά χαμηλής τοξικότητάς του, επικασσιτερωμένα μέταλλα, συνήθως χάλυβας, χρησιμοποιούνται συχνά για την κονσερβοποίηση τροφίμων. Άλλες χρήσεις του είναι σε εύτηκτα κράματα και σε οργανοκασσιτερικές ενώσεις, όπως σταθεροποιητικά πρόσθετα πολυμερών.

Κράμα

Κράμα είναι το υλικό που συνίσταται από διαφορετικές χημικές ουσίες, η οποία όταν είναι στερεό χαρακτηρίζεται από τη συμμετοχή και όλων των ουσιών στο κρυσταλλικό πλέγμα. Με άλλα λόγια, σε ένα αντικείμενο που είναι κατασκευασμένο από ένα κράμα, μπορούν να εντοπιστούν άτομα διαφορετικού είδους, όταν το σώμα είναι στερεό αυτό είναι κρυσταλλικό και σε αυτόν τον κρύσταλλο τα άτομα ή μόρια των συστατικών είναι διατεταγμένα στο χώρο σαν να είναι άτομα του ίδιου είδους. Η λέξη είναι αρχαία και προέρχεται από το ρήμα κεράννυμι, ανακατεύω, αναμειγνύω. Τα κράματα περιέχουν κατά κανόνα ένα μέταλλο ως κύριο ή κύρια συστατικά τους, ενώ τα άλλα συστατικά μπορούν να είναι μέταλλα ή αμέταλλα. Τα κράματα είναι κεντρικό αντικείμενο μελέτης της μεταλλουργίας.

Μέταλλα

Τα μέταλλα είναι μια μεγάλη κατηγορία χημικών στοιχείων που εμφανίζουν ορισμένες κοινές ιδιότητες, όπως είναι η λάμψη, η υψηλή ηλεκτρική και θερμική αγωγιμότητα, η δυνατότητα σχηματισμού ελασμάτων (ελατά) και συρμάτων (όλκιμα). Τα περισσότερα, αλλά όχι όλα, έχουν μεγάλη πυκνότητα και είναι σκληρά και ανθεκτικά. Διακρίνονται από τα αμέταλλα, που αποτελούν επίσης τη δεύτερη μεγάλη κατηγορία των στοιχείων, τόσο από τις φυσικές όσο, κυρίως, από τις χημικές τους ιδιότητες.

Χαρακτηριστικά μέταλλα είναι ο σίδηρος, ο χαλκός, το αργίλιο (αλουμίνιο), το νάτριο, το ασβέστιο, ο ψευδάργυρος, το μαγνήσιο, το τιτάνιο, το ουράνιο.

Με εξαίρεση τον υδράργυρο όλα τα μέταλλα σε θερμοκρασία δωματίου (20° C) είναι στερεά. Έχουν επίσης το χαρακτηριστικό αργυρό ή πλατινένιο χρώμα, με εξαίρεση τον χαλκό (ερυθρός) και τον χρυσό (κίτρινος).

Ο κλάδος που μελετά τις τεχνικές με τις οποίες εξάγονται τα μέταλλα από τα μεταλλεύματα καθώς και ο καθαρισμός τους όπως επίσης και όλες τις απαραίτητες εργασίες λήψης καθαρών μετάλλων ή κραμάτων ή άλλων ενώσεων αυτών ονομάζεται μεταλλουργία.

Τα μέταλλα προσφέρονται για την κατασκευή πλήθους προϊόντων με μεθόδους που αποτελούν το κύριο αντικείμενο της μεταλλοτεχνίας ή "μεταλλοτεχνικής" που αποτελεί ιδιαίτερο κλάδο της Μεταλλογνωσίας. Για την καλύτερη παραγωγή προϊόντων συχνά χρησιμοποιούνται αναμείξεις αυτών, τα κράματα.

