Feldspars (KAlSi3O8NaAlSi3O8CaAl2Si2O8) are a group of rock-forming tectosilicate minerals that make up about 41% of the Earth's continental crust by weight.

Feldspars crystallize from magma as veins in both intrusive and extrusive igneous rocks and are also present in many types of metamorphic rock. Rock formed almost entirely of calcic plagioclase feldspar (see below) is known as anorthosite. Feldspars are also found in many types of sedimentary rocks.

Feldspar group.svg
Compositional phase diagram of the different minerals that constitute the feldspar solid solution.


The name feldspar derives from the German Feldspat, a compound of the words Feld, "field", and Spat, "a rock that does not contain ore". The change from Spat to -spar was influenced by the English word "spar", a synonym for "mineral". Feldspathic refers to materials that contain feldspar. The alternate spelling, felspar, has largely fallen out of use.


This group of minerals consists of tectosilicates. Compositions of major elements in common feldspars can be expressed in terms of three endmembers:

Potassium-Feldspar (K-spar) endmember KAlSi3O8

Albite endmember NaAlSi3O8

Anorthite endmember CaAl2Si2O8

Solid solutions between K-feldspar and albite are called alkali feldspar. Solid solutions between albite and anorthite are called plagioclase, or more properly plagioclase feldspar. Only limited solid solution occurs between K-feldspar and anorthite, and in the two other solid solutions, immiscibility occurs at temperatures common in the crust of the earth. Albite is considered both a plagioclase and alkali feldspar.

Alkali feldspars

The alkali feldspars are as follows:

Sanidine is stable at the highest temperatures, and microcline at the lowest. Perthite is a typical texture in alkali feldspar, due to exsolution of contrasting alkali feldspar compositions during cooling of an intermediate composition. The perthitic textures in the alkali feldspars of many granites can be seen with the naked eye. Microperthitic textures in crystals are visible using a light microscope, whereas cryptoperthitic textures can be seen only with an electron microscope.

Barium feldspars

Barium feldspars are also considered alkali feldspars. Barium feldspars form as the result of the substitution of barium for potassium in the mineral structure. The barium feldspars are monoclinic and include the following:

Plagioclase feldspars

The plagioclase feldspars are triclinic. The plagioclase series follows (with percent anorthite in parentheses):

Intermediate compositions of plagioclase feldspar also may exsolve to two feldspars of contrasting composition during cooling, but diffusion is much slower than in alkali feldspar, and the resulting two-feldspar intergrowths typically are too fine-grained to be visible with optical microscopes. The immiscibility gaps in the plagioclase solid solutions are complex compared to the gap in the alkali feldspars. The play of colours visible in some feldspar of labradorite composition is due to very fine-grained exsolution lamellae.


Chemical weathering of feldspars results in the formation of clay minerals.

Production and uses

About 20 million tonnes of feldspar were produced in 2010, mostly by three countries: Italy (4.7 Mt), Turkey (4.5 Mt), and China (2 Mt).

Feldspar is a common raw material used in glassmaking, ceramics, and to some extent as a filler and extender in paint, plastics, and rubber. In glassmaking, alumina from feldspar improves product hardness, durability, and resistance to chemical corrosion. In ceramics, the alkalis in feldspar (calcium oxide, potassium oxide, and sodium oxide) act as a flux, lowering the melting temperature of a mixture. Fluxes melt at an early stage in the firing process, forming a glassy matrix that bonds the other components of the system together. In the US, about 66% of feldspar is consumed in glassmaking, including glass containers and glass fiber. Ceramics (including electrical insulators, sanitaryware, pottery, tableware, and tile) and other uses, such as fillers, accounted for the remainder.

In earth sciences and archaeology, feldspars are used for K-Ar dating, argon-argon dating, and luminescence dating.

In October 2012, the Mars Curiosity rover analyzed a rock that turned out to have a high feldspar content.


Feldspar output in 2005.

Lunar Ferroan Anorthosite (60025).jpg

Lunar ferrous anorthosite #60025 (plagioclase feldspar). Collected by Apollo 16 from the Lunar Highlands near Descartes Crater. This sample is currently on display at the National Museum of Natural History in Washington, D.C.


First X-ray view of Martian soil—feldspar, pyroxenes, olivine revealed (Curiosity rover at "Rocknest", October 17, 2012).

See also

Content from Wikipedia