Νιόβιο

Το χημικό στοιχείο νιόβιο (niobium) είναι δύστηκτο, μαλακό, ελατό και όλκιμο, αργυρόλευκο μέταλλο με έντονη μεταλλική λάμψη. Έχει ατομικό αριθμό 41 και σχετική ατομική μάζα 92,90638(2). Το χημικό του σύμβολο είναι "Nb" και ανήκει στην ομάδα 5, στην περίοδο 5 και στο d-block του περιοδικού πίνακα, της 2ης κύριας σειράς των στοιχείων μετάπτωσης. Έχει θερμοκρασία τήξης 2477 °C και θερμοκρασία βρασμού 4744 °C.Το νιόβιο δεν υπάρχει ελεύθερο στη φύση αλλά μόνο μέσα σε ορυκτά κυριότερα των οποίων είναι το πυρόχλωρο και ο κολουμπίτης. Έχει μέση περιεκτικότητα στο στερεό φλοιό της Γης όση του λιθίου και του αζώτου: περίπου 20 γραμμάρια/τόνο ή 20 ppm (μέρη στο εκατομμύριο).Το καθαρό νιόβιο έχει την 7η μεγαλύτερη θερμοκρασία τήξης και το 6ο μεγαλύτερο σημείο βρασμού από όλα τα χημικά στοιχεία. Ανήκει στα λεγόμενα πυρίμαχα μέταλλα τα οποία είναι μια μικρή ομάδα μετάλλων εξαιρετικά ανθεκτικών στη θερμότητα και τη φθορά. Όταν ανοδιώνεται αποκτά διάφορα χρώματα. Απαντά στις ενώσεις του με πολλούς αριθμούς οξείδωσης, κυρίως όμως με +5. Όταν εκτίθεται στον αέρα παίρνει μια γαλαζωπή απόχρωση ενώ αρχίζει να οξειδώνεται σε υψηλές θερμοκρασίες καλυπτόμενο από λεπτό στρώμα οξειδίου. Αντιδρά με τα αλογόνα, διαλύεται στο υδροφθορικό οξύ ή σε μείγμα υδροφθορικού και νιτρικού οξέος, είναι σε μεγάλο βαθμό ανθεκτικό στη διαβρωτική δράση λιωμένων αλκαλίων, διαλύεται όμως αργά σ´αυτά.

Η ύπαρξή του διαπιστώθηκε το 1801 από τον Άγγλο χημικό Χάτσετ και υπήρξε το πρώτο χημικό στοιχείο που ανακαλύφθηκε το 19ο αιώνα. Αρχικά ονομάστηκε κολούμπιο και, όταν ένα χρόνο αργότερα ανακαλύφθηκε το στοιχείο ταντάλιο, επειδή παρουσίαζαν πολλές χημικές ομοιότητες, για πολλά χρόνια ταύτιζαν τα δύο στοιχεία. Το όνομα νιόβιο δόθηκε από το Γερμανό χημικό Ρόζε. Η οριστική απόδειξη ότι ταντάλιο και νιόβιο είναι δύο διαφορετικά στοιχεία έγινε το 1864. Το όνομα νιόβιο καθιερώθηκε το 1949.

Οι μεγαλύτεροι εμπορικοί παραγωγοί καθαρού νιοβίου και παραγώγων του είναι σήμερα η Βραζιλία και ο Καναδάς, ενώ η σημαντικότερη πηγή νιοβίου είναι τα ορυκτά της ομάδας του πυρόχλωρου και του κολουμπίτη. Άλλες χώρες που παράγουν λίγους τόνους νιοβίου το χρόνο είναι η Αυστραλία, η Αιθιοπία, η Μοζαμβίκη, η Τανζανία, η Ρουάντα και άλλες Αφρικανικές χώρες.

Το νιόβιο δεν είναι τοξικό μέταλλο και αξιοποιήθηκε εμπορικά μόλις στον 20ό αιώνα. Χρησιμοποιείται σε πάρα πολλές εφαρμογές, κυρίως όμως ως πρόσθετο στο ατσάλι για την αύξηση της αντοχής του, στην κατασκευή ηλεκτρονικών εξαρτημάτων και πυρίμαχων μεταλλικών κραμάτων υψηλής αντοχής. Κράματα με νιόβιο χρησιμοποιούνται στην κατασκευή αγωγών μεταφοράς πετρελαίου και φυσικού αερίου. Χρησιμοποιείται επίσης στους πυρηνικούς αντιδραστήρες, στην κατεργασία διαμαντιών, στην κατασκευή υψηλής αντοχής εξοπλισμού για χημικά εργαστήρια και αλλού. Όταν συνδυαστεί με σίδηρο, το νιόβιο δημιουργεί ένα υπερκράμα, το σιδηρονιόβιο, το οποίο είναι ιδιαίτερα χρήσιμο στην κατασκευή των τουρμπίνων των αεροπλάνων, στους πυραύλους, στη κατασκευή τμημάτων αυτοκινήτων και αλλού. Το νιόβιο και οι διαμεταλλικές του ενώσεις με τον κασσίτερο, το αργίλιο και το ζιρκόνιο βρίσκουν εφαρμογή ως υπεραγωγοί. Χρησιμοποιείται επίσης σε διακοσμητικά αντικείμενα και σε συλλεκτικά νομίσματα ως κράμα με ασήμι.

Στη φύση βρίσκεται με τη μορφή ενός μόνο σταθερού ισοτόπου του 93Nb.

Οξειδοαναγωγή

Ο όρος οξειδοαναγωγή περιγράφει όλες τις χημικές αντιδράσεις κατά τις οποίες τα άτομα των στοιχείων που συμμετέχουν αλλάζουν αριθμό οξείδωσης. Η διαδικασία της οξειδοαναγωγής μπορεί να γίνεται σχετικά απλά και γρήγορα, όπως η οξείδωση του άνθρακα από το οξυγόνο προς διοξείδιο του άνθρακα, ή μπορεί να είναι μια πολύπλοκη διαδικασία, όπως η οξείδωση της γλυκόζης στους οργανισμούς, η οποία επιτυγχάνεται μέσω πολύπλοκων διεργασιών μεταφοράς ηλεκτρονίων.

Ορυκτολογία

Ορυκτολογία είναι κλάδος της Γεωλογίας που μελετά τα ορυκτά και ειδικότερα τις ιδιότητές τους, τη χημική σύνθεση και συμπεριφορά τους, τη κρυσταλλική μορφή τους καθώς και την κατάταξη και ονοματολογία τους. Επίσης μελετά το ρόλο ενός εκάστου ορυκτού στη φύση, την ιστορία του, την γένεση και τις μεταμορφώσεις του, τις ποικιλίες του (σε διάφορες συνθήκες) και τις μεταξύ τους σχέσεις. Από πρακτική όμως άποψη σημειώνονται τόσο η σπουδαιότητα και η χρήση εκάστου, όσο και τα σημεία της Γης που ανευρίσκονται.

Τα περισσότερα ορυκτά ονομάζονται είτε από τη θέση που αρχικά εντοπίστηκαν, είτε από τη χημική σύστασή τους ή κάποια ιδιότητά τους, είτε από τους ανθρώπους που τα ανακάλυψαν είτε από ανθρώπους που οι ονοματοδότες ήθελαν να τιμήσουν. Αρμόδια για την ονοματοδοσία νέων ορυκτών ή τη μετονομασία ήδη γνωστών αρμόδια είναι η ΙΜΑ (International Mineralogical Association), η οποία για το σκοπό αυτό συγκροτεί επιτροπές, ομάδες εργασίας και συμβούλια.

Η Ορυκτολογία συγγενεύει με την Πετρολογία, την Κοιτασματολογία, τη Γεωχημεία και την Κρυσταλλογραφία, αφού τα ορυκτά ως επί το πλείστον είναι κρυσταλλικά σώματα, τα δε πετρώματα αποτελούν αθροίσματα ορυκτών. Θεμελιώδης όμως είναι και ο ρόλος της Χημείας, της Φυσικής και των Μαθηματικών. Τέλος συναφείς είναι και τέχνες όπως η μεταλλευτική και η μεταλλουργία που η μέν πρώτη ενδιαφέρεται για την εξόρυξη των μεταλλευμάτων από τη Γη, η δε δεύτερη την εξαγωγή των μετάλλων από τα μεταλλεύματα.

Ο επιστήμονας που ειδικεύεται στη μελέτη και τη σπουδή των ορυκτών ονομάζεται γενικά ορυκτολόγος, λαμβάνοντας πρόσθετο χαρακτηρισμό ανάλογα με τους επιμέρους εξειδικευμένους κλάδους της επιστήμης αυτής (π.χ. ορυκτογράφος, ορυκτοφυσικός, ορυκτοχημικός, κ.λπ.).

Ουράλια Όρη

Τα Ουράλια όρη (ρωσ. Ура́льские го́ры, ΔΦΑ:[ʊˈralʲskʲɪjə ˈgorɨ], [ʊˈrɑl]) είναι οροσειρά της Ρωσίας που αρχίζει σχεδόν από τον Β. Παγωμένο Ωκεανό και κατευθύνεται προς τα νότια, φθάνοντας σχεδόν ως την Κασπία Θάλασσα. Το συνολικό μήκος της είναι γύρω στα 2.000 χιλ. Μαζί με τον Ουράλη ποταμό αποτελούν τα φυσικά σύνορα που χωρίζουν την Ευρώπη από την Ασία.

Πρόκειται για βουνά με μικρό ύψος, η υψηλότερη κορυφή, η Ναρόντναγια (Εθνική) έχει ύψος 1.894 μ. Παρόλο το μικρό ύψος τους έχουν άφθονες βροχοπτώσεις και χιονοπτώσεις. Το υπέδαφός τους είναι πολύ πλούσιο σε ορυκτά. Στην περιοχή γύρω από τα Ουράλια, βρίσκεται το μεγαλύτερο μέρος από τη βαρεία βιομηχανία της Ρωσίας και κυρίως η μεταλλουργία. Στην περιοχή αυτή υπάρχουν τεράστια κοιτάσματα σιδήρου, χρυσού και λευκοχρύσου.

Η περιοχή αυτή, ιδιαίτερα στα ανατολικά της, θεωρείται μια από τις πιο πυκνοκατοικημένες της εσωτερικής Ρωσίας.

Περιφέρεια Βολγκογκράντ

Η Περιφέρεια Βολγκογκράντ (ρωσικά: Волгогра́дская о́бласть) είναι ομοσπονδιακό υποκείμενο της Ρωσίας, υπαγόμενο στο Νότιο Διαμέρισμα. Ένα τμήμα της στα ΝΑ συνορεύει με το Καζακστάν.

Πρωτεύουσά της είναι το Βολγκογκράντ (Τσαρίτσιν μεταξύ 1598-1925, Σταλινγκράντ μεταξύ 1925-1961), μία από τις μεγαλύτερες ρωσικές πόλεις (1.021.215 κάτοικοι - απογρ. 2010). Άλλες μεγάλες πόλεις είναι το Βόλζισκι (313.169) και το Καμίσιν (127.891). Γενικά είναι ένα από τα σημαντικότερα βιομηχανικά κέντρα της Ρωσικής Ομοσπονδίας, με κυρίαρχους τομείς τη μεταλλουργία, τη διύλιση πετρελαίου και τη βιομηχανία χημικών, πράγμα που όμως έχει οδηγήσει και σε πολύ μεγάλη οικολογική υποβάθμιση.

Τα εδάφη της περιφέρειας Βολγκογκράντ έγιναν θέατρο ενός από τα γνωστότερα πολεμικά γεγονότα όλων των εποχών, της Μάχης του Στάλινγκραντ ανάμεσα στη Ρωσία και τη Γερμανία. Η Μάχη, όπως επιγραμματικά αποκαλείται το σύνολο των πολεμικών επιχειρήσεων πεντέμισι μηνών (21 Αυγούστου 1942 - 2 Φεβρουαρίου 1943), έληξε με νίκη του Κόκκινου Στρατού και θεωρείται ως η απαρχή της πτώσης του Άξονα. Δεν ήταν απλά η πρώτη ήττα των χιτλερικών στρατευμάτων, αλλά μία πραγματική πανωλεθρία με τεράστιο υλικό και ψυχολογικό βάρος. Οι εισβολείς είχαν συνολικές απώλειες περίπου 900.000 ανδρών: 400.000 γερμανοί, 200.000 ρουμάνοι, 130.000 ιταλοί, 120.000 ούγγροι στρατιώτες και 50.000 ρώσοι δωσίλογοι έπεσαν νεκροί, τραυματίσθηκαν ή αιχμαλωτίσθηκαν. Ήταν επίσης η πρώτη φορά που ένας ανώτατος ναζί αξιωματικός (Αρχιστράτηγος Φρίντριχ Φον Πάουλους) παραδιδόταν.

Στην σημαία και τον θυρεό της Περιφέρειας εικονίζεται το άγαλμα Η Μητέρα Πατρίδα Καλεί.

Περιφέρεια Μόσχας

Η Περιφέρεια Μόσχας (ρωσικά: Моско́вская о́бласть) είναι ομοσπονδιακό υποκείμενο της Ρωσίας, υπαγόμενο στο Κεντρικό Διαμέρισμα. Διοικητικό κέντρο της είναι η Μόσχα, η οποία όμως αποτελεί χωριστό ομοσπονδιακό υποκείμενο. Είναι η πιο πυκνοκατοικημένη περιοχή της Ρωσίας (εξαιρουμένης της Μόσχας και της Αγίας Πετρούπολης, καθώς και μία από τις πλέον ισόρροπα ανεπτυγμένες: δε διαθέτει καμία πόλη με πληθυσμό άνω των 200.000 κατοίκων, υπάρχουν όμως δεκαέξι που ξεπερνούν τους 100.000.

Όπως είναι φυσικό λόγω της θέσης της, η περιφέρεια Μόσχας είναι μεγάλο βιομηχανικό κέντρο. Στο παρελθόν δέσποζε η υφαντουργία, ενώ στον 20ό αιώνα (κυρίως μετά τη μετακίνηση της ρωσικής πρωτεύουσας στη Μόσχα) αναπτύχθηκαν η μεταλλουργία, η μηχανουργία και η χημική βιομηχανία.

Ρήνιο

Το χημικό στοιχείο ρήνιο (rhenium) είναι βαρύ, δύστηκτο, αργυρόλευκο μέταλλο με ισχυρή μεταλλική λάμψη και με ατομικό αριθμό 75 και σχετική ατομική μάζα 186,207. Το χημικό του σύμβολο είναι «Re» και ανήκει στην ομάδα 7 του περιοδικού πίνακα, στην περίοδο 6 και στο d-block, στην ομάδα της 3ης κύριας σειράς των στοιχείων μετάπτωσης. Έχει θερμοκρασία τήξης 3186 °C και θερμοκρασία βρασμού 5596 °C.Με μια μέση περιεκτικότητα περίπου 1 ppb (μέρη στο δισεκατομμύριο) στο στερεό φλοιό της γης, το ρήνιο είναι από τα σπανιότερα μέταλλα.

Το καθαρό ρήνιο έχει την 3η μεγαλύτερη θερμοκρασία τήξης, μετά το βολφράμιο και τον άνθρακα και το μεγαλύτερο σημείο βρασμού από όλα τα χημικά στοιχεία.Ανήκει στα λεγόμενα πυρίμαχα μέταλλα μαζί με το μολυβδένιο, το ταντάλιο, το βολφράμιο και το νιόβιο.Η ανακάλυψή του ανακοινώθηκε το 1925 από στους Γερμανούς χημικούς Βάλτερ Νόντακ, Ίντα Τάκε-Νόντακ και Όττο Μπέργκ και είναι το τελευταίο, με φυσική παρουσία, σταθερό χημικό στοιχείο που ανακαλύφθηκε. Το όνομά του το πήρε από τον ποταμό Ρήνο.

Το ρήνιο δεν υπάρχει ελεύθερο στη φύση. Εμφανίζεται σε μικρές ποσότητες μέσα στο ορυκτό μολυβδαινίτης που αποτελεί και τη μεγαλύτερη εμπορική του πηγή. Η Χιλή, οι Η.Π.Α., και χώρες της Κεντρικής Ασίας (Καζακστάν, Ουζμπεκιστάν) προμηθεύουν τις μεγαλύτερες ποσότητες ρηνίου παγκοσμίως. Είναι γνωστά μόνο δύο πολύ σπάνια ορυκτά του : ο ρηνιίτης που περιέχει θείο και ρήνιο και ο ταρκιανίτης που περιέχει πολλά συστατικά.

Το ρήνιο προσομοιάζει χημικά περισσότερο με το μολυβδαίνιο, που βρίσκεται στην προηγούμενη ομάδα και στην προηγούμενη περίοδο του περιοδικό πίνακα, παρά με το τεχνήτιο και το μαγγάνιο με τα οποία ανήκει στην ίδια ομάδα.

Παράγεται κυρίως από το ορυκτό μολυβδαινίτης ως παραπροϊόν του μολυβδαινίου και της επεξεργασίας του χαλκού.

Στις ενώσεις του έχει πολλούς αριθμούς οξείδωσης που κυμαίνονται από –3 έως και +7, ενώ τα σύμπλοκά του παρουσιάζουν ιδιαίτερο ενδιαφέρον εξαιτίας του μεγάλου αριθμού συναρμογής που έχουν και των παραβιάσεων κάποιων κανόνων μοριακής συμμετρίας που εμφανίζουν.

Χρησιμοποιείται κυρίως στην παραγωγή υπερκραμάτων με το νικέλιο για χρήση σε κινητήρες αεροσκαφών και ως καταλύτης χημικών αντιδράσεων τις περισσότερες φορές ως κράμα με λευκόχρυσο.

Εξαιτίας της χαμηλής διαθεσιμότητάς του σε σχέση με τη ζήτηση, το ρήνιο είναι ένα από τα πιο ακριβά βιομηχανικά μέταλλα.

Το ρήνιο έχει ένα μόνο σταθερό ισότοπο το 185Re.

Σαμουράι

Οι σαμουράι (ιαπωνικά: 侍‎), όπως τουλάχιστον παρουσιάζονται στην ιαπωνική ιστορία, ήταν μια τάξη άφοβων και βίαιων πολεμιστών, που ουσιαστικά κυριάρχησε στην Ιαπωνία για περισσότερα από 600 χρόνια, από τα μέσα του 12ου αιώνα. Η θέση τους στο κοινωνικο-πολιτικό πλαίσιο της ιαπωνικής φεουδαρχίας υπήρξε σημαντική, καθώς λειτούργησαν αρκετές φορές ως ρυθμιστές της ροής των ιστορικών γεγονότων. Απέκτησαν παγκόσμια φήμη για τις ικανότητές τους στο χειρισμό των όπλων, ιδιαίτερα στο ξίφος, και τα κατορθώματά τους έγιναν θρύλοι της ενδοχώρας.

Η λέξη σαμουράι προέρχεται από το ιαπωνικό ρήμα σαμoρό ή σαμπουρό και χρησιμοποιήθηκε αρχικά για να περιγράψει τους προσωπικούς υπηρέτες των πλούσιων και πανίσχυρων γαιοκτημόνων του 8ου αιώνα στην Ιαπωνία. Ορισμένοι από αυτούς τους γαιοκτήμονες ήταν αριστοκράτες, ευγενείς που είχαν εγκαταλείψει τη βασιλική αυλή του Κιότο, την πρωτεύουσα, προκειμένου να αναζητήσουν την τύχη τους. Με αυτόν τον τρόπο δημιουργήθηκε σταδιακά ένα δίκτυο φυλών ή «οικογενειών» με τη διευρυμένη έννοια. Έτσι, όμως, η κεντρική διακυβέρνηση της χώρας έχασε τη δύναμή της, ενώ ο νόμος και η τάξη ετηρείτο πλέον από τις διαφορετικές οικογένειες. Οι οικογένειες εξοπλίστηκαν με την πάροδο του χρόνου, ώστε να μπορούν να προστατέψουν τη γη τους και τους ανθρώπους τους. Τούτο ήταν και το έναυσμα για την ανάπτυξη της τάξης των σαμουράι, πάνω σε έναν αρχαιότερο κώδικα που ήδη είχαν αναπτύξει οι πολεμιστές Γιαγιόι.

Χαλκός

Το χημικό στοιχείο χαλκός (Cuprum) είναι μέταλλο με ατομικό αριθμό 29 και ατομικό βάρος 63,546. Έχει θερμοκρασία τήξης 1084,6 °C και θερμοκρασία βρασμού 2567 °C. Το σύμβολό του είναι Cu. Έχει κοκκινωπό χρώμα και είναι όλκιμος και ελατός. Ανήκει στην ομάδα της 1ης κύριας σειράς των στοιχείων μετάπτωσης.

Άλλες γλώσσες

This page is based on a Wikipedia article written by authors (here).
Text is available under the CC BY-SA 3.0 license; additional terms may apply.
Images, videos and audio are available under their respective licenses.